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CONVERGENCE RATES OF PARAMETER ESTIMATION
FOR SOME WEAKLY IDENTIFIABLE FINITE MIXTURES

BY NHAT HO AND XUANLONG NGUYEN ∗

University of Michigan

We establish minimax lower bounds and maximum likelihood conver-
gence rates of parameter estimation for mean-covariance multivariate Gaus-
sian mixtures, shape-rate Gamma mixtures, and some variants of finite mix-
ture models, including the setting where the number of mixing components is
bounded but unknown. These models belong to what we call ”weakly identi-
fiable” classes, which exhibit specific interactions among mixing parameters
driven by the algebraic structures of the class of kernel densities and their
partial derivatives. Accordingly both the minimax bounds and the maximum
likelihood parameter estimation rates in these models are shown to be typi-
cally much slower than the usual n−1/2 or n−1/4 rates of convergence.

1. Introduction. Location-scale Gaussian mixtures are one of the most widely
utilized modeling tools in statistics. Shape-rate Gamma mixtures are also a useful
modeling choice for non-negative valued data. Yet convergence behaviors of the
parameters arising in these model classes remain largely open questions [19, 21,
10]. We seek to address these questions in this paper.

For finite mixtures of Gaussians, some facts are known when only one type of
parameter varies (such as the mean/location or the variance/scale but not both).
Specifically, if the number of mixing components generating the data is given, then
the optimal rate of parameter estimation is the standard n−1/2, where n is the sam-
ple size. If the number of mixing components is unknown but bounded by a known
constant, then the convergence rate n−1/4 for estimating the mixing distribution is
achieved by a procedure established by Chen [5]. For multi-dimensional parame-
ters, the (log n/n)1/4 rate of posterior concentration of the mixing distribution was
established by Nguyen [22], under Wasserstein distance W2. Ho and Nguyen [16]
extended the results of [5] and [22] to a broader range of strongly identifiable mod-
els, which admit general rates for the mixing measure under maximum likelihood
estimation (MLE): (log n/n)1/2 for exact-fitted mixtures under W1 metric, and
(log n/n)1/4 for over-fitted finite mixtures under W2 metric.
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Strong identifiablity and related notions, as studied by [5, 22] and several oth-
ers (e.g., [20, 25]), refers to a linear independence condition on the class of kernel
density functions and their first and second-order partial derivatives with respect
to the parameters. It is fruitful to delineate this condition further: first-order identi-
fiability requires linear independence of the density functions and their first-order
derivatives; second-order identifiability requires linear independence of the density
functions and their partial derivatives up to the second order [16]. The classical
identifiability condition — linear independence of the class of density functions —
corresponds to zero-order identifiability. Gaussian mixtures with both the mean and
covariance parameters varying are identifiable up to the first order, but not in the
second-order. Gamma mixtures are not identifiable even in the first-order, despite
being identifiable in the classical sense. In each of these examples, the violation of
such identifiability conditions is due to a specific interaction among different pa-
rameters being present in the model class. Such interactions are driven by specific
algebraic structures of the class of kernel densities and their partial derivatives.
They can be succinctly expressed by certain partial differential equations satisfied
by the kernel density function.

We shall informally refer to those finite mixture models weakly identifiable if
they fail either the first or second-order identifiability condition, but otherwise are
identifiable in the classical sense. Most relevant existing works on the asymptotics
of parameter estimation (e.g., [5, 22, 16]) concern only the settings of strong iden-
tifiability, and thus quite inapplicable to weakly identifiable classes. In fact, for
such model classes the standard rates of convergence n−1/2 and n−1/4 (modulo a
logarithmic term) no longer hold in general — the rates that we establish in this
paper are non-standard, and new. For instance, we shall show that for a location-
scale Gaussian mixture where the number of mixing components is unknown and
bounded by a constant, a minimax lower bound and the MLE convergence rate
for estimating the mixing measure depend on how much we potentially overfit the
model: the estimation rate is n−1/8 under the 4th order Wasserstein distance W4,
if overfitting by one extra component; n−1/12 under the 6th order Wasserstein dis-
tance W6 if overfitting by two extra components. All these rates occur while the
MLE convergence rate of the mixture density remains to be n−1/2. Remarkably,
for Gamma and some other mixtures, the minimax lower bound for estimating the
mixing measure is shown to be worse than any polynomial rate of the form n−1/r

even when the number of mixing components is known.
In the special case of overfitting location-scale Gaussian mixtures by one ex-

tra component, the poor convergence rate for parameter estimation has been noted
before by several authors. Most notably, Chen and Chen [4] established the con-
vergence rate n−1/8 of the mixing distribution under a hypothesis testing for ho-
mogeneity. Kasahara and Shimotsu [17] also achieved the rate n−1/8 of MLE of
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finite normal regression mixtures (overfitted by one more component) when pa-
rameters are reparameterized and mixing proportions are restricted to be bounded
away from zero. We are not aware of existing work on Gamma mixtures.

1.1. Main results for Gaussian mixtures. Given an n-iid sample X1, . . . , Xn

generated according to a Gaussian mixture density pG0(x) =

∫
f(x|θ,Σ)G0(dθ, dΣ),

where G0 =
k0∑
i=1

p0
i δ(θ0i ,Σ

0
i ) has k0 ≥ 1 distinct support points. The class of Gaus-

sian densities is denoted by
{
f(x|θ,Σ), θ ∈ Θ ⊂ Rd,Σ ∈ Ω ⊂ S++

d

}
, where S++

d

indicates the set of all symmetric positive definite matrices on Rd×d and d ≥ 1.
Throughout this paper, Θ and Ω shall be restricted to be compact subsets where
their precise formations are given in our main theorems. (We note that without
these compactness conditions, the MLE of G0 may not exist or be inconsistent.)
Now, we shall fit a mixture of k Gaussian distributions using the n-sample, where
k ≥ k0 +1. Denote byOk := Ok(Θ×Ω) the set of probability measures on Θ×Ω
with at most k support points, Ek0 := Ek0(Θ × Ω) the set of probability measures
on Θ × Ω with exactly k0 support points. In addition, given c0 ∈ [0, 1), define a
subset of Ok,

Ok,c0 :=

{
G =

k∗∑
i=1

piδ(θi,Σi) ∈ Ok : pi ≥ c0 ∀ 1 ≤ i ≤ k∗
}
.

Let Ĝn be an estimate of G0. We seek to derive the rate of convergence of
Ĝn to G0 under a number of settings. For evaluating the convergence of mixing
measures, Wasserstein distances have proved to be a natural choice [22, 23]. Given

two discrete probability measures G =
k∑
i=1

piδ(θi,Σi) and G′ =
k′∑
i=1

p′iδ(θ′i,Σ
′
i)

on

Θ × Ω, recall that the s-th (s ≥ 1) order Wasserstein distance between G and G′

takes the form [28]:

Ws(G,G
′) =

inf
∑
i,j

qij(‖θi − θ′j‖+ ‖Σi − Σ′j‖)s
1/s

,

where the infimum is taken over all couplings q between p and p′, i.e., q =

(qij)ij ∈ [0, 1]k×k
′

such that
k∑
i=1

qij = p′j and
k′∑
j=1

qij = pi for any i = 1, . . . , k and

j = 1, . . . , k′. In addition, ‖.‖ denotes either the `2 norm for elements in Rd or the
entrywise `2 norm for matrices.
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To see how a convergence rate in Wasserstein distance Ws is translated to that
of the parameters, suppose that a sequence of mixing measures Gn tending to G0

under Ws metric at a rate ωn = o(1). If all Gn have the same number of atoms
k = k0 as that of G0, then the set of atoms of Gn converge to the k0 atoms of
G0, up to a permutation of the atoms, at the same rate ωn under ‖ · ‖ metric. If Gn
have varying kn ∈ [k0, k] number of atoms, where k is a fixed upper bound, then a
subsequence of Gn can be constructed so that each atom of G0 is a limit point of a
certain subset of atoms of Gn — the convergence to each such limit also happens
at rate ωn. Some atoms ofGn may have limit points that are not amongG0’s atoms
— the total mass associated with those “redundant” atoms of Gn must vanish at
the generally faster rate ωsn.

For over-fitted Gaussian mixtures with both mean and variance varying, a main
result of this paper is to show that the rate of convergence of the mixing measure is
determined by the order of a set of polynomial equations, which we now describe
precisely. Denote by r ≥ 1 the minimum value of r ≥ 1 such that the following
system of polynomial equations

k−k0+1∑
j=1

∑
n1,n2

c2
ja
n1
j b

n2
j

n1!n2!
= 0 for each α = 1, . . . , r(1)

does not have any non-trivial solution for the unknowns (aj , bj , cj)
k−k0+1
j=1 . The

ranges of n1, n2 in the second sum are all natural pairs satisfying n1 + 2n2 = α.
A solution is considered non-trivial if all of cjs are non-zeros, while at least one of
the ajs is non-zero.

THEOREM 1.1. (Gaussian mixtures) Let L, γ, λ < λ be fixed positive num-
bers. Given Θ = [−an, an]d where an ≤ L(log n)γ , and Ω be a subset of S++

d

whose eigenvalues are bounded in an interval [λ, λ].

(a) (Minimax lower bound) For any r < 2r,

inf
Ĝn∈Ok

sup
G∈Ok\Ok0

EpG W1(Ĝn, G) ≥ c1n
−1/r.

Here, the infimum is taken over all sequences of estimates Ĝn ranging in
Ok, EpG denotes the expectation taken with respect to product measure with
mixture density pnG, c1 is a universal positive constant.

(b) (Maximum likelihood estimation) Let c0 = 0 if k − k0 = 1 or 2, and c0 > 0
otherwise. Assume thatG0 ∈ Ok,c0 and let Ĝn be the MLE ranging inOk,c0 .
Then,

P(Wr(Ĝn, G0) > C(log n/n)1/2r) . exp (−c log n) .
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Here, probability P is taken with respect to pG0 . C, c are positive constants
depending only on d, L, γ, λ, λ, c0 and G0.

Part (a) of Theorem 1.1 establishes a minimax lower bound for estimating mix-
ing measure G under W1 distance. Noting the general inequality Wr ≥ W1, this
lower bound obviously also holds for Wr. In words, when the number of mix-
ing components is unknown except that it lies in the interval [k0, k], then there
is no method for estimating G at a rate better than n−1/(2r), uniformly for all
G ∈ Ok \ Ok0 . The proof actually obtains something stronger: the lower bound
holds uniformly for any fixed or suitably shrinking W1 neighborhood in Ok of
any G0 ∈ Ek0 . Part (b) of Theorem 1.1 establishes that, under the compactness of
the parameter spaces Θ,Ω, the rate n−1/(2r) can be achieved, up to a logarithmic
term log n, by maximum likelihood estimation. We wish to emphasize that this is a
pointwise convergence rate, i.e., constant C depends on G0. For a fixed G0, we do
not know if the upper bound n−1/(2r) of the convergence rate for the MLE may still
be improved without additional assumptions or not. As a consequence of part (a),
the upper bound n−1/(2r) is sharp in the sense that it cannot be improved uniformly
for any W1 neighborhood for G0.

The link of the estimation rate for location-scale Gaussian mixtures to the solv-
ability of the system of polynomial equations (1) established by the above theorem
is rather striking, as it describes precisely the hardness of parameter estimation in
over-fitted situations. Determining the solvability of a system of polynomial equa-
tions is a basic question in (computational) algebraic geometry. For system (1),
there does not seem to be an obvious answer as to the general value of r. Since
the number of variables in this system is 3(k − k0 + 1), one expects that r keeps
increasing as k − k0 increases. Using a standard method of Groebner bases [2],
we can show that for k − k0 = 1 and 2, r = 4 and 6, respectively. In addition if
k − k0 ≥ 3, then r ≥ 7. Thus, the convergence rate of the mixing measure for
Gaussian mixtures deteriorates rapidly as more extra components are included in
the model. We expect, but do not have a proof, that the value r in the rate n−1/2r

tends to infinity as the number of redundant Gaussian components increases to in-
finity. We note several recent results at the other end of the rate spectrum: when
the number of mixing components is unbounded (infinite), the convergence rate of
the mixing measure under W2 is shown to be (log n)−1/2 for the location Gaus-
sian mixtures [3, 22]. This rate may also resonate with some classical results in
the deconvolution literature (e.g. [30, 12]), but one should be reminded that these
classical results are applicable to only location mixtures carrying smooth mixing
densities. Interestingly, although the convergence rate of mixing measures in over-
fitted finite mixtures may be poor, if one is interested in mixing proportions only,
it follows from the previous discussion of Wasserstein distance Wr that the rate
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(n−1/(2r))r = n−1/2 is still achieved by the MLE. This rate is also obtained by a
Bayesian estimation procedure studied by Rousseau and Mengersen [25].

1.2. Results for other weakly identifiable classes. We now briefly describe
other model classes studied in this paper. Gamma densities represent an interesting
instance: the Gamma density f(x|a, b) has two positive parameters, a for shape
and b for rate. This family is not identifiable in the first order. Moreover, we will
show that there are particular combinations of the true parameter values which pre-
vent the Gamma class from enjoying strong convergence properties. One the other
hand, by excluding the measure-zero set of pathological cases of true mixing mea-
sures, the Gamma density class in fact can be shown to be strongly identifiable in
both orders. Thus, this class is almost strongly identifiable, using the terminology
of [1]. The generic/pathological dichotomy in the convergence behavior within the
Gamma class is quite interesting: in the generic case of true mixing measures, the
mixing measure can be estimated at the standard rate (i.e., n−1/2 under W1 for
exact-fitted and n−1/4 under W2 for over-fitted mixtures). The pathological cases
are very unforgiving: even for exact-fitted mixtures, one can do no better than a
logarithmic rate of convergence in a minimax sense.

Let some readers wonder whether this unusually slow rate for the exact-fitted
mixture setting can happen only in the measurably negligible (pathological) cases,
we also introduce a location-extension of the exponential distribution, the location-
exponential class: f(x|θ, σ) := 1

σ exp(−x−θ
σ )1(x > θ). We show that the mini-

max lower bound for estimating the mixing measure in an location-exponentials is
no faster than a logarithmic rate, even when the number of mixing component is
known.

Practical implications. In theory, mixture models enjoy strong asymptotic prop-
erties as a black-box modeling device for density estimation, see [13, 14, 24, 18]
and the references therein. In practice, the parameters specific to each mixing com-
ponents may carry useful information about the heterogeneity among the underly-
ing (latent) subpopulations. Thus, understanding the statistical efficiency of param-
eter estimation in mixture modeling is also relevant from a practical standpoint.
Problematic convergence behaviors exhibited by widely utilized models such as
Gaussian mixtures may have long been observed in practice, but a concrete the-
ory has been largely unavailable. The results established in this paper present a
cautionary tale about the limitation of Gaussian mixtures, when it comes to as-
sessing the quality of parameter estimation, but only when the number of mixing
components is unknown. Since a tendency in practice is to ”over-fit” the mixture
generously with many more extra mixing components, our theory warns against
this because as we have shown, the convergence rate via standard methods such as
MLE for subpopulation-specific parameters deteriorates rapidly with the number
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of redundant components. For Gamma and location-exponential distribution, our
theory also paints wildly varied convergence behaviors within each model class
and thus a similarly extreme caution. We hope that the theoretical results obtained
may hint at practically useful ways for determining benign scenarios and imposing
helpful constraints when the mixture models enjoy strong identifiability properties
and favorable convergence rates, and for identifying pathological scenarios where
the practioners would do well by avoiding them.

Paper organization. Section 2 is devoted to the proof of the results for Gaussian
mixture models. Section 3 investigates Gamma mixtures and a location extension
of exponential distribution. The theoretical bounds are illustrated via simulations
in Section 4. Remaining proofs are given in Section 5 and in the supplemental
article [? ].

Notation. In addition to Wasserstein distances for mixing measures, we also uti-
lize several familiar notions of distance for mixture densities, with respect to Lebesgue

measure. They are total variation distance V (pG, pG′) =
1

2

∫
|pG(x)− pG′(x)|dµ(x)

and Hellinger distance h2(pG, pG′) =
1

2

∫ (√
pG(x)−

√
pG′(x)

)2
dµ(x).

2. Proof of main results for Gaussian mixtures. This section is devoted to
proving Theorem (1.1). This theorem addresses only over-fitted Gaussian mixtures,
i.e., when the true number of mixing components is bounded but otherwise un-
known. If the number of mixing Gaussian components is known, it was already
shown that the rate of estimating the mixing measure G is the standard rate n−1/2

under W1 metric [16]. This is due to the fact that the class of Gaussian densities
with both mean and covariance parameters varying is identifiable in the first order.
However, the Gaussian family is not identifiable in the second order — that is to
say that the collection of Gaussian density functions and their partial derivatives
up to the second order taken with respect to the mean and covariance parameters
are not linearly independent. This can be seen by the following identity, which
represents a partial differential equation satisfied by Gaussian density f(x|θ,Σ):

(2)
∂2f

∂θ2
(x|θ,Σ) = 2

∂f

∂Σ
(x|θ,Σ).

This identity, also noted previously by [4, 17], will play a fundamental role in our
proof of Theorem (1.1).

2.1. On the order r. Before proceeding to the proof of the theorem, let us
briefly discuss some properties of r as defined in (1). This is a system of r polyno-
mial equations with 3(k − k0 + 1) unknowns. The condition c1, . . . , ck−k0+1 6= 0
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is important. In fact, if c1 = 0, then by choosing a1 6= 0, ai = 0 for all i =
2, . . . , k − k0 + 1 and bj = 0 for all j = 1, . . . , k − k0 + 1, we can check that
system (1) is satisfied for all α ≥ 1. Therefore, without this condition, r does not
exist.

To illustrate the possible values of r, let us consider the case k = k0 + 1, and let
r = 3. System (1) reduces to the equations:

c2
1a1 + c2

2a2 = 0

1

2
(c2

1a
2
1 + c2

2a
2
2) + c2

1b1 + c2
2b2 = 0

1

3!
(c2

1a
3
1 + c2

2a
3
2) + c2

1a1b1 + c2
2a2b2 = 0.

It is simple to see that a non-trivial solution exists, by choosing c2 = c1 6= 0,
a1 = 1, a2 = −1, b1 = b2 = −1/2. Hence, r ≥ 4. For r = 4, the system consists
of the three equations given above, plus

1

4!
(c2

1a
4
1 + c2

2a
4
2) +

1

2!
(c2

1a
2
1b1 + c2

2a
2
2b2) +

1

2!
(c2

1b
2
1 + c2

2b
2
2) = 0.

It will be shown in the sequel that this system has no non-trivial solution. Therefore
for k = k0 + 1, we have r = 4.

Determining the exact value of r in the general case appears quite challenging.
For the specific value of k−k0, one can find r — there are well-developed methods
in computational algebra for dealing with this type of polynomial equations, such
as Groebner bases [2] and resultants [26]. Using the Groebner bases method, we
shall show in Section 5 that

PROPOSITION 2.1. r = 4 if k = k0 + 1, r = 6 if k = k0 + 2. If k ≥ k0 + 3,
then r ≥ 7.

2.2. Discussion of conditions in Theorem 1.1. The main conditions in the state-
ment of Theorem 1.1 are concerned with compactness and boundedness of the mix-
ture model’s parameters, including the parameters of mixing components, and the
parameters for mixing probabilities.

The parameters of mixing components lie in Ω and Θ. Compactness conditions
for Ω and Θ are required for three reasons. First, the compactness of Ω is impor-
tant in guaranteeing that the likelihood function is bounded. Indeed, if the small-
est eigenvalue of the covariance parameter is not bounded below or the largest
eigenvalue of the covariance parameter is not bounded above, the likelihood func-
tion will become unbounded [11, 15, 6]. Second, the compactness of Θ and Ω are
also crucial in obtaining upper bounds of the (bracket) entropies that we need for
Lemma 2.1. Such bounds yield convergence rate n−1/2, up to logarithmic factor,
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for the convergence of mixture density pG under Hellinger distance. Third, and
most importantly, these compactness assumptions are required in establishing the
lower bounds of Hellinger distance of mixture densities in terms of Wasserstein
distance of mixing measures (cf. Proposition 2.2), thereby allowing us to translate
the convergence rate of the mixture density into that of the corresponding mixing
measure. Our proof technique hinges upon the compactness conditions. As pointed
out by the referees, one may be able to relax somewhat the compactness assump-
tions by penalizing the likelihood function appropriately [9, 8]. While the first two
issues discussed above may still be addressed, the third issue will require a sub-
stantially new proof technique; moreover, the rate of convergence will be likely
different.

It is required in part (b) of the theorem that Ĝn range in Ok,c0 , where c0 > 0
when k − k0 ≥ 3. This requirement is sufficient for establishing the bound in part
(b) of Proposition 2.2. A consequence of this requirement is that it prevents the
Fisher matrix at the masses from being degenerate [6, 7, 17]. As such, this condi-
tion is also crucial in obtaining the asymptotic distribution of parameter estimates.
We note, however, that this requirement may not be necessary for the purpose of
establishing rates of parameter estimation. In fact, when the Gaussian mixture is
overfitted by at most two components, i.e., 1 ≤ k−k0 ≤ 2, it will be demonstrated
by Proposition 2.3 that this requirement can be removed (by letting c0 = 0) without
affecting the conclusion of the theorem.

2.3. Sharp identifiability bounds. A central ingredient in the proof of Theo-
rem 1.1 are sharp inequalities which relate the distance of two Gaussian mixture
densities to a Wasserstein distance between corresponding mixing measures. Let
V (pG, pG0) denote the variational distance, and h(pG, pG0) the Hellinger distance
of pG and pG0 . The order r enters the following bounds in an essential way:

PROPOSITION 2.2. Let r be defined as above, and G0 ∈ Ek0 ∩Ok0,c0 for some
c0 > 0.

(a) For any 1 ≤ r < r, there holds:

lim
ε→0

inf
G∈Ok

{
h(pG, pG0)/W r

1 (G,G0) : W1(G,G0) ≤ ε
}

= 0.

(b) For any G ∈ Ok,c0 such that Wr(G,G0) is sufficiently small, there holds:

h(pG, pG0) ≥ V (pG, pG0) &W r
r (G,G0) ≥W r

1 (G,G0).

The proof of this proposition is deferred to Section 5. We make several remarks.

(i) In part (a) the ratio h/W r
1 is set to∞ if W1 = 0. In part (b), the multilying

constant in & bound depends only on G0.
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(ii) Part (a) and part (b) together show that W r
r (G,G0) is the sharp lower bound

for the distance of mixture densities V (pG, pG0). In particular, we cannot
have V &W r

1 for any r < r.
(iii) In part (b), G is restricted to a subset of Ok, i.e., set Ok,c0 , which places

a lower bound constraint on the mixing probability mass. This restriction
seems to be an artifact of our proof technique. It can be removed completely
with some extra hard work, at least for the case k − k0 ≤ 2, as follows:

PROPOSITION 2.3. Let k − k0 = 1 or 2. Fix G0 ∈ Ek0 . For any G ∈ Ok such
that Wr(G,G0) is sufficiently small, we have V (pG, pG0) &W r

r (G,G0).

The proof of Proposition 2.3 is deferred to the Appendix. Given the two proposi-
tions above, we can now complete the proof of Theorem 1.1.

2.4. Proof of Theorem 1.1. (a) The proof of this part follows from the same
argument as that of Lemma 1 of [29] for establishing minimax lower bounds. Fix
r < r and G0 ∈ Ek0 . Let C0 > 0 be any fixed constant. According to part (a) of
Proposition 2.2, for any sufficiently small ε > 0, there exists G′0 ∈ Ok such that
W1(G0, G

′
0) = 2ε and h(pG0 , pG′0) ≤ C0ε

r. Take any sequence of estimates Ĝn
ranging in Ok, we have

2 max
G∈{G0,G′0}

EpG W1(Ĝn, G) ≥ EpG0
W1(Ĝn, G0) + EpG′0

W1(Ĝn, G
′
0),

where EpG0
(resp. EpG′0

) denotes the expectation taken with respect to the prod-

uct measure with density pnG0
(pnG′0). By the triangle inequality, W1(Ĝn, G0) +

W1(Ĝn, G
′
0) ≥W1(G0, G

′
0) = 2ε. Thus,

EpG0
W1(Ĝn, G0) + EpG′0

W1(Ĝn, G
′
0) ≥ 2ε inf

f1,f2

(
EpG0

f1 + EpG′0
f2

)
,

where the infimum is taken over all measurable nonnegative functions f1 and f2

defined in terms of n argumentsX1, . . . , Xn, subject to the constraint that f1+f2 =
1. From the definition of the variational distance, the infimum value in the above
expression is equal to (1− V (pnG0

, pnG′0
)). Hence,

max
G∈{G0,G′0}

EpG W1(Ĝn, G) ≥ ε
(

1− V (pnG0
, pnG′0

)
)
.
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Now, due to the general relationship between variational distance and Hellinger
distance, i.e., V ≤ h, and by our construction that h(pG0 , pG′0

) ≤ C0ε
r, we have

V (pnG0
, pnG′0

) ≤ h(pnG0
, pnG′0

)

=

√
1−

(
1− h2(pG0 , pG′0)

)n
≤

√
1−

(
1− C2

0ε
2r
)n
.

As a result,

max
G∈{G0,G′0}

EpG W1(Ĝn, G) ≥ ε
(

1−
√

1−
(
1− C2

0ε
2r
)n)

.

By choosing ε2r =
1

C2
0n

, the right hand side of the above inequality is bounded

below by c1ε � n−1/2r for any r < r where c1 is some positive universal constant.
Noting that G0, G

′
0 ∈ Ok \ Ok0−1, this concludes the proof for part (a).

(b) The proof follows from combining the result of part (b) of Proposition 2.2
with a standard result on convergence of density estimation via MLE, from [27].
To draw from the later, we first recall some additional standard notation from the
empirical process theory literature (which after this proof will unfortunately not be
needed for the rest of the paper). Let Θ∗ = Θ× Ω, Pk(Θ∗) = {pG|G ∈ Ok}. Let
N(ε,Pk(Θ∗), ‖ · ‖∞) denote the covering number of the metric space (Pk(Θ∗), ‖ ·
‖∞), andHB(ε,Pk(Θ∗), h) the bracketing entropy of Pk(Θ∗) under Hellinger dis-
tance metric h. PutP k(Θ∗) =

{
pG+G0

2

: G ∈ Ok
}

andP1/2
k (Θ∗) =

{
f1/2|f ∈ Pk(Θ∗)

}
.

For any δ > 0, denote the intersection of a Hellinger ball centered at pG0 and
P1/2
k (Θ∗) as:

P1/2
k (Θ∗, δ) =

{
f1/2 ∈ P1/2

k (Θ∗)|h(f, pG0) ≤ δ
}
.

The size of this set is captured by the entropy integral:

JB(δ,P1/2
k (Θ∗, δ), µ) =

δ∫
δ2/213

H
1/2
B (u,P1/2

k (Θ∗, u), µ)du ∨ δ,

where µ denotes Lebesgue measure. Since P1/2
k (Θ∗, u) ⊂ P1/2

k (Θ∗), for any u >
0,

HB(u,P1/2
k (Θ∗, u), L2(µ)) ≤ HB(u,P1/2

k (Θ∗), L2(µ))(3)

= HB(u/
√

2,Pk(Θ∗), h),
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where the identity is immediate from relationship between the Hellinger distance
metric and L2(µ).

Note that for any two mixing measures G1, G0, p(G1+G0)/2 = (pG1 + pG0)/2.
Note also the fact that for any probability densities f0, f1, f2 defined on the same
space, h2((f1 + f0)/2, (f2 + f0)/2) ≤ h2(f1, f2)/2 (cf. Lemma 4.2 [27]). So, for
any two mixing measures G1, G2 ∈ Ok, we have

h2(pG1+G0
2

, pG2+G0
2

) ≤ h2(pG1 , pG2)/2.

This inequality yields HB(u/
√

2,Pk(Θ∗), h) ≤ HB(u,Pk(Θ∗), h). Combining
with Eq. (3) to obtain

HB(u,P1/2
k (Θ∗, u), L2(µ)) ≤ HB(u,Pk(Θ∗), h).

This inequality allows us to obtain an upper bound of the LHS in terms of a bound
on the RHS. Specifically, we need the following

LEMMA 2.1. Suppose that Θ∗ = [−a, a]d × Ω, where Ω is a subset of S++
d

whose eigenvalues are bounded in an interval [λ, λ], a ≤ L(log(1/ε))γ , γ ≥ 1/2,
L > 0. Then for 0 < ε < 1/2,

logN(ε,Pk(Θ∗), ‖.‖∞) . log(1/ε),(4)

HB(ε,Pk(Θ∗), h) . log(1/ε).(5)

The proof of this lemma is an extension of the arguments in [14] to multi-
variate setting, and is deferred to the Appendix. Now, we choose L > 0 and
γ1 = max {1/2, γ} ≥ 1/2 such that an ≤ L(log(n))γ1 . From Lemma 2.1, as
long as 0 < u < 1/2, we have

HB(u,P1/2
k (Θ∗, u), L2(µ)) ≤ HB(u,Pk(Θ∗), h) . log(1/u).(6)

Now, we state the result of Theorem 7.4 of [27] adapted to the notation used in our
paper

THEOREM 2.1. Take Ψ(δ) ≥ JB(δ,P1/2
k (Θ∗, δ), µ) in such a way that Ψ(δ)/δ2

is a non-increasing function of δ. Then, for a universal constant c and for
√
nδ2

n ≥ cΨ(δn),

we have for all δ ≥ δn

P (h(p
Ĝn
, pG0) > δ) ≤ c exp

[
−nδ

2

c2

]
.
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Based on the bracket entropy bound in (6), we can choose Ψ(δ) = δ[log(1/δ)]1/2

for δ > 0. Therefore, by choosing δn = O(log n/n)1/2, we obtainP (h(p
Ĝn
, pG0) >

δn) . exp(−c log(n)), where constant c > 0 depends only on L, γ, λ, λ. Combin-
ing this probability bound with part (b) of Proposition 2.2 concludes the proof.

3. Gamma mixtures and location extensions. The Gamma family of densi-

ties takes the form f(x|a, b) :=
ba

Γ(a)
xa−1 exp(−bx) for x > 0, and 0 otherwise,

where a, b are positive shape and rate parameters, respectively. The Gamma family
is not identifiable in the first order when both shape and rate parameters vary— this
is to say that the collection of Gamma density functions and their partial deriva-
tives up to the first order taken with respect to the shape and rate parameters are
not linearly independent. This can be seen by the following identity:

(7)
∂f

∂b
(x|a, b) =

a

b
f(x|a, b)− a

b
f(x|a+ 1, b).

Examining the identity in the above display shows that the violation of linear inde-
pendence of the collection of Gamma density functions and its derivatives is due
to certain combinations of the Gamma parameter values. This suggests that out-
side of these value combinations the Gamma densities may well be identifiable
in the first order and even the second order. This observation leads to a remark-
able consequence for Gamma mixtures, which display wildly distinct behaviors in
two disjoint categories of the parameter values, which we call “generic cases” and
“pathological cases”.

Fix G0 =
k0∑
i=1

p0
i δ(a0i ,b

0
i ) ∈ Ek0 := Ek0(Θ) where k0 ≥ 2 and Θ ⊂ R2

+. Assume

that a0
i ≥ 1 for all 1 ≤ i ≤ k0. To delineate the structure underying parameter

values of G0, we define

(A.1) Generic cases:
{
|a0
i − a0

j |, |b0i − b0j |
}
6= {1, 0} for all 1 ≤ i, j ≤ k0.

(A.2) Pathological cases:
{
|a0
i − a0

j |, |b0i − b0j |
}

= {1, 0} for some 1 ≤ i, j ≤ k0.

We have the following result under the exact-fitted setting of Gamma mixtures. Let
Ĝn ∈ Ek0 denote the MLE estimate of G0.

THEOREM 3.1. (Exact-fitted Gamma mixtures) Given Θ = [a, a] × [b, b]
where a ≥ 1, a, b, b are given positive numbers.

(a) Generic cases If the support points of G0 satisfy assumption (A.1), then
P(W1(Ĝn, G0) > δn) . exp(−c log n), where δn is sufficiently large multi-
ple of (log n/n)1/2 and c is positive constant depending only on a, a, b, b.
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(b) Pathological cases For any r ≥ 2,

inf
Ĝn∈Ek0

sup
G∈Ek0

EpGWr(Ĝn, G) & n−1/r.

While the result of part (a) may seem “obvious” due to the standard rate (log n/n)1/2,
this should be put in the context of the minimax lower bound of part (b), which
shows that one cannot estimate the Gamma parameters efficiently uniformly over a
W1 neighborhood of G0, when we do not know whether G0 is pathological or not.
As can be seen in the proof, the poor rate is due to the difficulty of distinguishing
between the pathological and generic instances — no polynomial rate estimation
method is possible.

Turning to the over-fitted Gamma mixture setting, as before let G0 ∈ Ek0 , while
G varies in a larger subset of Ok := Ok(Θ) for some given k ≥ k0 + 1. We have
the following categories regarding the true G0:

(A.3) Generic cases:
{
|a0
i − a0

j |, |b0i − b0j |
}
6∈
{
{1, 0} , {2, 0}

}
for all 1 ≤ i, j ≤

k0.

(A.4) Pathological cases:
{
|a0
i − a0

j |, |b0i − b0j |
}
∈
{
{1, 0} , {2, 0}

}
for some 1 ≤

i, j ≤ k0.

Additionally, for any c0 > 0 and l ≥ 1, define the following constrained set of Ol

Ol,c0 =

{
G =

k
′∑

i=1

piδ(ai,bi)

∣∣∣∣k′ ≤ k and |ai − a0
j | 6∈ [1− c0, 1 + c0]

∪[2− c0, 2 + c0]∀ (i, j)

}
.

THEOREM 3.2. (Over-fitted Gamma mixtures) Assume the same conditions
on Θ as that of Theorem 3.1.

(a) Generic cases If G0 ∈ Ok,c0 and let Ĝn ∈ Ok,c0 be the MLE estimation of
G0, then P(W2(Ĝn, G0) > δn) . exp(−c log n), where δn is sufficiently
large multiple of (log n/n)1/4 and c is positive constant depending only on
c0, a, a, b, b.

Moreover, the following minimax bound holds, for any 2 ≤ r < 4,

inf
Ĝn∈Ok,c0

sup
G∈Ok,c0

\Ok0−1

EpG Wr(Ĝn, G) & n−1/r.
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(b) Pathological cases For any r ≥ 2,

inf
Ĝn∈Ok

sup
G∈Ok\Ok0−1

EpG Wr(Ĝn, G) & n−1/r.

Part (a) shows that in the over-fitted setting, if the true G0 falls in the generic
cases, then the standard MLE method restricted to a suitable subset of Ok still
yields the (log n/n)1/4 rate of convergence for the mixing measure. Outside of
this category, however, one cannot hope to estimate G at any polynomial rate of
convergence.

Not all is bad news for Gamma mixtures: since the pathological cases represent
a Lebesgue measure zero set, Gamma mixtures can be viewed as almost strongly
identifiable with the strong convergence properties for the parameter estimation.

Exponential location extension. Let the reader think that pathological cases are
rare, we introduce a location extension of the exponential distribution, for which
there is no such generic/pathological dichotomy. With this family, the conver-
gence behavior of the mixing parameters is always slow, even when the number
of mixing components is known. The class of location-exponential distribution

{f(x|θ, σ), θ ∈ R, σ ∈ R+} is defined as f(x|θ, σ) =
1

σ
exp

(
−x− θ

σ

)
.1{x>θ}

for x ∈ R. Direct calculation yields that

∂f

∂θ
(x|θ, σ) =

1

σ
f(x|θ, σ) when x 6= θ.(8)

Since this identity holds in general, the linear independence of the kernel densities
f and their partial derivatives is clearly violated regardless of the true values of
G0. We shall state a result for the exact-fitted setting only. Let Θ = [−a, a] and
Ω = [σ, σ] where a, σ, σ are fixed positive constants.

THEOREM 3.3. (Exact-fitted location-exponential mixtures) For any r ≥ 2,

inf
Ĝn∈Ek0

sup
G∈Ek0

EpGW1(Ĝn, G) & n−1/r.

This is quite a surprising bound, especially considering this is a finite mixture
model with the known number of mixing components k0. Yet, one cannot hope
to achieve a polynomial estimation rate uniformly over a neighborhood (in W1) of
any mixing measureG0. As in the pathological cases of Gamma mixtures, the poor
convergence behavior of parameter estimation is due to the interaction of mixing
parameters θ and σ, which is induced by the algebraic structures of f and its par-
tial derivatives. As can be observed from the proof, the algebraic structure makes it
difficult to distinguish between mixing measures G carrying similar mixture den-
sities.
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4. Simulations. We illustrate via simulations the rich spectrum of conver-
gence behaviors for weak identifiable classes. Both identifiability bounds h ≥ V &
W r
r , and the convergence behavior of the MLE are examined.
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Fig 1: Location-scale Gaussian mixtures. From left to right: (1) Exact-fitted setting; (2) Over-fitted
by one component; (3) Over-fitted by one component; (4) Over-fitted by two components.

Weak identifiability bounds. We experiment with classes of Gaussian densities.
The results for mixtures of location-scale Gaussian distributions are given in Fig-
ure 1. Simulation details are as follows. The true mixing measure G0 has exactly
k0 = 2 support points with locations θ0

1 = −2, θ0
2 = 4, scales σ0

1 = 1, σ0
2 = 2, and

p0
1 = 1/3, p0

2 = 2/3. 5000 random samples of discrete mixing measures G ∈ E2,
5000 samples of G ∈ O3 and another 5000 for G ∈ O4, where the support points
are uniformly generated in Θ = [−10, 10] and Ω = [0.5, 5]. Additionally, to il-
lustrate the best lower bound W 4

4 when we overfit by one point, we also generate
sequence G in accordance with the construction of sequence G in the proof of part
(a) of Proposition 2.2. The ratios h/W 2

2 and h/W 4
4 are plotted in the third panel of

Figure 1 to verify that h & W 4
4 holds, but h & W 2

2 does not. It can be observed
that both the lower bounds and upper bounds are in agreement with the theorems
established earlier.

Convergence rates of MLE. First, we generate n-iid samples from a bivarite location-
covariance Gaussian mixture with three components with an arbitrarily fixed choice
of G0. The true parameters for the mixing measure G0 are: θ0

1 = (0, 3), θ0
2 =

(1,−4), θ0
3 = (5, 2), Σ0

1 =

(
4.2824 1.7324
1.7324 0.81759

)
, Σ0

2 =

(
1.75 −1.25
−1.25 1.75

)
, Σ0

3 =(
1 0
0 4

)
, and p0

1 = 0.3, p0
2 = 0.4, p0

3 = 0.3. MLE Ĝn are obtained by the EM

algorithm as we assume that the data come from a mixture of k Gaussians where
k ≥ k0 = 3. See Figure 2 for a fixed choice of G0. Wasserstein distances be-
tween Ĝn and G0 are plotted against increasing sample size n. The error bars were
obtained by running the experiment 7 times for each n. These simulation results
match quite well with the established rates and highlight that convergence slows
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down rapidly as k − k0 increases.
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Fig 2: MLE rates for location-covariance mixtures of Gaussians. L to R: (1) Exact-fitted:
W1 � n−1/2. (2) Over-fitted by one: W4 � n−1/8. (3) Over-fitted by two: W6 � n−1/12.
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Fig 3: MLE rates for shape-rate mixtures of Gamma distributions. L to R: (1) Generic/Exact-fitted:
W1(Ĝn, G0) � n−1/2. (2) Generic/Over-fitted: W2 � n−1/4. (3) Pathological/Exact-fitted:

W1 ≈ 1/(logn)1/2. (4) Pathological/Over-fitted: W1 ≈ 1/(logn)1/2.

We turn to mixtures of Gamma distributions. For generic cases, we generate n-
iid samples from a Gamma mixture model that has exactly two mixing components.
The true parameters for the mixing measure G0 are: a0

1 = 8, a0
2 = 2, b01 = 3,

b02 = 4, p0
1 = 1/3, p0

2 = 2/3. For pathological cases, everything else remains the
same, except for our choice of G0, for which we choose a0

1 = 8, a0
2 = 7, b01 = 3,

b02 = 3, p0
1 = 1/3, p0

2 = 2/3.
It is remarkable to see the wild swing in behaviors within this same class. See

Figure 3. Even for exact-fitted finite mixtures of Gamma, one can achieve very
fast convergence rate of n−1/2 in the generic case, or appear to be stagnant at a
logarithmic rate if the true mixing measureG0 belongs to the pathological category.

5. Proofs of other propositions and theorems.

5.1. Proofs for over-fitted Gaussian mixtures.

PROOF OF PROPOSITION 2.2. For the ease of exposition, we consider the
setting of univariate location-scale Gaussian distributions, i.e., both θ and Σ = σ2
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are scalars. The proof for general d ≥ 1 is deferred to the Appendix. Put v = σ2,

so we write G0 =
k0∑
i=1

p0
i δ(θ0i ,v

0
i ).

Step 1. For any sequence Gn ∈ Ok, since k is finite, there is some k∗ ∈ [k0, k]
such that there exists a subsequence of Gn having exactly k∗ support points. De-

note Gn =
k∗∑
i=1

pni δ(θni ,v
n
i ) (here, without loss of generality, we replace the whole

sequence by its subsequence). Now if Gn → G0 in Wr, there exists a subsequence
of Gn such that each support point (θ0

i , σ
0
i ) of G0 is the limit of a subset of si ≥ 1

support points of Gn. In general there may also a subset of support points of Gn
whose limits are not among the support points of G0.

Note that with part (a), we shall construct one sequence of Gn to prove its con-
clusion. In our construction there are no constraints placed on pni for all i. On the
other hand, regarding part (b), we shall impose the constraint that pni ≥ c0 for all
i. Under this constraint, all the limit points of support points of Gn will be only
those of G0. To avoid notational cluttering, we replace the subsequence of Gn by
the whole sequence {Gn}. By re-labeling the support points, Gn can be expressed
by

(9) Gn =

k0∑
i=1

si∑
j=1

pnijδ(θnij ,v
n
ij),

where (θnij , v
n
ij) → (θ0

i , v
0
i ) ,

si∑
l=1

pnil → p0
i for all i = 1, . . . , k0 and j = 1, . . . , si,

where s1, . . . , sk0 are some natural constants less than k. All Gn have exactly the
same k∗ =

∑
si ≤ k number of support points. This is the representation for Gn

that we shall utilize in the proof of both part (a) and part (b).

Step 2. For any x ∈ R,

pGn(x)− pG0(x) =

k0∑
i=1

si∑
j=1

pnij(f(x|θnij , vnij)− f(x|θ0
i , v

0
i )) +

k0∑
i=1

(pni. − p0
i )f(x|θ0

i , v
0
i ),
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where pni· :=
si∑
j=1

pnij . For any r ≥ 1, integer N ≥ r and x ∈ R, by means of Taylor

expansion up to the order N , we obtain

pGn(x)− pG0(x) =

k0∑
i=1

si∑
j=1

pnij

N∑
|α|=1

(∆θnij)
α1(∆vnij)

α2
D|α|f(x|θ0

i , v
0
i )

α!
+

A1(x) +R1(x).(10)

Here, α = (α1, α2), |α| = α1+α2, α! = α1!α2!, ∆θnij = θnij−θ0
i ,∆v

n
ij = vnij−v0

i .

Additionally,A1(x) =
k0∑
i=1

(pni· − p0
i )f(x|θ0

i , v
0
i ), andR1(x) = O

(
k0∑
i=1

si∑
j=1

pnij(|∆θnij |N+δ

+|∆vnij |N+δ)

)
for some positive constant δ > 0.

Step 3. Enter the key identity (2):
∂2f

∂θ2
(x|θ, v) = 2

∂f

∂v
(x|θ, v) for all x. This en-

tails, for any natural orders n1, n2, that
∂n1+n2f

∂θn1∂vn2
(x|θ, v) =

1

2n2

∂n1+2n2f

∂θn1+2n2
(x|θ, v).

Thus, by converting all derivatives to those taken with respect to only θ, we may
rewrite (10) as

pGn(x)− pG0(x) =

k0∑
i=1

si∑
j=1

pnij
∑
α≥1

∑
n1,n2

(∆θnij)
n1(∆vnij)

n2

2n2n1!n2!

∂αf

∂θα
(x|θ0

i , v
0
i )

+ A1(x) +R1(x)

:= A1(x) +B1(x) +R1(x),(11)

where n1, n2 in the sum satisfy n1 + 2n2 = α, n1 + n2 ≤ N .

Step 4. We proceed to proving part (a) of the proposition. From the definition of
r, by setting r = r − 1, there exist non-trivial solutions (c∗i , a

∗
i , b
∗
i )
k−k0+1
i=1 for the

system of equations (1). Construct a sequence of probability measures Gn ∈ Ok
under the representation given by Eq. (9) as follows:

θn1j = θ0
1+

a∗j
n
, vn1j = v0

1 +
2b∗j
n2

, pn1j =
p0

1(c∗j )
2

k−k0+1∑
j=1

(c∗j )
2

, for all j = 1, . . . , k−k0+1,

and θni1 = θ0
i , v

n
i1 = v0

i , p
n
i1 = p0

i for all i = 2, . . . , k0. (That is, we set k∗ = k,
s1 = k − k0 + 1, si = 1 for all 2 ≤ i ≤ k0). Note that b∗j may be negative, but
we are guaranteed that vn1j > 0 for sufficiently large n. It is easy to verify that

W1(Gn, G0) =
k−k0+1∑
i=1

pn1i

( |a∗i |
n

+
2|b∗i |
n2

)
� 1

n
, because at least one of the a∗i is

non-zero.
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Step 5. Select N = r in Eq. (11). By our construction of Gn, clearly A1(x) = 0.
Moreover,

B1(x) =

k−k0+1∑
i=1

pn1i

r−1∑
α=1

∑
n1,n2

(∆θn1i)
n1(∆vn1i)

n2

2n2n1!n2!

∂αf

∂θα
(x|θ0

1, v
0
1)

+

k−k0+1∑
i=1

pn1i

2r∑
α=r

∑
n1,n2

(∆θn1i)
n1(∆vn1i)

n2

2n2n1!n2!

∂αf

∂θα
(x|θ0

1, v
0
1)

:=
r−1∑
α=1

Bαn
∂αf

∂θα
(x|θ0

1, v
0
1) +

∑
α≥r

Cαn
∂αf

∂θα
(x|θ0

1, v
0
1).

In the above display, for each α ≥ r, observe that Cαn = O(n−α). Moreover, for
each 1 ≤ α ≤ r − 1,

Bαn =
1

nα
k−k0+1∑
i=1

(c∗i )
2

k−k0+1∑
i=1

(c∗i )
2

∑
n1+2n2=α

(a∗i )
n1(b∗i )

n2

n1!n2!
= 0,

because (c∗i , a
∗
i , b
∗
i )
k−k0+1
i=1 form a non-trivial solution to system (1).

Step 6. We arrive at an upper bound for the Hellinger distance of mixture densi-
ties.

h2(pGn , pG0) ≤ 1

2p0
1

∫
R

(pGn(x)− pG0(x))2

f(x|θ0
1, v

0
1)

dx

.
∫
R

2r∑
α=r

C2
αn

(
∂αf

∂θα
(x|θ0

1, v
0
1)

)2

+R2
1(x)

f(x|θ0
1, v

0
1)

dx,

For Gaussian densities, it can be verified that
(
∂αf

∂θα
(x|θ0

1, v
0
1)

)2

/f(x|θ0
1, v

0
1) is

integrable for all 1 ≤ α ≤ 2r. So, h2(pGn , pG0) ≤ O(n−2r) +

∫
R2

1(x)/f(x|θ0
1, v

0
1) dx.

Turning to the Taylor remainder R1(x), note that

|R1(x)| .
k−k0+1∑
i=1

∑
|β|=r+1

(r + 1)

β!
|∆θn1i|β1 |∆vn1i|β2 ×

×
1∫

0

(1− t)r
∣∣∣∣ ∂r+1f

∂θβ1∂vβ2
(x|θ0

1 + t∆θn1i, v
0
1 + t∆vn1i)

∣∣∣∣ dt.
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Now, (∆θn1i)
β1(∆vn1i)

β2 � n−β1−2β2 = o(n−2r). In addition, as n is sufficiently
large, we have for all |β| = r + 1 that

sup
t∈[0,1]

∫
x∈R

(
∂r+1f

∂θβ1∂vβ2
(x|θ0

1 + t∆θn1i, v
0
1 + t∆vn1i)

)2

/f(x|θ0
1, v

0
1)dx <∞.

It follows that h(pGn , pG0) = O(n−r). As noted above, W1(Gn, G0) � n−1, so
the claim of part (a) is established.

Step 7. Turning to part (b) of Proposition 2.2, it suffices to show that

lim
ε→0

inf
G∈Ok,c0

{
sup
x∈X
|pG(x)− pG0(x)|/W r

r (G,G0) :

Wr(G,G0) ≤ ε
}
> 0.(12)

Then one can arrive at the proposition’s claim by passing through an argument
using Fatou’s lemma (cf. proof of Theorem 1 of [22] or step 4 in the proof of
Theorem 3.1 of [16]). Suppose that (12) does not hold. Then we can find a sequence
of probability measures Gn ∈ Ok,c0 that are represented by Eq. (9), such that
W r
r (Gn, G0)→ 0 and supx |pGn(x)− pG0(x)|/W r

r (Gn, G0)→ 0. Define

Dn := d(Gn, G0) :=

k0∑
i=1

si∑
j=1

pnij(|∆θnij |r + |∆vnij |r) +

k0∑
i=1

|pni· − p0
i |.

It is easy to see that W r
r (Gn, G0) . Dn, since Dn is the multiple of the W r

r cost
of moving mass from Gn to G0 by a (possibly) non-optimal coupling. So, for all
x ∈ R, (pGn(x)−pG0(x))/Dn → 0. Combining this fact with (11), whereN = r,
we obtain

(A1(x) +B1(x) +R1(x))/Dn → 0.(13)

We have R1(x)/Dn = o(1) as n→∞.

Step 8. A1(x)/Dn and B1(x)/Dn are the linear combination of elements of
∂αf

∂θα
(x|θ, v) where α = n1 + 2n2 and n1 + n2 ≤ r. Note that the natural order α

ranges in [0, 2r]. LetEα(θ, v) denote the corresponding coefficient of
∂αf

∂θα
(x|θ, v).

Extracting from (11), for α = 0, E0(θ0
i , v

0
i ) = (pni· − p0

i )/Dn. For α ≥ 1,

Eα(θ0
i , v

0
i ) =

 si∑
j=1

pnij
∑

n1+2n2=α
n1+n2≤r

(∆θnij)
n1(∆vnij)

n2

2n2n1!n2!

 /Dn.
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In the remainder of this proof step, we shall show that as n → ∞, at least one
of the coefficients Eα(θ0

i , v
0
i ) must not vanish. Suppose this is not the case, i.e.,

Eα(θ0
i , v

0
i ) → 0 for all i = 1, . . . , k0 and 0 ≤ α ≤ 2r as n → ∞. By taking the

summation of all |E0(θ0
i , v

0
i )|, we get

k0∑
i=1
|pni. − p0

i |/Dn → 0 as n → ∞. As a

consequence, we obtain

k0∑
i=1

si∑
j=1

pnij(|∆θnij |r + |∆vnij |r)/Dn → 1 as n→∞.

Hence, we can find an index i∗ ∈ {1, 2, . . . , k0} such that as n→∞
si∗∑
j=1

pni∗j(|∆θni∗j |r + |∆vni∗j)|r)/Dn 6→ 0.

Without loss of generality, we assume that i∗ = 1. Accordingly,

Fα(θ0
1, v

0
1) :=

DnEα(θ0
1, σ

0
1)

s1∑
j=1

pn1j(|∆θn1j |r + |∆vn1j)|r)

=

s1∑
j=1

pn1j
∑

n1+2n2=α
n1+n2≤r

(∆θn1j)
n1(∆vn1j)

n2

2n2n1!n2!

s1∑
j=1

pn1j(|∆θn1j |r + |∆vn1j)|r)
→ 0.

If s1 = 1 then F1(θ0
1, ν

0
1) and F2r(θ

0
1, ν

0
1) yield

|∆θn11|r/(|∆θn11|r + |∆vn11|r), |∆vn11|r/(|∆θn11|r + |∆vn11|r)→ 0,

which is a contradiction. As a consequence, s1 ≥ 2.

Denote pn = max
1≤j≤s1

{
pn1j

}
, Mn = max

{
|∆θn11|, . . . , |∆θn1s1 |, |∆vn11|1/2, . . . ,

|∆vn1s1 |1/2
}

. Since 0 < pn1j/pn ≤ 1 for all 1 ≤ j ≤ s1, by a subsequence ar-

gument, there exist c2
j := lim

n→∞
pn1j/pn for all j = 1, . . . , s1. Similarly, define

aj := lim
n→∞

∆θn1j/Mn, and 2bj := lim
n→∞

∆vn1j/M
2
n for each j = 1, . . . , s1. By the

constraints of Ok,c0 , pn1j ≥ c0, so all of c2
j differ from 0 and at least one of them

equals to 1. Likewise, at least one element of (aj , bj)
s1
j=1 equal to -1 or 1. Now, for

each α = 1, . . . , r, divide both the numerator and denominator of Fα(θ0
1, v

0
1) by
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pn and then Mα
n and let n → ∞, we obtain the following system of polynomial

equations

s1∑
j=1

∑
n1+2n2=α

c2
ja
n1
j b

n2
j

n1!n2!
= 0 for each α = 1, . . . , r.

Since s1 ≥ 2, we get r ≥ 4. If ai = 0 for all 1 ≤ i ≤ s1 then by choosing α = 4,

we obtain
s1∑
j=1

c2
jb

2
j = 0. However, it demonstrates that bi = 0 for all 1 ≤ i ≤ s1

— a contradiction to the fact that at least one element of (ai, bi)
s1
i=1 is different

from 0. Therefore, at least one element of (ai)
s1
i=1 is not equal to 0. Observe that

si ≤ k − k0 + 1 (because the number of distinct atoms of Gn is
∑k0

i=1 si ≤ k and
all si ≥ 1). Thus, the existence of non-trivial solutions for the system of equations
given in the above display entails the existence of non-trivial solutions for system
of equations (1). This contradicts with the definition of r. Therefore, our hypothesis
that all coefficients Eα(θ0

i , v
0
i ) vanish does not hold — there must be at least one

coefficient which does not converge to 0 as n→∞.

Step 9. Let mn be the maximum of the absolute values of Eα(θ0
i , v

0
i ) where 0 ≤

α ≤ 2r, 1 ≤ i ≤ k0 and dn = 1/mn. Since mn 6→ 0 as n → ∞, dn is uniformly
bounded above for all n. As dn|Eα(θ0

i , v
0
i )| ≤ 1, we have dnEα(θ0

i , v
0
i )→ βiα for

all 0 ≤ α ≤ 2r, 1 ≤ i ≤ k0 where at least one of βiα differs from 0. Incorporating
these limits to Eq.(13), we obtain that for all x ∈ R,

(pGn(x)− pG0(x))/Dn →
k0∑
i=1

2r∑
α=0

βiα
∂αf

∂θα
(x|θ0

i , v
0
i ) = 0.

By direct calculation, we can rewrite the above equation as

k0∑
i=1

2r+1∑
j=1

γij(x− θ0
i )
j−1

 exp

(
−(x− θ0

i )
2

2v0
i

)
= 0 for all x ∈ R,(14)

where γij for odd j are linear combinations of βi(2l1), for (j−1)/2 ≤ l1 ≤ r, such
that all of the coefficients are functions of v0

i differing from 0. For even j, γij are
linear combinations of βi(2l2+1), for j/2 ≤ l2 ≤ r, such that all of the coefficients
are functions of v0

i differing from 0. Now, without loss of generality, we assume
that v0

1 ≤ v0
2 ≤ . . . ≤ v0

k0
. Denote i ∈ [1, k0] to be the minimum index i such

that v0
i = v0

k0
. It implies that v0

i
= v0

i+1
= . . . = v0

k0
. Therefore, θ0

i are pairwise
different as i ≤ i ≤ k0. Now, let call i = arg max

i≤i≤k0
θ0
i . Multiply both sides of (14)
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with exp[(x− θ0
i )

2/2v0
i ] and let x→ +∞, then we can check that

2r+1∑
j=1

γij(x− θ0
i )
j−1 → 0,

which only happens when γij = 0 for all 1 ≤ j ≤ 2r + 1. Employing the same
argument to the remained indices, we obtain γij = 0 for all i = 1, . . . , k0, j =
1, . . . , 2r + 1. This entails that βiα = 0 for all i = 1, . . . , k0, α = 0, . . . , 2r — a
contradiction. Thus we achieve the conclusion of (12).

PROOF OF PROPOSITION 2.1. Our proof is based on Groebner bases method
for determining solutions for a system of polynomial equations. (i) For the case
k − k0 = 1, the system (1) when r = 4 can be written as

c2
1a1 + c2

2a2 = 0(15)
1

2
(c2

1a
2
1 + c2

2a
2
2) + c2

1b1 + c2
2b2 = 0(16)

1

3!
(c2

1a
3
1 + c2

2a
3
2) + c2

1a1b1 + c2
2a2b2 = 0(17)

1

4!
(c2

1a
4
1 + c2

2a
4
2) +

1

2!
(c2

1a
2
1b1 + c2

2a
2
2b2) +

1

2!
(c2

1b
2
1 + c2

2b
2
2) = 0(18)

Suppose that the above system has a non-trivial solution. If c1a1 = 0, then equation
(15) implies c2a2 = 0. Since c1, c2 6= 0, we have a1 = a2 = 0. This violates
the constraint that one of a1, a2 is non-zero. Hence, c1a1, c2a2 6= 0. Divide both
sides of (15),(16),(17),(18) by c2

1a1, c2
1a

2
1, c2

1a
3
1, c2

1a
4
1 respectively, we obtain the

following system of polynomial equations

1 + x2a = 0

1 + x2a2 + 2(b+ x2c) = 0

1 + x2a3 + 6(b+ x2ac) = 0

1 + x2a4 + 12(b+ x2a2c) + 12(b2 + x2c2) = 0

where x = c2/c1, a = a2/a1, b = b1/a1, c = b2/a1. By taking the lexicograph-
ical order a � b � c � x, the Groebner basis of the above system contains
x6 + 2x4 + 2x2 + 1 > 0 for all x ∈ R. Therefore, the above system of polynomial
equations does not have real solutions. As a consequence, the original system of
polynomial equations does not have non-trivial solution, which means that r ≤ 4.
However, we have already shown that as r = 3, Eq.(1) has non-trivial solution.
Therefore, r = 4.
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(ii) The case k − k0 = 2. System (1) when r = 6 takes the form:

3∑
i=1

c2
i ai = 0(19)

1

2

3∑
i=1

c2
i a

2
i +

3∑
i=1

c2
i bi = 0(20)

1

6

3∑
i=1

c2
i a

3
i +

1

2

3∑
i=1

c2
i aibi = 0(21)

1

24

3∑
i=1

c2
i a

4
i +

1

2

3∑
i=1

c2
i a

2
i bi +

1

2

3∑
i=1

c2
i b

2
i = 0(22)

1

120

3∑
i=1

c2
i a

5
i +

1

6

3∑
i=1

c2
i a

3
i bi +

1

2

3∑
i=1

c2
i aib

2
i = 0(23)

1

720

3∑
i=1

c2
i a

6
i +

1

24

3∑
i=1

c2
i a

4
i bi +

1

4

3∑
i=1

c2
i a

2
i b

2
i +

1

6

3∑
i=1

c2
i b

3
i = 0(24)

Non-trivial solution constraints require that c1, c2, c3 6= 0 and without loss of gen-
erality, a1 6= 0. Dividing both sides of of the six equations above by c2

1a1, c
2
1a

2
1, c

2
1a

3
1,

c2
1a

4
1, c

2
1a

5
1, c

2
1a

6
1, respectively, we obtain

1 + x2a+ y2b = 0
1

2
(1 + x2a2 + y2b2) + c+ x2d+ y2e = 0

1

3
(1 + x2a3 + y2b3) + c+ x2ad+ y2be = 0

1

12
(1 + x2a4 + y2b4) + c+ x2a2d+ y2b2e+ c2 + x2d2 + y2e2 = 0

1

60
(1 + x2a5 + y2b5) +

1

3
(c+ x2a3d+ y2b3e) + c2 + x2ad2 + y2be2 = 0

1

360
(1 + x2a6 + y2b6) +

1

12
(c+ x2a4d+ y2b4e) +

1

2
(c2 + x2a3d+ y2b3e)

+
1

3
(c3 + x2d3 + y2e3) = 0

where x = c2/c1, y = c3/c1, a = a2/a1, b = a3/a1, c = b1/a
2
1, d = b2/a

2
1, e =

b3/a
2
1. By taking the lexicographical order a � b � c � d � x � y, we can verify

that the Groebner bases of the above system of polynomial equations contains a
polynomial in terms of x2, y2 with all of the positive coefficient numbers, which
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cannot be 0 when x, y ∈ R. Therefore, the original system of polynomial equations
does not have a non-trivial solution. It follows that r ≤ 6.

When r = 5, we retain the first five equations in the system described in the
above display. By choosing x = y = 1, under lexicographical order a � b � c �
d � e, we can verify that the Groebner bases contains a polynomial of e with roots
e = ±

√
2/3 or e = (−3±

√
2)/6 while a, b, c, d can be uniquely determined by e.

Thus, system of polynomial equations (1) has a non-trivial solution. It follows that
r = 6.

(iii) For the case k − k0 ≥ 3, we choose c1 = c2 = . . . = ck−k0+1 = 1,
ai = bi = 0 for all 4 ≤ i ≤ k − k0 + 1. Additionally, take a1 = a2 = 1. Now, by
choosing r = 6 in system (1), we can check by Groebner bases that this system of
polynomial equations has a non-trivial solution. As a result, r ≥ 7.

5.2. Mixture of Gamma distributions and location-exponential distributions.

PROOF OF THEOREM 3.1. The proof of this theorem proceeds in the same
manner as that of Theorem 1.1. Therefore, it suffices to prove the following.

PROPOSITION 5.1. (Bounds for exact-fitted Gamma mixtures)

(a) (Generic cases) Assume that the support points of G0 satisfy assumption
(A.1). Then for G ∈ Ek0 and W1(G,G0) sufficiently small, we have

V (pG, pG0) &W1(G,G0).

(b) (Pathological cases) If the support points of G0 satisfy assumption (A.2),
then for any r ≥ 1

lim
ε→0

inf
G∈Ek0

{
V (pG, pG0)/W r

r (G,G0) : Wr(G,G0) ≤ ε
}

= 0.

PROOF. (a) For the range of generic parameter values ofG0, we shall show that
the first-order identifiability still holds for Gamma mixtures, so that the conclusion
can be drawn immediately from Theorem 3.1 of [16]. It suffices to show that for
any αij ∈ R (1 ≤ i ≤ 3, 1 ≤ j ≤ k0) such that for almost sure x > 0

k0∑
i=1

α1if(x|a0
i , b

0
i ) + α2i

∂f

∂a
(x|a0

i , b
0
i ) + α3i

∂f

∂b
(x|a0

i , b
0
i ) = 0(25)

then αij = 0 for all i, j. Equation (25) is rewritten as

k0∑
i=1

(
β1ix

a0i−1 + β2i log(x)xa
0
i−1 + β3ix

a0i

)
exp(−b0ix) = 0,(26)
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where β1i = α1i
(b0i )

a0i

Γ(a0
i )

+ α2i
(b0i )

a0i (log(b0i )− ψ(a0
i ))

Γ(a0
i )

+ α3i
a0
i (b

0
i )
a0i−1

Γ(a0
i )

, β2i =

α2i
(b0i )

a0i

Γ(a0
i )

, and β3i = −α3i
(b0i )

a0i

Γ(a0
i )

. Without loss of generality, we assume that

b01 ≤ b02 ≤ . . . ≤ b0k0 . Denote i to be the maximum index i such that b0i = b01.
Then we have that a0

1, . . . , a
0
i

are pairwise different. Multiply both sides of (26)
with exp(b0

i
x) and let x→ +∞, we obtain

i∑
i=1

β1ix
a0i−1 + β2i log(x)xa

0
i−1 + β3ix

a0i → 0.

Since |a0
i − a0

j | 6= 1 and a0
i ≥ 1 for all 1 ≤ i, j ≤ i, the above result implies

that β1i = β2i = β3i = 0 for all 1 ≤ i ≤ i or equivalently α1i = α2i = α3i

for all 1 ≤ i ≤ i. Repeat the same argument for the remained indices, we obtain
α1i = α2i = α3i = 0 for all 1 ≤ i ≤ k0. This concludes the proof.

(b) Without loss of generality, we assume that
{
|a0

2 − a0
1|, |b02 − b01|

}
= {1, 0}.

In particular, b01 = b02 and assume a0
2 = a0

1−1. We construct the following sequence

of measuresGn =
k0∑
i=1

pni δ(ani ,b
n
i ), where ani = a0

i for all 1 ≤ i ≤ k0, bn1 = b01, b
n
2 =

b01

(
1 +

1

a0
2(np0

2 − 1)

)
, bni = b0i for all 3 ≤ i ≤ k0, pn1 = p0

1 + 1/n, pn2 =

p0
2 − 1/n, pni = p0

i for all 3 ≤ i ≤ k0. We can check that W r
r (Gn, G0) � 1/n +

(p0
2 − 1/n)|bn2 − b01|r � n−1 as n→∞. For any natural order r ≥ 1, by applying

Taylor’s expansion up to the ([r] + 1)th-order, we obtain:

pGn(x)− pG0(x) =

k0∑
i=1

pni (f(x|ani , bni )− f(x|a0
i , b

0
i )) + (pni − p0

i )f(x|a0
i , b

0
i )

= (pn1 − p0
1)f(x|a0

1, b
0
1) + (pn2 − p0

2)f(x|a0
2, b

0
2) +

[r]+1∑
j=1

pn2
(bn2 − b02)j

j!

∂jf

∂bj
(x|a0

2, b
0
2) +Rn(x).(27)

The Taylor expansion remainder |Rn(x)| = O(pn2 |bn2 − b02|[r]+1+δ) for some δ > 0
due to a0

2 ≥ 1. Therefore, Rn(x) = o(W r
r (Gn, G0)) as n→∞. For the choice of

pn2 , b
n
2 , we can check that as j ≥ 2, pn2 (bn2 − b02)j = o(W r

r (Gn, G0)). Now, we can
rewrite (27) as

pGn(x)− pG0(x) = Anx
a02 exp(−b01x) +Bnx

a02−1 exp(−b01x) +

[r]+1∑
j=2

pn2
(bn2 − b02)j

j!

∂jf

∂bj
(x|a0

2, b
0
2) +Rn(x),
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where we have An =
(b01)a

0
1

Γ(a0
1)

(pn1 − p0
1) − (b01)a

0
2

Γ(a0
2)
pn2 (bn2 − b01) = 0 and similarly

Bn =
(b1)a

0
2

Γ(a0
2)

(pn2 − p0
2) +

a0
2(b01)a

0
2−1

Γ(a0
2)

pn2 (bn2 − b01) = 0 for all n. Since a0
2 ≥ 1,∣∣∣∣∂jf∂bj (x|a0

2, b
0
2)

∣∣∣∣ is bounded for all 2 ≤ j ≤ r+1. It follows that supx>0 |pGn(x)−
pG0(x)| = O(n−2). Observe that

V (pGn , pG0) = 2

∫
pGn (x)<pG0

(x)

(pG0(x)− pGn(x)) d(x)

≤ 2

∫
x∈(0,a02/b

0
1)

|pGn(x)− pG0(x)|dx.

As a consequence V (pGn , pG0) = O(n−1/2) so for any r ≥ 1, V (pGn , pG0) =
o(W r

r (Gn, G0)) as n→∞.

PROOF OF THEOREM 3.2. As in the proof of Theorem 3.1, it is sufficient to
prove the following.

PROPOSITION 5.2. (Bounds for over-fitted Gamma mixtures)

(a) (Generic cases) Assume that we have G0 ∈ Ok,c0 . Then, for G ∈ Ok,c0 and
W2(G,G0) sufficiently small, we obtain

V (pG, pG0) &W 2
2 (G,G0).

(b) (Pathological cases) Assume that the support points ofG0 satisfy assumption
(A.4), then for any r ≥ 1,

lim
ε→0

inf
G∈Ok

{
V (pG, pG0)/W r

r (G,G0) : Wr(G,G0) ≤ ε
}

= 0.

PROOF. (a) As in step 7 in the proof of Proposition 2.2, it suffices to show that

lim
ε→0

inf
G∈Ok,c0

{
sup
x∈X
|pG(x)− pG0(x)|/W 2

2 (G,G0) :

W2(G,G0) ≤ ε
}
> 0.(28)

Suppose this does not hold, by repeating the arguments of step 1 of Proposition

2.2, there is a sequence Gn =
k0+m∑
i=1

si∑
j=1

pnijδ(anij ,b
n
ij) → G0 =

k0+m∑
i=1

p0
i δ(a0i ,b

0
i ) such



RATES OF PARAMETER ESTIMATION 29

that (anij , b
n
ij) → (a0

i , b
0
i ) for all 1 ≤ i ≤ k0 + m where (a0

i , b
0
i ) are limit points

that lie outside the support points of G0 as k0 + 1 ≤ i ≤ k0 + m. Additionally,
p0
i = 0 as k0 + 1 ≤ i ≤ k0 + m. Invoke the Taylor expansion up to the second

order and assume that all of the coefficients corresponding to the first and second
derivatives with respect to the parameters go to 0. Use the same argument as that of
step 8 in Proposition 2.2, by summing up all the coefficients of second derivative,
we obtain the contradiction. Now, by proceeding in the same way as that of step 9
in Proposition 2.2 , as we let n→∞, we have for almost every x,

pGn(x)− pG0(x)

d(Gn, G0)
→

k0+m∑
i=1

{
α1if(x|a0

i , b
0
i ) + α2i

∂f

∂a
(x|a0

i , b
0
i ) + α3i

∂f

∂b
(x|a0

i , b
0
i ) +

si∑
j=1

α2
4ij

∂2f

∂a2
(x|a0

i , b
0
i ) +

si∑
j=1

α2
5ij

∂2f

∂b2
(x|a0

i , b
0
i ) + 2

si∑
j=1

α4ijα5ij
∂2f

∂a∂b
(x|a0

i , b
0
i )

}
= 0,

where at least one of α1i, α2i, α3i,
si∑
j=1

α2
4ij ,

si∑
j=1

α2
5ij , 2

si∑
j=1

α4ijα5ij is non-zero. We

can rewrite the above equation as

k0+m∑
i=1

{
β1ix

a0i−1 + β2ix
a0i + β3ix

a0i +1 + β4i log(x)xa
0
i−1 + β5i log(x)2xa

0
i−1 +

β6i log(x)xa
0
i

}
e−b

0
i x = 0,

where β1i = α1i
b0i

Γ(a0
i )

+β0
i

∂

∂a

(
(b0i )

a0i

Γ(a0
i )

)
+α3i

a0
i (b

0
i )
a0i−1

Γ(a0
i )

+
si∑
j=1

α2
4ij

∂

∂a2

(
(b0i )

a0i

Γ(a0
i )

)
+

si∑
j=1

α2
5ij

a0
i (a

0
i − 1)(b0i )

a0i−2

Γ(a0
i )

+2
si∑
j=1

α4ijα5ij
∂

∂a

(
a0
i (b

0
i )
a0i−1

Γ(a0
i )

)
, β2i = −α3i

(b0i )
a0i

Γ(a0
i )

+

2
si∑
j=1

α2
5ij

a0
i (b

0
i )
a0i−1

Γ(a0
i )

+ 2
si∑
j=1

α4ijα5ij
∂

∂a

(
(b0i )

a0i

Γ(a0
i )

)
, β3i =

si∑
j=1

α2
5ij

(b0i )
a0i

Γ(a0
i )

,

β4i = α2i
(b0i )

Γ(a0
i )

+ 2
si∑
j=1

α2
4ij

∂

∂a

(
(b0i )

a0i

Γ(a0
i )

)
+ 2

si∑
j=1

α4ijα5ij
a0
i (b

0
i )
a0i−1

Γ(a0
i )

, β5i =

si∑
j=1

α2
4ij

(b0i )
a0i

Γ(a0
i )

, and β6i = −2
si∑
j=1

α4ijα5ij
(b0i )

a0i

Γ(a0
i )

. Using the same argument as

that of the proof of part (a) of Proposition 5.1, by multiplying both sides of the



30 N. HO AND X. NGUYEN

above equation with exp(b0
i
x) and let x→ +∞, we obtain

i∑
i=1

β1ix
a0i−1 + β2ix

a0i + β3ix
a0i +1 + β4i log(x)xa

0
i−1 + β5i log(x)2xa

0
i−1 +

β6i log(x)xa
0
i → 0.

By the constraints of Ok,c0 , we have |a0
i − a0

j | 6∈ {1, 2} for all 1 ≤ i, j ≤ k0 +m.
Therefore, this limit yields β1i = β2i = β3i = β4i = β5i = β6i = 0 for all
1 ≤ i ≤ i or equivalently α1ij = α2ij = α3ij = α4ij = α5ij = 0 for all
1 ≤ i ≤ i, 1 ≤ j ≤ si. The same argument for remained indicies yields α1ij =
α2ij = α3ij = α4ij = α5ij = 0 for all 1 ≤ i ≤ k0 + m, 1 ≤ j ≤ si, which leads
to contradiction. This concludes the proof.

(b) If there exists (i, j) such that
{
|a0
i − a0

j |, |b0i − b0j |
}
≡ {1, 0}, then we can

use the same way of construction as that of part (b) of Proposition 5.1. Now, the
only case of interest is when we have some (i, j) such that

{
|a0
i − a0

j |, |b0j − b0j |
}
≡

{2, 0}. Without loss of generality, assume that a0
2 = a0

1 − 2. We construct the se-

quence Gn =
k0+1∑
i=1

pni δ(ani ,b
n
i ) as an1 = a0

1, a
n
2 = an3 = a0

2, a
n
i = a0

i−1 for all

4 ≤ i ≤ k0+1, bn1 = b01, b
n
2−b01 = b01−bn3 =

b01
a0

2n
, bni = b0i−1 for all 4 ≤ i ≤ k0+1,

pn1 = p0
1 − cn, pn2 =

p0
2

2
+

1

2

(
cn +

1

n

)
, pn3 =

p0
2

2
+

1

2

(
cn −

1

n

)
, pni = p0

i−1 for

all 4 ≤ i ≤ k0 + 1 where cn =
(a0

2 + 1)p0
2

(2n2 − 1)a0
2 − 1

. Now, we can check that for any

r ≥ 1, W r
r (Gn, G0) & cn +

1

nr
. As r ≥ 2, by means of Taylor expansions up to

the ([r] + 1)-th order, we obtain

pGn(x)− pG0(x) = (pn1 − p0
1)f(x|a0

1, b
0
1) + (

3∑
i=2

pni − p0
2)f(x|a0

2, b
0
2)

+

[r]+1∑
j=1

3∑
i=2

pni (bni − b0i )j

j!

∂jf

∂bj
(x|a0

2, b
0
2) +Rn(x),(29)

where Rn(x) is the remainder term and therefore |Rn(x)|/W r
r (Gn, G0) → 0.

We can check that as j ≥ 3,
3∑
i=2

pni (bni − b0i )j/W r
r (Gn, G0) → 0 as n → ∞.
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Additionally, direct computation demonstrates that

(pn1 − p0
1)f(x|a0

1, b
0
1) + (

3∑
i=2

pni − p0
2)f(x|a0

2, b
0
2) +

2∑
j=1

3∑
i=2

pni (bni − b0i )j

j!

∂jf

∂bj
(x|a0

2, b
0
2) = 0.

The rest of the proof proceeds in the same way as that of Proposition 5.1 part
(b).

PROOF OF THEOREM 3.3. It suffices to demonstrate the following bound:

PROPOSITION 5.3. (Location-exponential mixtures) For any r ≥ 1,

lim
ε→0

inf
G∈Ek0

{
V (pG, pG0)/W r

1 (G,G0) : W1(G,G0) ≤ ε
}

= 0.

PROOF. Choose the sequence Gn =
k0∑
i=1

pni δ(θni ,σ
n
i ) such that σni = σ0

i for all

1 ≤ i ≤ k0, (pni , θ
n
i ) = (p0

i , θ
0
i ) for all 3 ≤ i ≤ k0. The parameters pn1 , p

n
2 , θ

n
1 , θ

n
2

are to be determined. With this construction of Gn, we obtain W1(Gn, G0) �
|pn1 − p0

1|+ |pn2 − p0
2|+ p0

1|θn1 − θ0
1|+ p0

2|θn2 − θ0
2|. Now, for any x 6∈

{
θ0

1, θ
0
2

}
and

for any r ≥ 1, taking the Taylor expansion with respect to θ up to the ([r] + 1)-th
order, we obtain

pGn(x)− pG0(x) =

2∑
i=1

p0
i (f(x|θni , σ0

i )− f(x|θ0
i , σ

0
i )) + (pni − p0

i )f(x|θni , σ0
i )

=
2∑
i=1

(pni − p0
i )f(x|θni , σ0

i )− p0
i

[r]+1∑
j=1

(θ0
i − θni )j

j!

∂jf

∂θj
(x|θni , σ0

i )


+ R(x)

=
2∑
i=1

(pni − p0
i )− p0

i

[r]+1∑
j=1

(θ0
i − θni )j

j!(σ0
i )
j

 f(x|θni , σ0
i ) +R(x),

where the last inequality is due to the identity (8) and R(x) is the remainder of
Taylor expansion. Note that

sup
x 6∈{θ01 ,θ02}

|R(x)|/W r
1 (Gn, G0) ≤

2∑
i=1

O(|θni − θ0
i |[r]+1+δ)/|θni − θ0

i |r → 0.
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Now, we choose pn1 = p0
1 + 1/n, pn2 = p0

2 − 1/n, which means pn1 + pn2 = p0
1 + p0

2

and pn1 → p0
1, p

n
2 → p0

2. As p0
i /j!(σ

0
i )
j are fixed positive constants for all 1 ≤ j ≤

[r] + 1. It is clear that there exists sequences θn1 and θn2 such that for both i = 1

and i = 2, θni − θ0
i → 0, the identity p0

i

[r]+1∑
j=1

(θ0
i − θni )j

j!(σ0
i )
j

= pni − p0
i holds for all n

(sufficiently large). With these choices of pn1 , p
n
2 , θ

n
1 , θ

n
2 , we have

sup
x 6∈{θ01 ,θ02}

|pGn(x)− pG0(x)|/W r
1 (Gn, G0) = sup

x 6∈{θ01 ,θ02}
|R(x)|/W r

1 (Gn, G0)→ 0.

The rest of the proof proceeds in the same way as that of Prop. 5.1 part (b).
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APPENDIX

PROOF OF LEMMA 2.1. For any setM, a setMε is called an ε-net overM if
any element ofM is within ε distance of some metrics from an element ofMε. It
is a known fact that we can choose an ε-net S1 over the k-dimensional simplex for

the l1 norm such that |S1| ≤
(

5

ε

)k
, where |.| denotes the cardinality of a set (e.g

see Lemma A.4 of [14]). Additionaly, if we denote S2 to be 2dε-net of Ω under

metric ‖.‖, then we can verify that |S2| ≤
(

2dλ

ε

)d(d+1)/2

.

Now, denote S3 to be the set of all pG ∈ Pk(Θ∗) such that G is supported on
((±l1ε,±l2ε, . . . ,±ldε),Σ), where Σ ∈ S2, 0 ≤ li ≤

a

ε
for all 1 ≤ i ≤ d, with

weights come from S1 only. For each pG in Pk(Θ∗), we firstly move the support
points of G to their closest support points in ((±l1ε,±l2ε, . . . ,±ldε),Σ) to form
G̃ and then we move the masses of G̃ to their closest masses in S1 to form G∗. By
means of triangle inequality, we obtain

‖pG − pG∗‖∞ ≤ ‖pG − pG̃‖∞ + ‖p
G̃
− pG∗‖∞.

Due to the boundness of kernel density function f(x|θ,Σ), it is not hard to verify

that ‖p
G̃
− pG∗‖∞ . ε. Additionally, denote G =

k1∑
i=1

piδ{θi,Σi} where k1 ≤ k.

Then, G̃ =
k1∑
i=1

piδ{θ̃i,Σ̃i} where (θ̃i, Σ̃i) has the form ((±l1ε,±l2ε, . . . ,±ldε),Σ)

and Σ ∈ S2. By means of triangle inequality, we obtain

‖pG − pG̃‖∞ ≤
k1∑
i=1

pi

(
‖f(x|θi,Σi)− f(x|θ̃i,Σi)‖∞ + ‖f(x|θ̃i,Σi)− f(x|θ̃i, Σ̃i)‖∞

)
.

As |Σ̃i| is bounded for all 1 ≤ i ≤ k1, by means of mean value theorem, we
achieve ‖f(x|θi,Σi) − f(x|θ̃i,Σi)‖∞ . ‖θi − θ̃i‖ . ε. Similarly, by means of
Taylor expansion up to the first order regarding Σi, Σ̃i and Cauchy-Schwarz’s in-
equality, we have ‖f(x|θ̃i,Σi) − f(x|θ̃i, Σ̃i)‖∞ . ‖Σi − Σ̃i‖ . ε. Therefore,
‖pG − pG∗‖∞ . ε. As a consequence, the cardinality of S3 is bounded as

|S3| ≤
(

2dλ

ε

)d(d+1)k/2

×
(

2a

ε

)dk
×
(

5

ε

)k
.

Hence, for some constants c1 and c2,

logN(c1ε,F , ‖.‖∞) ≤ log |S3| . log(1/ε),
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which proves (4).
To establish (5), let η ≤ ε to be chosen later. From the assumption, it also

indicates that a . (log(1/η))γ . Denote f1, f2, . . . , fN to be an η-net for ‖.‖∞ over
Pk(Θ∗). Notice that as Σ ∈ Ω, |Σ| ≥ λ2d and as ‖x‖ ≥ 2

√
da,

(x− θ)TΣ−1(x− θ) ≥ ‖x− θ‖
2

λd(Σ)
≥ ‖x− θ‖

2

λ
2 ≥ (‖x‖ − ‖θ‖)2

λ
2 ≥ ‖x‖

2

4λ
2 .

Therefore, by defining

H(x) =


1

(2π)d/2λd
exp

(
−‖x‖

2

8λ
2

)
, if ‖x‖ ≥ 2

√
da

1

(2π)d/2λd
, otherwise,

.

we obtain H(x) is an envelope for Pk(Θ∗). We construct the brackets [pLi , p
U
i ] as

follows

pLi (x) = max {fi(x)− η, 0}, pUi (x) = min {fi(x) + η,H(x)}.

It is clear thatPk(Θ∗) ⊂
N⋃
i=1

[pLi , p
U
i ]. Additionally, pUi (x)−pLi (x) ≤ min {2η,H(x)}.

As a consequence, for any B ≥ 2
√
da, we have∫

Rd

(
pUi (x)− pLi (x)

)
dx ≤

∫
‖x‖<B

2ηdx+

∫
‖x‖≥B

H(x)dx.

By means of spherical coordinates, we obtain
∫

‖x‖≥B

H(x)dx . Bd−1 exp

(
− B

2

8λ
2

)
.

Additionally, we also have∫
‖x‖≤B

2ηdx . η

B∫
0

Rd−1dR . ηBd.

By choosing B = max
{

2
√
dL,
√

8.λ
}

(log(1/η))γ , then it is clear that

Bd−1 exp

(
− B

2

8λ
2

)
. η (log(1/η))(d−1)γ , ηBd . η (log(1/η))dγ .

Thus, ∫
Rd

(
pUi (x)− pLi (x)

)
dx . η (log(1/η))dγ .
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With this result and that of (4), they imply that for some positive constant c

HB

(
cη (log(1/η))dγ ,Pk(Θ∗), ‖.‖1

)
≤ N . log(1/η).

By choosing ε = cη (log(1/η))dγ , note that log(1/η) ∼ log(1/ε). Therefore,

HB(ε,Pk(Θ∗), ‖.‖1) . log(1/ε).

As we have h2 ≤ ‖.‖1, the above result implies that HB(
√
ε,Pk(Θ∗), h) .

log(1/ε). Therefore,

HB(ε,Pk(Θ∗), h) . log(1/ε),

which proves (5).

PROOF OF PROPOSITION 2.3. We divide the proof for two separate settings:

As k − k0 = 1. From Proposition 2.1, we have r = 4. As in the proof of Propo-
sition 2.2, it suffices to show for d = 1 that

lim
ε→0

inf
G∈Ok

{
sup
x∈X
|pG(x)− pG0(x)|/W r

r (G,G0) :

Wr(G,G0) ≤ ε
}
> 0.(30)

Denote v = σ2. Assume that the above result does not hold, i.e we can find a

sequence of Gn =
k0+m∑
i=1

si∑
j=1

pnijδ(θnij ,v
n
ij) → G0 in Wr where (pnij , θ

n
ij , v

n
ij) →

(p0
i , θ

0
i , v

0
i ) for all 1 ≤ i ≤ k0 +m, 1 ≤ j ≤ si and p0

i = 0 as k0 +1 ≤ i ≤ k0 +m.
As k − k0 = 1, we have 0 ≤ m ≤ 1. Note that since we do not have the con-
straints on the masses of mixing measures Gn as those in part (b) of Proposition
2.2, there are some atoms of Gn that may converge to some limit points outside
the set of atoms of G0. That is the reason why we define the possible additional
atom (p0

k0+1, θ
0
k0+1, v

0
k0+1). Repeating the same arguments as the proof of Propo-

sition 2.2 up to step 8 when we have the assumption that Eα(θ0
i , v

0
i ) → 0 for all

1 ≤ i ≤ k0 + m and 0 ≤ α ≤ 2r as n → ∞. Now, we can find an index
i∗ ∈ {1, 2, . . . , k0 +m} such that as n→∞

si∗∑
j=1

pni∗j(|∆θni∗j |r + |∆vni∗j |r)/Dn 6→ 0.

whereDn =
k0+m∑
i=1

si∑
j=1

pnij(|∆θnij |r + |∆vnij |r)+
k0+m∑
i=1
|pni. − p0

i |. SinceE2r(θ
0
i∗ , v

0
i∗)→

0 for all 1 ≤ i ≤ k0 +m, it implies that
si∗∑
j=1

pni∗j |∆vni∗j |r/Dn → 0. Therefore, we



RATES OF PARAMETER ESTIMATION 37

obtain

si∗∑
j=1

pni∗j |∆vni∗j |r/
si∗∑
j=1

pni∗j(|∆θni∗j |r + |∆vni∗j |r)→ 0.

It implies that

si∗∑
j=1

pni∗j |∆θni∗j |r/
si∗∑
j=1

pni∗j(|∆θni∗j |r + |∆vni∗j |r)→ 1.

As a consequence,

F ′α(θ0
i∗ , v

0
i∗) =

si∗∑
j=1

pni∗j(|∆θni∗j |r + |∆vni∗j |r)
si∗∑
j=1

pni∗j |∆θni∗j |r
Fα(θ0

i∗ , v
0
i∗)

=

si∗∑
j=1

pni∗j
∑
n1,n2

(∆θni∗j)
n1(∆vni∗j)

n2

n1!n2!
si∗∑
j=1

pni∗j |∆θni∗j |4
→ 0,(31)

where n1 + 2n2 = α and 1 ≤ α ≤ 4. As i∗ ∈ {1, 2, . . . , k0 +m}, we have
i∗ ∈ {1, . . . , k0} or i∗ ∈ {k0 + 1, . . . , k0 +m}. Firstly, we assume that i∗ ∈
{1, . . . , k0}. Without loss of generality, let i∗ = 1. Since s1 ≤ k − k0 + 1 = 2,
there are two possibilities.

Case 1. If s1 = 1, then F ′1(θ0
1, v

0
1) = ∆θn11/|∆θn11|4 6→ 0, which is a contradic-

tion.

Case 2. If s1 = 2, without loss of generality, we assume that pn11|∆θn11| ≤
pn12|∆θn12| for infinitely many n, which we can assume to hold for all n (by choos-
ing the subsequence). Since pn11(∆θn11)4 + pn12(∆θn12)4 > 0, we obtain θn12 6= 0 for
all n. If ∆θn11 = 0 for infinitely many n, then F ′1(θ0

1, v
0
1) = ∆θn12/(∆θ

n
12)4 6→ 0,

which is a contradiction. Therefore, we may assume θn11 6= 0 for all n. Let a :=
lim
n→∞

pn11∆θn11/p
n
12∆θn12 ∈ [−1, 1]. Dividing both the numerator and denominator

of F ′1(θ0
1, v

0
1) by pn12∆θn12 and letting n → ∞, we obtain a = −1. Consider the

following scenarios regarding pn11/p
n
12:

(i). If pn11/p
n
12 → ∞, then ∆θn11/∆θ

n
12 → 0. Since ∆θn11,∆θ

n
12 6= 0, denote

∆vn11 = kn1 (∆θn11)2, ∆vn12 = kn2 (∆θn12)2 for all n. Now, by dividing the numerator
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and denominator of F ′2(θ0
1, v

0
1), F ′3(θ0

1, v
0
1), F ′4(θ0

1, v
0
1) by pn12(∆θn12)2, pn12(∆θn12)3,

and pn12(∆θn12)4 respectively, we obtain

Mn,1 =
1

2
+ kn2 + kn1

pn11(∆θn11)2

pn12(∆θn12)2
→ 0,

Mn,2 =
1

3!
+ kn2 + kn1

pn11(∆θn11)3

pn12(∆θn12)3
→ 0,

Mn,3 =
1

4!
+
kn2
2

+
(kn2 )2

2
+

(
kn1
2

+
(kn1 )2

2

)
pn11(∆θn11)4

pn12(∆θn12)4
→ 0.

If |kn1 |, |kn2 | → ∞ then Mn,3 >
1

4!
for sufficiently large n, which is a contra-

diction. Therefore, at least one of |kn1 |, |kn2 | does not converge to ∞. If |kn1 | →
∞ and |kn2 | 6→ ∞ then Mn,1 implies that |kn1

pn11(∆θn11)2

pn12(∆θn12)2
| 6→ ∞. Therefore,

|kn1
pn11(∆θn11)3

pn12(∆θn12)3
| → 0 as ∆θn11/∆θ

n
12 → 0 and kn1

(∆θn11)2

(∆θn12)2
→ 0 as pn11/p

n
12 → ∞.

Combining these results with Mn,3,Mn,4, we get kn2 +
1

3!
→ 0 and

1

4!
+
kn2
2

+

(kn2 )2

2
→ 0, which cannot happen. If |kn1 | 6→ ∞, then Mn,1 and Mn,2 implies that

kn2 + 1/2→ 0 and kn2 + 1/6→ 0, which cannot happen either. As a consequence,
pn11/p

n
12 6→ ∞.

(ii). If pn11/p
n
12 → 0 then pn12/p

n
11 → ∞. Since pn11∆θn11/p

n
12∆θn12 → −1, we

have |∆θn11/∆θ
n
12| → ∞ or equivalently ∆θn12/∆θ

n
11 → 0. From here, using the

same argument as that above, we are also led to a contradiction. So, pn11/p
n
12 6→ 0.

(iii). If pn11/p
n
12 → b 6∈ {0,∞}. It also means that ∆θn11/∆θ

n
12 → −1/b. There-

fore, by dividing the numerator and denominator ofF ′2(θ0
1, v

0
1), F ′3(θ0

1, v
0
1), F ′4(θ0

1, v
0
1)

by pn12(∆θn12)2, pn12(∆θn12)3, and pn12(∆θn12)4 and let n→∞, we arrive at the scal-
ing system of equations (1) when r = 4 for which we already know that non-trivial
solution does not exist. Hence, the case s1 = 2 cannot happen.

As a consequence, i∗ 6∈ {1, . . . , k0}. However, since m ≤ 1, we have i∗ =
k0 + 1. This implies that sk0+1 = 1, which we already know from Case 1 that (31)
cannot hold. Therefore, our hypothesis that all coefficients Eα(θ0

i , v
0
i ) vanish does

not hold — there must be at least one coefficient which does not converge to 0 as
n→∞. Repeating the same argument as step 9 in the proof of Proposition 2.2, we
achieve the conclusion of our result for k − k0 = 1.

As k − k0 = 2. The proof becomes more complex. Here we consider the case
k − k0 = 2. As in the argument of case when k − k0 = 1, we can find i∗ ∈
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{1, 2, . . . , k0 +m} where 0 ≤ m ≤ 2 such that

F ′α(θ0
i∗ , v

0
i∗) =

si∗∑
j=1

pni∗j(|∆θni∗j |6 + |∆vni∗j |6)

si∗∑
j=1

pni∗j |∆θni∗j |6
Fα(θ0

i∗ , v
0
i∗)

=

si∗∑
j=1

pni∗j
∑
n1,n2

(∆θni∗j)
n1(∆vni∗j)

n2

n1!n2!
si∗∑
j=1

pni∗j |∆θni∗j |6
→ 0,(32)

where n1 + 2n2 = α and 1 ≤ α ≤ 6. As i∗ ∈ {1, 2, . . . , k0 +m}, we have
i∗ ∈ {1, . . . , k0} or i∗ ∈ {k0 + 1, . . . , k0 +m}. Firstly, we assume that i∗ ∈
{1, . . . , k0}. Without loss of generality, let i∗ = 1. Since s1 ≤ k − k0 + 1 = 3,
there are two possibilities.

Case 3. If s1 ≤ 2, then since
s1∑
j=1

pn1j |∆θn1j |6 .
s1∑
j=1

pn1j |∆θn1j |4, we also obtain

si∗∑
j=1

pni∗j
∑
n1,n2

(∆θni∗j)
n1(∆vni∗j)

n2

n1!n2!
/

si∗∑
j=1

pni∗j |∆θni∗j |4 → 0,

which we easily get the contradiction by means of the argument of Case k−k0 = 1.

Case 4. If s1 = 3, we assume WLOG that pn11|∆θn11| ≤ pn12|∆θn12| ≤ pn13|∆θn13|
for all n. With the same argument as that of Case k−k0 = 1, we can get ∆θn11,∆θ

n
12,

∆θn13 6= 0 for all n. Denote a1 := pn11∆θn11/p
n
13∆n

13 ∈ [−1, 1], a2 := pn12∆θn12/p
n
13∆n

13

∈ [−1, 1]. By dividing both the numerator and denominator ofF ′1(θ0
1, v

0
1) by pn13∆θn13

and letting n→∞, we obtain a1 + a2 = −1. We have the following cases regard-
ing pn11/p

n
13, p

n
12/p

n
13:

Case 4.1. If both pn11/p
n
13, p

n
12/p

n
13 → ∞ then ∆θn11/∆θ

n
13, ∆θn12/∆θ

n
13 → 0.

Since ∆θn11,∆θ
n
12,∆θ

n
13 6= 0, we denote ∆vn1i = hni (∆θn1i)

2 for all 1 ≤ i ≤ 3.
By dividing the numerator and denominator of F ′i (θ

0
1, v

0
1) by pn13(∆θn13)i for all
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2 ≤ i ≤ 6, we obtain

Kn,1 =
1

2
+ hn3 +

2∑
i=1

hni
pn1i(∆θ

n
1i)

2

pn13(∆θn13)2
→ 0,

Kn,2 =
1

3!
+ hn3 +

2∑
i=1

(
1

3!
+ hni

)
pn1i(∆θ

n
1i)

3

pn13(∆θn13)3
→ 0,

Kn,3 =
1

4!
+
hn3
2

+
(hn3 )2

2
+

2∑
i=1

(
1

4!
+
hni
2

+
(hni )2

2

)
pn1i(∆θ

n
1i)

4

pn13(∆θn13)4
→ 0,

Kn,4 =
1

5!
+
hn3
6

+
(hn3 )2

2
+

2∑
i=1

(
1

5!
+
hni
6

+
(hni )2

2

)
pn1i(∆θ

n
1i)

5

pn13(∆θn13)5
→ 0,

Kn,5 =

2∑
i=1

(
1

6!
+
hni
4!

+
(hni )2

4
+

(hni )3

6

)
pn1i(∆θ

n
1i)

6

pn13(∆θn13)6

+
1

6!
+
hn3
4!

+
(hn3 )2

4
+

(hn3 )3

6
→ 0.

If |hn1 |, |hn2 |,|hn3 | → ∞ then Kn,3 > 1/4! as n is sufficiently large, which is a
contradiction. Therefore, at least one of them is finite. If either |hn1 | or hn2 | 6→
∞, then we reduce to the case when s1 = 2, which eventually leads to a con-
tradiction. Therefore, |hn1 |, |hn2 | → ∞ and |hn3 | 6→ ∞. Now, Kn,3 implies that

(hni )2 p
n
1i(∆θ

n
1i)

4

pn13(∆θn13)4
6→ ∞ for all 1 ≤ i ≤ 2. As pn1i/p

n
13 →∞ for all 1 ≤ i ≤ 2, we

obtain hni
(∆θn1i)

2

(∆θn13)2
→ 0. Combining these results with Kn,4 and Kn,5, we obtain

1

5!
+
hn3
6

+
(hn3 )2

2
→ 0 and

1

6!
+
hn3
4!

+
(hn3 )2

4
+

(hn3 )3

6
→ 0, which cannot happen.

As a consequence, both pn11/p
n
13 and pn12/p

n
13 →∞ cannot hold.

Case 4.2. Exactly one of pn11/p
n
13, p

n
12/p

n
13 →∞. If pn11/p

n
13 →∞ and pn12/p

n
13 6→

∞. It implies that ∆θn11/∆θ
n
13 → 0. Denote pn12/p

n
13 → c. If c > 0 then as

pn12∆θn12/p
n
13∆θn13 → a2, ∆θn12/∆θ

n
13 → a2/c. From the previous case 3.1, we

know that at least one of |hn1 |, |hn2 |, hn3 | will not converge to∞. If |hn1 | 6→ ∞, then
Kn,3 implies that

1

4!
+
hn3
2

+
(hn3 )2

2
+

(
hn2
2

+
(hn2 )2

2

)
pn12(∆θn12)4

pn13(∆θn13)4
→ 0,

which means that at least one of |hn2 |, |hn3 | 6→ ∞. As
∣∣∣∣ pn12(∆θn1i)

j

pn13(∆θn13)j

∣∣∣∣ 6→ ∞ for all

1 ≤ j ≤ 6, we have both |hn2 |, |hn3 | 6→ ∞. Denote hn2 → h2 and hn3 → h3. Now,
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Kn,1,Kn,2,Kn,3, and Kn,4 yield the following system of polynomial equations

1

2
+ h3 +

(
1

2
+ h2

)
a2

2

c
= 0,

1

3!
+ h3 +

(
1

3!
+ h2

)
a3

2

c2
= 0,

1

4!
+
h3

2
+
h2

3

2
+

(
1

4!
+
h2

2
+
h2

2

2

)
a4

2

c3
= 0,

1

5!
+
h3

6
+
h2

3

2
+

(
1

5!
+
h3

6
+
h2

3

2

)
a5

2

c4
= 0.

By converting the above equations into polynomial equations and using Groebner
bases, we obtain that the bases contains an equation in terms of c with all positive
coefficient,which does not admit any solution since c > 0. Therefore, the above
system of polynomial equations does not admit any real solutions (h2, h3, c, a2)
where c > 0. Therefore, the assumption |hn1 | 6→ ∞ does not hold. As a conse-
quence, |hn1 | → ∞.

Now, if |hn2 | 6→ ∞ then Kn,3 demonstrates that |hn3 | 6→ ∞. Hence, Kn,1 yields∣∣∣∣hn1 pn11(∆θn11)2

pn13(∆θn13)2

∣∣∣∣ 6→ ∞. As ∆θn11/∆θ
n
13 → 0 and pn11/p

n
13 → ∞, we achieve

hn1 (∆θn11)i/pn13(∆θn13)i → 0 for all 3 ≤ i ≤ 6, (hn1 )2pn11(∆θn11)i/pn13(∆θn13)i → 0
for all 4 ≤ i ≤ 6, and (hn1 )3pn11(∆θn11)6/pn13(∆θn13)6 → 0. With these results,
by denoting hn2 → h2 and hn3 → h3, Kn,3,Kn,4,Kn,5,Kn,6 yield the following
system of polynomial equations

1

2
+ h3 +

(
1

2
+ h2

)
a2

2

c
= 0,

1

3!
+ h3 +

(
1

3!
+ h2

)
a3

2

c2
= 0,

1

4!
+
h3

2
+
h2

3

2
+

(
1

4!
+
h2

2
+
h2

2

2

)
a4

2

c3
= 0,

1

5!
+
h3

6
+
h2

3

2
+

(
1

5!
+
h3

6
+
h2

3

2

)
a5

2

c4
= 0,

1

6!
+
h3

4!
+
h2

3

4
+
h3

3

6
+

(
1

6!
+
h2

4!
+
h2

2

4
+
h3

2

6

)
a6

2

c5
= 0.

We can check again that Groebner bases contains a polynomial of cwith all positive
coefficients. Therefore, the possibility that hn2 is finite does not hold. As a conse-
quence, |hn2 | → ∞. However, as both |hn1 |, |hn2 | → ∞, we get |hn3 | → ∞, which is
a contradiction. Therefore, c > 0 cannot happen. It implies that pn12/p

n
13 → c = 0.
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If a2 6= 0 then ∆θn13/∆θ
n
12 → 0. Since pn11/p

n
12, p

n
13/p

n
12 →∞, pn11∆θn11/p

n
12∆θn12,

pn13∆θn13/p
n
12∆θn12 are finite, with the same argument as that of Case 3.1, we get

the contradiction. Thus, a2 = 0. However, as
∣∣∣∣pn11∆θn11

pn13∆θn13

∣∣∣∣ ≤ ∣∣∣∣pn12∆θn12

pn13∆θn13

∣∣∣∣, it implies

that pn11∆θn11/p
n
13∆θn13

→ 0. It follows that a1 +a2 = 0, which is a contradiction to the fact that a1 +a2 =
1. Overall, the possibility that pn11/p

n
13 →∞ and pn12/p

n
13 6→ ∞ cannot happen.

As a consequence, pn11/p
n
13 6→ ∞ and pn12/p

n
13 → ∞. Using the same argu-

ment as before, eventually, we get to the case when pn11/p
n
13 → 0 and a1 = 0. If

∆θn11/∆θ
n
13 is finite then pn11(∆θn11)j/pn13(∆θn13)j → 0 for all 1 ≤ j ≤ 6. As we

also have pn12(∆θn12)j/pn13(∆θn13)j → 0 for all 1 ≤ j ≤ 6, Kn,1,Kn,2,Kn,3,Kn,4

demonstrate that |hn1 |, |hn2 | → ∞. However, it also implies that |hn3 | → ∞, which

is a contradiction. Therefore,
∣∣∣∣∆θn11

∆θn13

∣∣∣∣→∞.

If hn2 is finite then at least one of hn1 and hn3 is finite. First, we assume that hn1
is finite. Now, if pn11(∆θn11)2/pn13(∆θn13)2 6→ 0 then pn11(θn11)j/pn13(θn13)j becomes

infinite for all j ≥ 3. Consider Kn,2 −Kn,1, we achieve
1

3!
+ hn1 → 0.Similarly,

considerKn,4−Kn,3+
1

3
Kn,2, we obtain

1

5!
+
hn1
6

+
(hn1 )2

2
→ 0, which contradicts

to
1

3!
+ hn1 → 0. Therefore, pn11(∆θn11)2/pn13(∆θn13)2 → 0. From Kn,1, it shows

that hn3 +
1

2
→ 0. Combining this result with Kn,2,Kn,3,Kn,4,Kn,5, we obtain

pn11(∆θn11)j/pn13(∆θn13)j are finite for all 2 ≤ j ≤ 6. However, as ∆θn11/∆θ
n
13 is

infinite, we obtain pn11(θn11)2/pn13(θn13)3 → 0. Combining it with Kn,2,we obtain

hn3 +
1

3!
→ 0, which contradicts hn3 + 1/2→ 0. As a consequence, hn1 is not finite,

which also implies that hn3 is finite.
However, it means that pn11(∆θn11)j/pn13(∆θn13)j → 0 for all 2 ≤ j ≤ 6. If

hn1
pn11(∆θn11)2

pn13(∆θn13)2
6→ 0 then Kn,2 cannot happen as ∆θn11/∆θ

n
13 is infinite. Hence,

hn1
pn11(∆θn11)2

pn13(∆θn13)2
→ 0, which implies hn3 +1/2→ 0. FromKn,4, since hn1 is infinite,

we achieve (hn1 )2 p
n
11(∆θn11)4

pn13(∆θn13)4
is finite. It also means that hn1

pn11(∆θn11)3

pn13(∆θn13)3
→ 0.

Combining this result with Kn,2, we achieve hn3 +
1

3!
→ 0, which contradicts

hn3 + 1/2 → 0. Thus, the possibility that hn2 is finite does not hold. Therefore,
|hn2 | → ∞. Using the same line of argument as before, we also obtain hn1 , h

n
3 are

infinite, which is a contradiction. As a consequence, case 3.2 cannot hold.
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Case 4.3. At least one of pn11/p
n
13 and pn12/p

n
13 → 0 and they are both finite. As

a1 + a2 = −1, it means that at least one of a1, a2 is different from 0. Without loss
of generality, we assume a1 6= 0. It implies that pn12∆θn12/p

n
11∆θn11 → a2/a1 6=

∞ and pn13∆θn13/p
n
11∆θn11 → 1/a1 6= ∞. Since pn11/p

n
13 is finite, pn13/p

n
11 6→ 0.

Additionally, if a2 = 0 then pn13∆θn13/p
n
12∆θn12 → ∞ and pn11∆θn11/p

n
12∆θn12 →

∞, which is a contradiction to pn11|∆θn11| ≤ pn12|∆θn12|. Therefore, a2 6= 0.
If pn12/p

n
11 6→ {0,∞} then by dividing the numerator and denominator ofF ′α(θ0

1, v
0
1)

by pn11(∆θn11)α for all 1 ≤ α ≤ 6 and letting n → ∞, we achieve the scaling sys-
tem of polynomial equations (1) when r = 6, which we have already known that it
does not have any soltution.

If pn12/p
n
11 → ∞ then we can argue in the same way as that of Case 3.2 by

dividing both the numerator and denominator of F ′α(θ0
1, v

0
1) by pn11(∆θn11)α for all

1 ≤ α ≤ 6 to get the contradiction.
If pn12/p

n
11 → 0 then it implies that pn11/p

n
12 → ∞ and pn13/p

n
12 → ∞. Now,

we also have pn13∆θn13/p
n
12∆θn12 → 1/a2 6=∞ and pn11∆θn11/p

n
12∆θn12 → a1/a2 6=

∞. Therefore, we can argue in the same way as that of Case 3.1 by dividing both the
numerator and denominator of F ′α(θ0

1, v
0
1) by pn12(∆θn11)α to get the contradiction.

Therefore, case 3.3 cannot happen.

Case 4.4. Both pn11/p
n
13, p

n
12/p

n
13 6→ {0,∞}. By diving both the numerator and

denominator of F ′α(θ1, v1) by pn13(∆θn13)α for all 1 ≤ α ≤ 6, we achieve the scal-
ing system of polynomial equations (1) when r = 6, which does not admit any
solution.

As a consequence, i∗ 6∈ {1, . . . , k0}. Therefore, i∗ ∈ {k0 + 1, . . . , k0 +m}.
However, since m ≤ 2, with the observation that when k0 + 1 ≤ i ≤ k0 +m, each
support point (θ0

i , v
0
i ) only has at most 2 points converge to, we can use the same

argument as that of case 3 to get the contradiction. Overall, we get the conclusion
of our theorem.

PROOF OF PROPOSITION 2.2. (Continue) We present here the proof for gen-
eral d ≥ 1. This proof is similar to the case d = 1, with extra care for handling
matrix-variate parameters. For any sequence Gn ∈ Ok,c0(Θ × Ω) → G0 in Wr,

we can denote Gn =
k0∑
i=1

si∑
j=1

pnijδ(θnij ,Σ
n
ij) where (pnij , θ

n
ij ,Σ

n
ij) → (p0

i , θ
0
i ,Σ

0
i ) for

all 1 ≤ i ≤ k0 and 1 ≤ j ≤ si ≤ k − k0 + 1. Let N be any positive integer. For
any r ≥ 1 and for each x ∈ R, by means of Taylor expansion up to any N order,
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we obtain

pGn(x)− pG0(x) =

k0∑
i=1

si∑
j=1

pnij(f(x|θnij ,Σn
ij)− f(x|θ0

i ,Σ
0
i ))

+

k0+m∑
i=1

(pni. − p0
i )f(x|θ0

i ,Σ
0
i )

=

k0∑
i=1

si∑
j=1

pnij

N∑
|α|=1

(∆θnij)
α1(∆Σn

ij)
α2
D|α|f(x|θ0

i ,Σ
0
i )

α!

+ A1(x) +R1(x),(33)

where pni. =
si∑
j=1

pnij , A1(x) =
k0∑
i=1

(pni. − p0
i )f(x|θ0

i ,Σ
0
i ), ∆θnij = θnij− θ0

i , ∆Σn
ij =

Σn
ij−Σ0

i for all 1 ≤ i ≤ k0, 1 ≤ j ≤ si, andR1(x) ≤ O
(

k0∑
i=1

si∑
j=1

p
(n)
i,j (|∆θnij |N+δ+

|∆Σn
ij |N+δ

)
. Additionally, α = (α1, α2), where α1 = (α1

1, . . . , α
1
d) ∈ Nd, α2 =

(α2
uv)uv ∈ Nd×d, |α| =

d∑
i=1

α1
i +

∑
1≤u,v≤d

α2
uv, and α! =

d∏
i=1

α1
i !

∏
1≤u,v≤d

α2
uv!.

Moreover, (∆θnij)
α1 =

d∏
l=1

(∆θnij)
α1
l
l and (∆Σn

ij)
α2 =

∏
1≤u,v≤d

(∆Σn
ij)

α2
uv
uv where

(.)l denotes the l-th component and (.)uv denotes the element in u-th row and v-th

column. Finally,D|α|f(x|θ0
i ,Σ

0
i ) =

∂|α|f

∂θα1∂Σα2
=

∂|α|f
d∏
l=1

∂θ
α1
l

l

∏
1≤u,v≤d

∂Σ
α2
uv
uv

(x|θ0
i ,Σ

0
i ).

Since we have the identity
∂2f

∂θ2
(x|θ,Σ) = 2

∂f

∂Σ
(x|θ,Σ) for all θ ∈ Rd and

Σ ∈ S++
d , for any α = (α1, α2), we can check that

∂|α|f

∂θα1∂Σα2
=

1

2|α2|
∂|β|f

θβ
,(34)

where βl = α1
l +

d∑
j=1

α2
lj +

d∑
j=1

α2
jl for all 1 ≤ l ≤ d, which means |β| = |α1| +

2|α2|. This equality means that we can convert all the derivatives involving Σ to
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the derivatives only respect to θ. Therefore, we can rewrite (33) as follows:

pGn(x)− pG0(x) =

k0∑
i=1

si∑
j=1

pnij
∑
|β|≥1

(∆θnij)
α1(∆Σn

ij)
α2

2|α2|α1!α2!

∂|β|f

θβ
(x|θ0

i ,Σ
0
i )

+ A1(x) +R1(x)

:= A1(x) +B1(x) +R1(x),(35)

where β is defined as in equation 34.
Now, we proceed to proving part (a) of the proposition. From the hypothe-

sis for r, we have non-trivial solutions (x∗i , a
∗
i , b
∗
i )
k−k0+1
i=1 for equation (1) when

r = r−1. We choose the sequence of probability measuresGn =
k∑
i=1

pni δ(θni ,Σ
n
i ) as

(θni )1 = (θ0
1)1 + a∗i /n, (θ

n
i )j = (θ0

1)j for 2 ≤ j ≤ d, (Σn
i )11 = (Σ0

1)11 + 2b∗i /n
2,

(Σn
i )uv = (Σ0

1)uv for (u, v) 6= (1, 1), pni = p0
1(x∗i )

2/
k−k0+1∑
j=1

(x∗j )
2 when 1 ≤

i ≤ k − k0 + 1, and θni = θ0
i−k+k0

, Σn
i = Σ0

i−k+k0
, pni = p0

i−k+k0
when

k − k0 + 2 ≤ i ≤ k. As n is sufficiently large, we still guarantee that Σn
i are pos-

itive definite matrices as 1 ≤ i ≤ k − k0 + 1. We can check that W r
1 (Gn, G0) =(

k−k0+1∑
i=1

pn1i

( |a∗i |
n

+
|b∗i |
n2

))r
> 0 for all r ≥ 1. Additionally, under this con-

struction, s1 = k−k0 +1, si = 1 for all 2 ≤ i ≤ k0, (∆θn1j)l = (∆Σn
1j)uv = 0 for

all 1 ≤ j ≤ s1, 2 ≤ l ≤ d and (u, v) 6= (1, 1), ∆θnij = 0 ∈ Rd, ∆Σn
ij = 0 ∈ Rd×d

for all k − k0 + 2 ≤ i ≤ k and 1 ≤ j ≤ si. Now, by choosing N = r in 11, we
obtain A1(x) = 0 and sup

x∈Rd

|R1(x)|/W r
r (Gn, G0)→ 0. Moreover, we can rewrite

B1(x) in (35) as follows

B1(x) =

k−k0+1∑
i=1

pn1i

r−1∑
γ=1

∑
α1
1,α

2
11

(∆θn1i)
α1
1(∆Σn

1i)
α2
11

2α
2
11α1!α2

11!

∂γf

∂θγ1
(x|θ0

1,Σ
0
1)

+

k−k0+1∑
i=1

pn1i
∑
γ≥r

∑
α1
1,α

2
11

(∆θn1i)
α1
1(∆Σn

1i)
α2
11

2α
2
11α1

1!α2
11!

∂αf

∂θγ1
(x|θ0

1,Σ
0
1)

:=

r−1∑
γ=1

Bγ,n
∂γf

∂θ1
γ (x|θ0

1,Σ
0
1) +

∑
γ≥r

Cγ,n
∂γf

∂θ1
γ (x|θ0

1,Σ
0
1).

where γ = α1
1 + 2α2

11. From the formation of Gn, for each 1 ≤ γ ≤ r − 1,

Bγ,n =
1

Cnγ

k−k0+1∑
i=1

(x∗i )
2

∑
α1
1+2α2

11=α

(a∗i )
α1
1(b∗i )

α2
11

α1
1!α2

11!
= 0,
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where C =
k−k0+1∑
i=1

(x∗i )
2. As a consequence, Bγ,n/W r

r (Gn, G0) = 0 for all 1 ≤
γ ≤ r − 1. Similarly, for each γ ≥ r,

Cγ,n/W
r
r (Gn, G0) = An2r−γ/

(
k−k0+1∑
i=1

p0
1i(n|a∗i |+ |b∗i |)

)r
→ 0,

where A =
∑

α1
1+2α2

11=γ

α1
1+α2

11≤r−1

(a∗i )
α1
1(b∗i )

α2
11

α1
1!α2

11!
and the last result is due to r < r. From

now, it is straightforward to extend this argument to address the Hellinger distance
of mixture densities in the same way as the proof for the case d = 1.

We now turn to part (b). It suffices to show that (12) holds. Assume by contrary

that it does not hold. Now, we can find a sequence Gn =
k0∑
i=1

si∑
j=1

pnijδ(θnij ,Σ
n
ij) ∈

Ok,c0(Θ × Ω) → G0 in Wr as n → ∞ and Gn have exactly k∗ support points
where k0 ≤ k∗ ≤ k. Additionally, (pnij , θ

n
ij ,Σ

n
ij)→ (p0

i , θ
0
i ,Σ

0
i ) for all 1 ≤ i ≤ k0

and 1 ≤ j ≤ si ≤ k − k0 + 1. Denote

d(Gn, G0) =

k0∑
i=1

si∑
j=1

pnij(|∆θnij |r + |∆Σn
ij |r) +

k0∑
i=1

|pni. − p0
i |,

As we point out in the proof of the proposition of the case d = 1, the assump-
tion (pGn(x) − pG0(x))/W r

r (Gn, G0) → 0 for all x ∈ R leads to (pGn(x) −
pG0(x))/d(Gn, G0)→ 0 for all x ∈ R. Now, by combining this fact with (11) and
choosing N = r, we obtain

(A1(x) +B1(x) +R1(x))/d(Gn, G0)→ 0.(36)

Now,A1(x)/d(Gn, G0),B1/d(Gn, G0) are just the linear combination of elements

of
∂|β|f

∂θβ
(x|θ,Σ) where β is defined in equation (34), i.e βl = α1

l +
d∑
j=1

α2
lj+

d∑
j=1

α2
jl

for all 1 ≤ l ≤ d, |β| = |α1|+2|α2|, and |α1|+ |α2| ≤ r. Therefore, it implies that
0 ≤ |β| ≤ 2r, which is the range of all possible values of |β|. Denote Eβ(θ,Σ) to

be the corresponding coefficient of
∂|β|f

∂θβ
(x|θ,Σ). Assume that Eβ(θ0

i ,Σ
0
i ) → 0

for all 1 ≤ i ≤ k0 and 0 ≤ |β| ≤ 2r as n → ∞. Using the result from (11), the
specific formula for Eβ(θ0

i ,Σ
0
i ) as |β| ≥ 1 is

Eβ(θ0
i ,Σ

0
i ) =

 si∑
j=1

pnij
∑
α1,α2

(∆θnij)
α1(∆Σn

ij)
α2

2|α2|α1!α2!

 /d(Gn, G0).
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where α1, α2 satisfies α1
l +

d∑
j=1

α2
lj +

d∑
j=1

α2
jl = βl for all 1 ≤ l ≤ d.

By taking the summation of all |E0(θ0
i ,Σ

0
i )|, i.e β = 0, we get

k0∑
i=1

|pni. − p0
i |/d(Gn, G0)→ 0 as n→∞.

As a consequence, we get
k0∑
i=1

si∑
j=1

pnij(||∆θnij ||r + ||∆Σn
ij ||r)/d(Gn, G0)→ 1 as n→∞.

As ||.|| and ||.||r are equivalent, the above result also implies that
k0∑
i=1

si∑
j=1

pnij(||∆θnij ||rr + ||∆Σn
ij ||rr)/d(Gn, G0) 6→ 0 as n→∞.

Therefore, we can find an index 1 ≤ i∗ ≤ d such that
si∗∑
j=1

pni∗j(||∆θni∗j ||rr + ||∆Σn
i∗j ||rr)/d(Gn, G0) 6→ 0.(37)

Without loss of generality, we assume i∗ = 1. There are two cases regarding the
above result:

Case 1. There exists 1 ≤ u∗ ≤ d and such that

Un =

s1∑
j=1

pn1j(|(∆θ1j)u∗ |r + |(∆Σn
1j)u∗u∗ |r)/d(Gn, G0) 6→ 0.

Without loss of generality, we assume u∗ = 1. With this result, for any |β| ≥ 1, we
obtain

Fβ(θ0
1,Σ

0
1) =

Eβ(θ0
1,Σ

0
1)

Un
=

si∑
j=1

pn1j
∑
α1,α2

(∆θn1j)
α1(∆Σn

1j)
α2

2|α2|α1!α2!
s1∑
j=1

p1j(|(∆θ1j)1|r + |(∆Σn
1j)11|r)

→ 0.

Now, we choose α1
l = 0 for all 2 ≤ l ≤ d and α2

uv = 0 for all (u, v) 6= (1, 1), then
|β| = α1

1 + 2α2
11. Therefore,

H|β|(θ
0
1,Σ

0
1) =

si∑
j=1

pn1j
∑

α1
1,α

2
11

(∆θn1j)
α1
1

1 (∆Σn
1j)

α2
11

11

2α
2
11α1

1!α2
11!

s1∑
j=1

p1j(|(∆θ1j)1|r + |(∆Σn
1j)11|r)

→ 0,(38)
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where α1
1 + 2α2

11 = |β| and 1 ≤ |β| ≤ 2r.

Denote two important notations of maximum pn = max
1≤j≤s1

{
pn1j

}
and Mn =

max
{
|(∆θn11)1|, . . . , |(∆θn1s1)1)|, |(∆Σn

11)11|1/2, . . . , |(∆Σn
1s1

)11|1/2
}

. Since 0 <
pn1j/pn ≤ 1 for all 1 ≤ j ≤ s1, we define lim

n→∞
pn1j/pn = c2

j for all 1 ≤ j ≤ si∗ .

Similarly, define lim
n→∞

(∆θn1j)1/Mn = aj and lim
n→∞

(∆Σn
1j)11/M

2
n = 2bj for all

1 ≤ j ≤ s1.Since pn1j ≥ c0 for all 1 ≤ j ≤ s1, all of x2
j differ from 0 and at

least one of them equals to 1. Likewise, at least one element of (aj , bj)
s1
j=1 equal

to -1 or 1. Now, for 1 ≤ |β| ≤ r, divide both the numerator and denominator of
H|β|(θ

0
1,Σ

0
1) by M |β|n and let n → ∞, we obtain the following system of polyno-

mial equations

s1∑
j=1

∑
α1
1+2α2

11=|β|

c2
ja
α1
1
j b

α2
11
j

α1
1!α2

11!
= 0 for all 1 ≤ |β| ≤ r.

As 2 ≤ s1 ≤ k − k0 + 1, the hardest scenario is when s1 = k − k0 + 1. However,
from the hypothesis, as s1 = k−k0 +1, the above system of polynomial equations
does not have non-trivial solution, which is a contradiction.

Case 2:. There exists 1 ≤ u∗ 6= v∗ ≤ d such that

Vn =

s1∑
j=1

pn1j |(∆Σn
1j)u∗v∗ |r/d(Gn, G0) 6→ 0.

Without loss of generality, we assume u∗ = 1, v∗ = 2. With this result, for any
|β| ≥ 1, we obtain

F ′β(θ0
1,Σ

0
1) =

Eβ(θ0
i ,Σ

0
i )

Vn
=

si∑
j=1

pn1j
∑
α1,α2

(∆θn1j)
α1(∆Σn

1j)
α2

2|α2|α1!α2!
s1∑
j=1

pn1j |(∆Σn
1j)12|r

→ 0.

By choosing α1 = 0 ∈ Nd, α2
uv = 0 for all (u, v) 6∈ {(1, 2), (2, 1)}, then |β| =

α2
12 + α2

21. Therefore,

H ′|β|(θ
0
1,Σ

0
1) =

s1∑
j=1

pn1j
∑

α2
12,α

2
21

(∆Σn
1j)

α2
12+α2

21
12

2|β|α2
12!α2

21!

s1∑
j=1

pn1j |(∆Σn
1j)12|r

→ 0.
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Denote p′n = max
1≤j≤s1

{
pn1j

}
,M ′n = max

1≤j≤s1

{
|(∆Σn

1j)12|
}

. Then, we have pn1j/p
′
n →

(c
′
j)

2 > 0 and (∆Σn
1j)12/M

′
n = dj for all 1 ≤ j ≤ s1. Again, we have at least

one of dj differs from 0. Now, by dividing both the numerator and denominator

of H ′2(θ0
1,Σ

0
1) by (M

′
n)2 and letting n → ∞, we obtain

s1∑
j=1

(c′j)
2d2
j = 0. This

equation implies dj = 0 for all 1 ≤ j ≤ d, which is a contradiction.
Therefore, at least one of the coefficients Eβ(θ0

i ,Σ
0
i ) does not converge to 0 as

n→∞. Now, we denotemn to the maximum of the absolute values ofEβ(θ0
i ,Σ

0
i )

where β is defined as in equation (34), 1 ≤ i ≤ k0 and let dn = 1/mn. Asmn 6→ 0
as n → ∞, dn is uniformly bounded above for all n. As dn|Eβ(θ0

i , σ
0
i )| ≤ 1, we

denote dnEβ(θ0
i ,Σ

0
i ) → τiβ where at least one of τiβ differs from 0. Combining

these notations with (36) we get that for all x ∈ Rd,

pGn(x)− pG0(x)

d(Gn, G0)
→

k0∑
i=1

∑
β

τiβ
∂|β|f

∂θβ
(x|θ0

i ,Σ
0
i ) = 0.

Using the technique we have in the proof of part (a) of Theorem 3.4 in [16], it is
sufficient to demonstrate the above equation as d = 1. However, from the result
when d = 1, we have already known that τiβ = 0 for all 1 ≤ i ≤ k0, 0 ≤
|β| ≤ 2r, which is a contradiction. Therefore, the assertion of our theorem follows
immediately.
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