
On Structured Filtering-Clustering: Global Error
Bound and Optimal First-Order Algorithms

Nhat Ho?,� Tianyi Lin?,‡ Michael I. Jordan�,†

Department of Electrical Engineering and Computer Sciences�

Department of Industrial Engineering and Operations Research‡

Department of Statistics†

University of California, Berkeley

August 4, 2019

Abstract

In recent years, the filtering-clustering problems have been a central topic in statistics
and machine learning, especially the `1-trend filtering and `2-convex clustering problems.
In practice, such structured problems are typically solved by first-order algorithms despite
the extremely ill-conditioned structures of difference operator matrices. Inspired by the
desire to analyze the convergence rates of these algorithms, we show that for a large class
of filtering-clustering problems, a global error bound condition is satisfied for the dual
filtering-clustering problems when a certain regularization is chosen. Based on this result,
we show that many first-order algorithms attain the optimal rate of convergence in different
settings. In particular, we establish a generalized dual gradient ascent (GDGA) algorithmic
framework with several subroutines. In deterministic setting when the subroutine is
accelerated gradient descent (AGD), the resulting algorithm attains the linear convergence.
This linear convergence also holds for the finite-sum setting in which the subroutine is
the Katyusha algorithm. We also demonstrate that the GDGA with stochastic gradient
descent (SGD) subroutine attains the optimal rate of convergence up to the logarithmic
factor, shedding the light to the possibility of solving the filtering-clustering problems
efficiently in online setting. Experiments conducted on `1-trend filtering problems illustrate
the favorable performance of our algorithms over other competing algorithms.

1 Introduction

Trend filtering and convex clustering are instances of the general filtering-clustering problem, a
class of problems that has been widely studied in machine learning and statistics. Examples
of trend-filtering applications include nonparametric regression [14, 33, 17, 21, 11], adaptive
estimators in graphs [39, 22], and time series analysis [16]. Convex clustering has been proposed
as an alternative to traditional clustering methods such as K-means clustering and hierarchical
clustering that has appealing robustness and stability properties [12, 44, 31, 40, 26].

There has been much recent work on theoretical and algorithmic aspects of trend filtering
and convex clustering. Statistically, solutions to these problem formulations have been shown
to possess desirable optimality properties [33, 44, 31, 39, 40, 26, 22, 11]. As for the algorithmic
problem of finding optimal solutions, a variety of algorithms have been investigated—for
trend filtering these include primal-dual interior-point algorithms (PDIP) [14], the alternating
direction method of multipliers (ADMM) [28] and Newton’s algorithm [39] and for convex
clustering they include ADMM, an alternating minimization algorithm (AMA) [6], projected

? Nhat Ho and Tianyi Lin contributed equally to this work.

1

dual gradient ascent [38], and semismooth Newton’s algorithms [41]. There remains a gap,
however, in the theoretical understanding of these algorithms as applied to trend filtering and
convex clustering. Indeed, while these algorithms can be successful in practice, there is currently
a paucity of theoretical complexity analysis to help explain and guide that progress [6, 28, 38].

The general filtering-clustering problem can be formulated abstractly as follows:

min
β∈Rd

Φ(β) := f(β) + λ
n∑
j=1

‖Djβ‖p , (1)

where f : Rd → R is a strongly convex loss function with Lipschitz-continuous gradient,
Dj ∈ Rm×d are discrete difference operator matrices for 1 ≤ j ≤ n, λ > 0 is a regularization
parameter and p is a regularization index. In specific applications of the filtering-clustering
problem in (1), including `1-trend filtering and `2-convex clustering, the loss function f is
chosen to be ‖ · ‖2 while the matrices Dj are often extremely poorly conditioned. The ill-
conditioning poses several challenges for developing stable and efficient first-order optimization
algorithms to find optimal solutions of filtering-clustering problems.

Linear convergence of first-order optimization algorithms is commonly established under
some additional assumptions on problem structure; e.g., strong convexity [20]. In the opti-
mization literature, the local error bound condition is well known as a relaxation of the strong
convexity assumption, providing a guarantee for the asymptotic linear convergence of feasible
descent algorithms [18, 19, 35] and the conditional gradient method [3]. Notably, Zhou et
al. [43] developed a broadly useful approach to the local error bound condition using the upper
Lipschitz continuity of the underlying set-valued mappings. On the other hand, results also
exist for global error bounds. For example, Theorem 3.1 in Pang [24] provided a detailed
analysis but one that still requires the strong convexity of the objective. Wang and Lin [37]
partially relaxed the strong convexity and derived a clean form of a global error bound for a
class of structured non-strongly convex problems. Recently, Drusvyatskiy and Lewis [7] have
presented a systematic study of the error bound condition and its relationship with quadratic
growth and application to the convergence analysis of proximal gradient methods. To the best
of our knowledge, no global error bound analysis has been obtained for the filtering-clustering
formulation in (1).

Another line of related work focuses on first-order primal-dual optimization methods for
convex-concave saddle-point problems (see, for instance, [4, 23, 36, 42, 8] and the references
therein). Working in a continuous-time setting, Cherukuri et al. [5] obtained a convergence
result under mild conditions but without any results for the rate. For the discrete-time
dynamics, some recent work has assumed either a strongly convex-concave structure [4, 23]
or full column rank of the coupling matrix [8], together with efficient proximal mappings for
non-smooth terms. Unfortunately, however, these assumptions are not satisfied by general
filtering-clustering problems. Another interesting approach has constructed a potential function
which decreases at a linear rate [36, 42]; however, this function relies heavily on the proximal
mapping and can not be used for analyzing filtering-clustering problems.

Our contributions. The contributions of the paper are three-fold.

1. We analyze the structure of general filtering-clustering problems and prove that a global
error bound condition is satisfied for its dual formulation when p = 1 or p ∈ [2,+∞]. It is
worth noting that the result is nontrivial; in particular, it is not amenable to the standard
techniques developed in [37] which require the nonsmooth term in the dual objective
to have a polyhedral epigraph, which corresponds to p = 1 and p = +∞. Additionally,

2

since the filtering-clustering problem in (1) can not be formulated as an `1,p-regularized
problem for some p ≥ 1, the proof techniques in [43] is not directly applicable.

2. We propose a class of deterministic first-order algorithms for solving filtering-clustering
problems with a linear rate of convergence, which is known to be optimal in terms of ε for
the deterministic settings [20]. There are two fundamental reasons for the non-triviality
of the result: (i) The dual objective function of filtering-clustering problems is not
strongly convex since matrices D>j are not full column rank; (ii) the gradient of the
dual objective function is not accessible in general, so vanilla projected gradient descent
is not applicable. Facing these challenges, we propose a class of efficient first-order
deterministic algorithms for filtering-clustering problems with provably optimal linear
convergence.

3. In addition to deterministic first-order algorithms, we also propose and analyze a class
of stochastic first-order gradient-type optimization algorithms for filtering-clustering
problems. For the finite-sum versions of these problems, stochastic first-order algorithms
based on variance reduction attain the optimal linear convergence rate [1]. Moving to
the online setting, a similar analysis is applied to show that our stochastic first-order
algorithms achieve the optimal rate up to a logarithmic factor [27].

Paper Organization. The remainder of the paper is organized as follows. In Section 2,
we present definitions and the main assumptions made throughout this paper. Besides that,
specific examples of filtering-clustering problems and several different forms of problem (1) are
presented to provide insight into the scope of the problem. In Section 3, we derive a global
error bound for the dual form when p = 1 or p ∈ [2,+∞]. In Section 4, we develop a unified
algorithmic framework of generalized dual gradient descent for solving problem (1) with a
rigorous theoretical guarantee. Some specializations of the general algorithmic framework to
different settings are also analyzed where we provide complexity bounds for these problems.
We present some numerical results on the `1-trend filtering problem in Section 6. A few
detailed proofs are presented in Section 7. We conclude in Section 8.

Notation. Throughout the paper, we let σmax(A) denote the largest eigenvalue of matrix
A ∈ Rm×m. Additionally, ‖x‖p, where p ∈ [1,+∞], denotes `p-norm of x and ‖x‖ denotes the
standard Euclidean norm. For all q ≥ 1, Bq = {α ∈ Rm | ‖α‖q ≤ 1} refers to a `q-norm unit
ball in Rm and Dq = maxx,y∈Bq ‖x− y‖ refers to a diameter of `q-norm unit ball in `2-norm.
We also denote Bnq as the product of n unit balls in `q-norm. For a convex function f , ∂f
refers to the subdifferential of f . If f is differentiable, ∂f = {∇f} where ∇f is the gradient
vector of f . For any closed set S, we let d(x,S) denote the distance between x and S. If S is
convex, we let NS(x) denote the normal cone to S at x. Given a scalar tolerance ε ∈ (0, 1), the
notation n = O (m(ε)) stands for the upper bound n ≤ Cm(ε) in which C > 0 is independent
of ε.

2 Background

In this section, we first flesh out the basic filtering-clustering problem in (1). Then, specific
examples of filtering-clustering problems are presented in Section 2.2. Finally, we proceed to
discuss various forms of the general filtering-clustering problem in Section 2.3 and discuss how
first-order optimization methods can be applied to their solution.

3

2.1 Filtering-clustering problems

Our goal is to find an optimal solution to problem (1):

Definition 1. β∗ is an optimal solution to problem (1) if ∀β ∈ Rd, Φ(β∗) ≤ Φ(β).

Since convergence of algorithms to an optimal solution will depend on the gradient in a
neighborhood of a global optimal solution, it is necessary to impose smoothness conditions on
the gradient. Furthermore, since f refers to a loss function for the filtering-clustering problem,
it is reasonable to impose the strong convexity on f . For stochastic first-order algorithms, we
impose unbiased and bounded variance conditions on the stochastic gradient oracle.

Definition 2. f is `-gradient Lipschitz if ∀β, β′ ∈ Rd, ‖∇f(β)−∇f(β′)‖ ≤ ` ‖β − β′‖.

Definition 3. f is µ-strongly convex if ∀β, β′ ∈ Rd, ‖∇f(β)−∇f(β′)‖ ≥ µ ‖β − β′‖.

Definition 4. G(·, ξ) is unbiased if ∀β ∈ Rd, E [G(β, ξ)] = ∇f(β).

Definition 5. G(·, ξ) is bounded if ∀β ∈ Rd, E[‖G(β, ξ)‖2] ≤ C2 for a universal C > 0.

Throughout this paper, we make the following main assumption.

Assumption 2.1. f : Rd → R is `-gradient Lipschitz and µ-strongly convex. The stochastic
gradient oracle G(·, ξ) is unbiased and bounded if available. The optimal set is nonempty.

Since the objective is strongly convex, the filtering-clustering problem in (1) has a unique
optimal solution β∗. For a finite-time algorithm, we cannot expect to find an exact optimal
solution in general and we therefore aim for an ε-optimal solution.

Definition 6. β ∈ Rd is a ε-optimal solution to problem (1) if ‖β − β∗‖2 ≤ ε.

Given these definitions, our goal in the paper is to develop efficient first-order optimization
algorithms that find a ε-optimal solution to problem (1) under the Lipschitz assumptions of f .

2.2 Specific instances of filtering-clustering problems

In this section, we provide some examples of filtering-clustering problems in real applications
and comment on the existing algorithms developed for solving them.

2.2.1 Univariate `1-trend filtering

Trend filtering [14, 33] has been proposed as a new approach to nonparametric regression. In
particular, for 1 ≤ i ≤ n̄, yi = f0(xi) + wi, where (xi, yi) are an input/response pair and the
random variables w1, . . . , wn̄ are independent and identically distributed.

Given an integer k ≥ 0, the k-th order `1-trend filtering is implemented by solving the
following `1-regularized least-squares problem:

min
β∈Rn̄

{
1

2
‖y − β‖2 + λ‖D(k+1)β‖1

}
, (2)

where λ ≥ 0 is a regularization parameter and D(k+1) ∈ R(n̄−k−1)×n̄ is a discrete difference
operator of order k + 1. Some typical examples are presented as follows,

D(1) =

−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . −1 1

 , D(2) =

1 −2 1 0 . . . 0 0
0 −1 2 1 . . . 0 0
...

...
...

... . . .
...

0 0 0 0 . . . −2 1

 .

4

In general, the nonzero elements in each row of the matrix D(k+1) are the (k + 1)-th row
of Pascal’s triangle with alternating signs. When k = 0, the `1-trend filtering problem (2)
can be interpreted as a special instance of one-dimensional total variation denoising [30]
or fused lasso problem [32]. As for the algorithmic problem of finding optimal solutions,
two representative algorithms for `1-trend filtering problems (2) are specialized PDIP [14]
and specialized ADMM [28]. Despite their superior practical performance, these specialized
algorithms lack theoretical guarantees. To the best of our knowledge, no linearly convergent
first-order algorithm has been proposed for `1-trend filtering problems in (2).

2.2.2 Graph `1-trend filtering

Graph trend filtering [39] is an interesting extension of the trend filtering problem to graphs.
Let G = (V,E) denote a graph consisting of a set of nodes V = {1, 2, . . . , n̄} and undirected
edges E = (e1, . . . , em̄). Given an integer k ≥ 0 and observations associated with the nodes,
y = (y1, . . . , yn̄) ∈ Rn̄, the k-th order graph `1-trend filtering is implemented by solving the
following `1-regularized least squares problem:

min
β∈Rn̄

{
1

2
‖y − β‖2 + λ‖∆(k+1)β‖1

}
, (3)

where λ ≥ 0 is a regularization parameter and ∆(k+1) is graph-difference operator of order
k + 1. The explicit form of ∆(1) ∈ Rm̄×n̄ is given by:

∆
(1)
l =

0, . . . , −1︸︷︷︸
i

, . . . , 1︸︷︷︸
j

, . . . , 0

 , if el = (i, j), 1 ≤ l ≤ m.

In other words, ∆
(1)
l denotes the l-th row of matrix ∆(1). Based on this, the structure of

∆(k+1) can be represented as

∆(k+1) =

{
(∆(1))>∆(k) if k is odd,

∆(1)∆(k) if k is even.

When k = 0, the graph `1-trend filtering problem is a special fused-lasso problem over the
graph [34]. State-of-the-art algorithms for graph `1-trend filtering problem include ADMM
and a Newton algorithm [39]. However, the theory for these algorithms is limited, and in
particular there is no analysis of a first-order algorithm that establishes linear convergence.

2.2.3 `2-Convex clustering

Convex clustering has been proposed as an alternative to traditional clustering models and
leads to a convex optimization problem [12]. In particular, given a number of observations
{xi}n̄i=1 ⊆ Rn̄, the `2-convex clustering is achieved by solving the following `2-regularized least
square problem:

min
{βi}n̄i=1⊆Rn̄

1

2

n̄∑
i=1

‖xi − βi‖2 + λ
∑

1≤i<j≤n̄
wij‖βi − βj‖2

 , (4)

where λ ≥ 0 is a regularization parameter and wij ≥ 0 are weight parameters. Standard
optimization algorithms that have been used heuristically for this problem include ADMM and

5

alternating minimization algorithm (AMA) [6]. but neither ADMM nor AMA is rigorously
justified in this setting. Recently Yuan et al. [41] have proposed a semismooth Newton algorithm
for solving convex clustering problem (4). This algorithm enjoys a solid theoretical guarantee
and shows favorable performance on several real datasets. However, the semismooth Newton
algorithm is quite complex to implement, requiring the tuning of several hyperparameters that
have a strong effect on performance.

2.3 Filtering-clustering problems in different forms

In this section, we discuss alternative forms of the filtering-clustering problem, beginning with
a convex-concave saddle-point formulation. Letting q = p

p−1 , problem (1) can be rewritten as

min
β∈Rd

max
α∈Bn

q

{
f(β)− λα>Dβ

}
, α :=

α1
...
αn

 , D :=

D1
...
Dn

 , (5)

where Bnq denotes the product of n unit balls in `q-norm in Rm. Note that (5) is different from
the formulations in [15, 42]. Indeed, these formulations are built on the conjugate of f [29] and

given by minβ∈Rd maxα∈Rd

{
α>β − f∗(α) + λ

∑n
j=1 ‖Djβ‖p

}
. While the algorithms [15, 42]

appear suitable for this form of structured loss function f , in fact they are not applicable in
general because the proximal mapping of ‖Djβ‖p is difficult to compute [25]. Furthermore, (5)
also differs from the formulation in [28], given by

min
β∈Rd,αj∈Rm

f(β) + λ
n∑
j=1

‖αj‖p

 , s.t. αj = Djβ, ∀j.

Based on the convex-concave saddle point formulation of filtering-clustering problems in (5),
the dual form can be obtained as follows:

min
α∈Bn

q

f̄(α) := f∗
(
λD>α

)
, (6)

where f∗ : Rmn → R is the convex conjugate of f . More precisely, problem (6) is derived by,

min
β∈Rd

max
α∈Bn

q

{
f(β)− λα>Dβ

}
⇐⇒ max

α∈Bn
q

min
β∈Rd

{
f(β)− λα>Dβ

}
⇐⇒ max

α∈Bn
q

−f∗(λα>D)

⇐⇒ min
α∈Bn

q

f∗(λα>D).

Compared to the filtering-clustering problem in the primal form (1), the filtering-clustering
problem in the dual form (6) admits a very special structure. Indeed, f∗ is a smooth and
strongly convex function and Bq is a simple and bounded convex set with efficient projection
for q = 1, 2,+∞. In the sequel, we demonstrate that a global error bound condition is satisfied
for problem (6), allowing for the development of a class of optimal first-order gradient-type
optimization algorithms in general settings.

3 Global Error Bound Condition

In this section, we define and prove a global error bound (GEB) condition for the filtering-
clustering problem in dual form (6). In particular, we first analyze the structure of problem (6),

6

including the objective function and the optimal set. Then, we introduce a upper Lipschitz
continuity (ULC) property of a set-valued mapping and borrow some techniques from [43]
to provide a sufficient condition for the GEB condition. Finally, we prove that the GEB
condition is satisfied by dual problem (6) with q ∈ [1, 2] ∪ {+∞}, which corresponds to the
filtering-clustering problem (1) with p = {1} ∪ [2,+∞].

3.1 Problem structure

In this section we develop some structural properties of the objective function in problem (6).
We begin by recalling some basic facts on conjugate functions f∗, defined as the minimizer
β∗(α) = argminβ∈Rd

{
f(β)− λα>Dβ

}
and the dual objective function f̄ .

Lemma 3.1. f∗ is 1
µ -gradient Lipschitz and 1

` -strongly convex.

Proof. We first show that α ∈ ∂f(β) ⇔ β ∈ ∂f∗(α). Indeed, if α ∈ ∂f(β), then f∗(α) =
α>β − f(β). This implies that for all α′ ∈ Rm, we have

f∗(α′)− f∗(α) ≥ (α′)>β − f(β)−
(
α>β − f(β)

)
=
(
α′ − α

)>
β.

Hence, we achieve that β ∈ ∂f∗(α). This also implies that β ∈ ∂f∗(α) ⇒ α ∈ ∂f∗∗(β).
Since f is proper and convex, f = f∗∗ [29, Theorem 12.2] and β ∈ ∂f∗(α) ⇒ α ∈ ∂f(β).
Based on this result, we prove that f∗ is 1/µ-gradient Lipschitz. Indeed, since f is µ-strongly
convex and differentiable, then ∂f(β) = {∇f(β)} and ∇f is one-to-one. This implies that
∂f∗(α) = {∇f∗(α)} and

‖∇f∗(α1)−∇f∗(α2)‖ = ‖β1 − β2‖ ≤
‖∇f(β1)−∇f(β2)‖

µ
=
‖α1 − α2‖

µ
.

Similar arguments yield that f∗ is 1/`-strongly convex. As a consequence, we reach the
conclusion of the lemma. �

The second lemma presents some properties of β∗(α) = argminβ∈Rd {f(β)− λα>Dβ}.

Lemma 3.2. β∗(α) is well-defined and the following statement holds true,

‖β∗(α1)− β∗(α2)‖ ≤ λ‖D>α1 −D>α2‖
µ

, ∀ α1, α2 ∈ Bnq . (7)

Furthermore, β∗(α) is λ
√
σ

µ -Lipschitz over Bnq .

Proof. Since f is µ-strongly convex, β∗(α) is uniquely determined given α ∈ Bnq and hence

well-defined. By the optimality condition, ∇f(β∗(α)) = λD>α. Putting these pieces together
yields that, for all α1, α2 ∈ Bnq ,

‖β∗(α1)− β∗(α2)‖ ≤ ‖∇f(β∗(α1))−∇f(β∗(α2))‖
µ

≤
λ
∥∥D>α1 −D>α2

∥∥
µ

.

Furthermore, since ‖D>α1 −D>α2‖ ≤
√
σ‖α1 − α2‖, we have

‖β∗(α1)− β∗(α2)‖ ≤ λ
√
σ‖α1 − α2‖

µ
, ∀ α1, α2 ∈ Bnq .

This completes the proof of the lemma. �

The third lemma shows that f̄ is differentiable and gradient Lipschitz.

7

Lemma 3.3. f̄ is differentiable with ∇f̄(α) = λDβ∗(α) and σλ2

µ -gradient Lipschitz.

Proof. By the definition, f̄(α) = f∗(λD>α). This implies that f̄ is differentiable and
∇f̄(α) = λD∇f∗(λD>α). Since ∇f(β∗(α)) = λD>α, then α ∈ ∂f(β)⇔ β ∈ ∂f∗(α) implies
that β∗(α) = ∇f∗(λD>α). Putting these pieces together yields that ∇f̄(α) = λDβ∗(α). For
all α1, α2 ∈ Bq, it holds true that

∥∥∇f̄(α1)−∇f̄(α2)
∥∥ ≤ ∥∥∥λD (∇f∗(λD>α1)−∇f∗(λD>α2)

)∥∥∥ ≤ σλ2 ‖α1 − α2‖
µ

.

Therefore, we achieve the conclusion of the lemma. �

Lemmas 3.1, 3.2 and 3.3 shed light on the special structures of f∗ and f̄ . This inspires
us to ask if the optimal set of problem (6), denoted as Ω∗, has some special structure. The
following proposition gives an affirmative answer by showing that Ω∗ is convex and compact.

Proposition 3.4. There exists a pair of vector (s∗,g∗) ∈ Rd × Rmn with g∗ = λD∇f∗(λs∗)
such that α∗ ∈ Ω∗ if and only if

D>α∗ = s∗, ∇f̄(α∗) = g∗, α∗ ∈ Bnq .

Proof. Firstly, we show that, if α∗ ∈ Ω∗, then D>α∗ = s∗ and α∗ ∈ Bnq . Indeed, since Ω∗ ⊆ Bnq ,

it is obvious that α∗ ∈ Ω∗ implies that α∗ ∈ Bnq . Furthermore, f̄(α) = f∗(λD>α) and f∗

is 1/`-strongly convex (cf. Lemma 3.3). This implies that λD>α∗ remains the same for all
α∗ ∈ Ω∗. Putting these pieces together yields that there is a pair of vector (s∗,g∗) ∈ Rd×Rmn
with g∗ = λD∇f∗(λs∗) such that α∗ ∈ Ω∗ implies that D>α∗ = s∗, ∇f̄(α∗) = g∗ and α∗ ∈ Bnq .

On the other hand, if D>α∗ = s∗, ∇f̄(α∗) = g∗ and α∗ ∈ Bnq , then λD>α∗ remains the
same for all α∗ ∈ Ω∗ and f̄(α∗) = f∗(λs∗) achieves the optimal objective value of problem (6).
Putting these pieces together yields that there is a pair of vector (s∗,g∗) ∈ Rd × Rmn with
g∗ = λD∇f∗(λs∗) such that D>α∗ = s∗, ∇f̄(α∗) = g∗ and α∗ ∈ Bnq implies that α∗ ∈ Ω∗. As
a consequence, the proof of the proposition is achieved. �

3.2 GEB condition and ULC property

In this section, we introduce the ULC property of a set-valued mapping and provide a sufficient
condition for the GEB condition, which forms the basis for our subsequent analysis.

In the convergence analysis of optimization algorithms for solving problem (6), it is essential
to measure the distance between any iterate αt and the optimal set Ω∗, i.e., d(αt,Ω

∗). However,
such a quantity is not easily accessible since Ω∗ is unknown. As an alternative, we define a
function R : Rmn → Rmn, which is called residual function, given by

R(α) := projBn
q

(
α−∇f̄(α)

)
− α. (8)

We can verify that R(α) = 0 if and only if α ∈ Ω∗. Moreover, given any α ∈ Rmn, the function
R(α) is much easier to be evaluated than d(α,Ω∗). This suggests that ‖R(α)‖ can serve as a
surrogate measure for the optimality of α. In this case, the remaining thing is to establish a
relationship between ‖R(α)‖ and d(α,Ω∗).

Definition 7 (GEB Condition). Problem (6) satisfies a global error bound (GEB) condition
if there exists a constant τ > 0 such that d(α,Ω∗) ≤ τ‖R(α)‖ for all α ∈ Bnq .

8

The GEB condition can be interpreted as a relaxed notion of global strong convexity [24].
Indeed, after removing the constraint set Bnq , we see that R(α) = −∇f̄(α) and the GEB
condition is satisfied when f̄ is strongly convex. However, the residual function R can be very
difficult to analyze for problem (6), inspiring us to pursue some other approaches. An useful
alternative approach is based on the notion of ULC property of set-valued mappings, which
has been used in [43] to analyze the local error bound condition for `1,p-norm regularized
problems.

We begin with some definitions. Let Y and Z be two Euclidean spaces. A mapping
Γ : Y → Z is said to be a set-valued mapping, or equivalently, a multifunction if for any y ∈ Y ,
then Γ(y) is a subset of Z. The graph of Γ is a subset defined by {(y, z) ∈ Y × Z | z ∈ Γ(y)}.
In what follows, we can define a notion of continuity as follows:

Definition 8 (ULC Property). A set-valued mapping Γ : Y → Z has the upper Lipschitz
continuity (ULC) property at y ∈ Y if Γ(y) is nonempty and closed, and there exist constants
κ > 0 and δ > 0 such that for any y ∈ Y with ‖y′ − y‖ ≤ δ, Γ(y′) ⊆ Γ(y) + κ‖y′ − y‖B where
B is the unit `2-norm ball of Z and “+” is the Minkowski sum of two sets.

To proceed, we prove a sufficient condition for the GEB condition to hold. In particular,
let Σ be the set-valued mapping defined by

Σ(s,g) :=
{
α ∈ Bnq | D>α = s, −g ∈ NBn

q
(α)
}

(9)

for any (s,g) ∈ Rd × Rmn. The following proposition characterizes the relationship between
the set-valued mapping Σ and the optimal set Ω∗.

Proposition 3.5. Let (s∗,g∗) be given in Proposition 3.4, then Ω∗ = Σ(s∗,g∗).

Proof. Since problem (6) is convex, the first-order optimality condition is both necessary and
sufficient. Hence, we have

Ω∗ =
{
α∗ ∈ Rmn | 0 ∈ ∇f̄(α∗) +NBn

q
(α∗)

}
. (10)

In what follows, we show that α∗ ∈ Ω∗ ⇒ α∗ ∈ Σ(s∗,g∗). By Proposition 3.4, we have
D>α∗ = s∗, ∇f̄(α∗) = g∗ and α∗ ∈ Bnq . Combining this with (10) yields that α ∈ Σ(s∗,g∗).

Conversely, since α∗ ∈ Σ(s∗,g∗), then g∗ = λD∇f∗(λs∗) = λD∇f∗(λD>α∗) = ∇f̄(α∗).
Therefore, we conclude from −g∗ ∈ NBn

q
(α∗) that that 0 ∈ ∇f̄(α∗) +NBn

q
(α∗) and α∗ ∈ Ω∗.

This completes the proof of the proposition. �

Given the result of Proposition 3.5, we present the main result showing that the ULC
property of Σ implies the GEB condition for problem (6) in the following theorem.

Theorem 3.6. Let (s∗,g∗) ∈ Rd×Rmn be given in Proposition 3.4. Then, the GEB condition
is satisfied by problem (6) if the set-valued mapping Σ has the ULC property at (s∗,g∗).

Proof. The proof is based on the techniques in [43] and the property of Bnq . For the sake of
completeness, we provide the details of the proof. In particular, since Σ has the ULC property
at (s∗,g∗), there exist constants κ > 0 and δ > 0 such that for all (s,g) ∈ Rd × Rmn with
‖(s,g)− (s∗,g∗)‖ ≤ δ, we have

Σ(s,g) ⊆ Σ(s∗,g∗) + κ‖(s,g)− (s∗,g∗)‖B2. (11)

9

Recalling the residual function in (8) that R(α) = projBn
q

(
α−∇f̄(α)

)
− α and defining two

functions s+ : Bnq → Rd and g+ : Bnq → Rmn given by

s+(α) := D> (α+R(α)) , g+(α) := ∇f̄(α) +R(α). (12)

Since Bnq is convex and compact, R is Lipschitz continuous [29]. Additionally, ∇f̄ is Lipschitz
continuous. Thus, we conclude that s+ and g+ are both Lipschitz continuous. This together
with Proposition 3.5 implies that there exists a constant ρ > 0 such that,∥∥(s+(α),g+(α)

)
− (s∗,g∗)

∥∥ ≤ δ, ∀α ∈ Bnq ∩ {d(α,Ω∗) ≤ ρ}. (13)

By the definition of the residual function R, we have

α+R(α) = argmin
z∈Bn

q

{〈
∇f̄(α), z

〉
+

1

2
‖z − α‖2

}
.

By the optimality condition, we have

−∇f̄(α)−R(α) ∈ NBn
q

(α+R(α)) . (14)

Combining (12) and (14) yields that α+R(α) ∈ Σ(s+(α),g+(α)) for all α ∈ Bnq . This together
with (11) and (13) yields that

d (α+R(α),Σ(s∗,g∗)) ≤ κ‖(s+(α),g+(α))− (s∗,g∗)‖, ∀α ∈ Bnq ∩ {d(α,Ω∗) ≤ ρ}.

Recalling the fact that ∇f̄(α) = λD∇f∗(λD>α) and g∗ = λD∇f∗(λs∗), we have

‖s+(α)− s∗‖ ≤ ‖D>α− s∗‖+
√
σ‖R(α)‖,

‖g+(α)− g∗‖ ≤
√
σλ2

µ
‖D>α− s∗‖+ ‖R(α)‖.

Furthermore, in view of Proposition 3.5, d(α,Ω∗) ≤ d(α+R(α),Σ(s∗,g∗)) + ‖R(α)‖. Putting
these pieces together yields that, for all α ∈ Bnq ∩ {d(α,Ω∗) ≤ ρ},

d(α,Ω∗) ≤
(
κ+

√
σλ2κ

µ

)
‖D>α− s∗‖+

(√
σκ+ κ+ 1

)
‖R(α)‖.

Letting κ0 = max{κ +
√
σλ2κ
µ ,
√
σκ + κ + 1} and using the inequality (a + b)2 ≤ 2(a2 + b2)

yields that, for all α ∈ Bnq ∩ {d(α,Ω∗) ≤ ρ},

d2(α,Ω∗) ≤ 2κ2
0

(
‖D>α− s∗‖2 + ‖R(α)‖2

)
. (15)

Since f∗ is 1
` -strongly convex, we have

‖D>α− s∗‖2 =
‖λD>α− λs∗‖2

λ2
≤ `

λ2

〈
∇f∗(λD>α)−∇f∗(λs∗), λD>α− λs∗

〉
=

`

λ2

〈
∇f̄(α)− g∗, α− α∗

〉
, (16)

where α∗ is the projection of α onto Ω∗. Furthermore, by the definition of the normal cone,
for all u ∈ NBn

q
(α+R(α)) and for all v ∈ NBn

q
(α∗), we have

〈u− v, α+R(α)− α∗〉 ≥ 0.

10

Taking u = −∇f̄(α)−R(α) and v = −g∗ together with the optimality of α∗ and (14) yields
that 〈

∇f̄(α)− g∗, α− α∗
〉

+ ‖R(α)‖2 ≤
〈
g∗ −∇f̄(α) + α∗ − α,R(α)

〉
.

Since ‖R(α)‖2 ≥ 0 and ∇f̄ is Lipschitz continuous, there exists a constant κ1 > 0 such that〈
∇f̄(α)− g∗, α− α∗

〉
≤ κ1‖α − α∗‖‖R(α)‖. Combining this with (15) and (16) yields that

there exists a constant κ2 > 0 such that

d2(α,Ω∗) ≤ κ2

(
‖α− α∗‖‖R(α)‖+ ‖R(α)‖2

)
, ∀α ∈ Bnq ∩ {d(α,Ω∗) ≤ ρ}.

Upon solving this quadratic inequality yields that there exists a constant κ3 > 0 such that

d(α,Ω∗) ≤ κ3 ‖R(α)‖ , ∀α ∈ Bnq ∩ {d(α,Ω∗) ≤ ρ}.

Furthermore, since Bnq is convex and compact and the function h(α) = d(α,Ω∗)
‖R(α)‖ is finite and

continuous over α ∈ Bnq ∩ {d(α,Ω∗) > ρ}, there exists a constant κ4 > 0 such that

d(α,Ω∗) ≤ κ4 ‖R(α)‖ , ∀α ∈ Bnq ∩ {d(α,Ω∗) > ρ}.

Letting τ = max{κ3, κ4}, we conclude that d(α,Ω∗) ≤ τ ‖R(α)‖ for all α ∈ Bnq and hence the
GEB condition is satisfied by problem (6). As a consequence, we achieve the conclusion of the
theorem. �

Equipped with the result of Theorem 3.6, in Section 3.3, we will establish the GEB condition
for the dual filtering-clustering problem (6) when q ∈ [1, 2] ∪ {+∞}.

3.3 GEB condition holds when q = 1 or q = +∞

In this section, we show that Σ has the ULC property when q = 1 or q = +∞.

Lemma 3.7. Assume that q ∈ {1,+∞}. Then, the set-valued mapping Σ is a polyhedral
multifunction.

Proof. Since q ∈ {1,+∞}, Bnq is a polyhedron. Therefore, the indicator function for Bnq has a
polyhedral epigraph. In addition, by the definition, the normal cone NBn

q
is the subdifferential

of the indicator function for Bnq . Putting these pieces together with [43, Lemma 2] yields that
the set-valued mapping Σ is a polyhedral multifunction. �

Based on the ULC property of Σ, we are ready to prove the existence of global error bound
for problem (6).

Theorem 3.8. The GEB condition is satisfied by problem (6) when q = 1 or q = +∞.

Proof. By the definition, both B1 and B∞ are polyhedra. Thus, it follows from Lemma 3.7
that the set-valued mapping Σ is a polyhedral multifunction when q = 1 and q = +∞. Hence,
by [43, Lemma 1], Σ has the ULC property at (s∗,g∗) ∈ Rd × Rmn if Σ(s∗,g∗) is nonempty.
Putting these pieces together with Theorem 3.6 yields the desired result. �

11

3.4 GEB condition holds when q ∈ (1, 2]

Now, we show that the GEB condition holds for problem (6) when q ∈ (1, 2]. In particular,
it suffices to establish the ULC property of the set-valued mapping Σ. Before that, we state
several technical results that will be used for proving the main theorem. The first lemma is
concerning the linear regularity of a collection of polyhedral sets; see the detailed proof in [2,
Corollary 5.26].

Lemma 3.9. Let S1, . . . ,SM be a collection of polyhedra in Rmn. Then, there exists a constant

κ̄ > 0 such that d
(
α,
⋂M
i=1 Si

)
≤ κ̄

∑M
i=1 d(α,Si) for any α ∈ Rmn.

The next proposition provides a detailed representation of Ω∗ = Σ(s∗,g∗). In particular,
we consider two cases: g∗j = 0 or g∗j 6= 0 and let J = {j ∈ {1, . . . , n} | g∗j = 0}.

Proposition 3.10. Suppose that the set-valued mapping Σ is defined in (9) and (s∗,g∗) ∈
Rd × Rmn be given in Proposition 3.4. If j ∈ J , we have α∗j = −v(g∗j)/‖v(g∗j)‖q where the

function v : Rm → Rm is defined by v(g) :=
(

sign(g1)|g1|
p
q , . . . , sign(gm)|gm|

p
q

)
. Otherwise,

we have {α∗j ∈ Rm | D>α∗ = s∗} ⊆ Bq. That is to say,

Σ(s∗,g∗) =

α∗ =

α
∗
1
...
α∗n

 ∈ Rmn
∣∣∣∣∣ D

>α∗ = s∗,

α∗j = − v(g∗
j)

‖v(g∗
j)‖q , ∀j ∈ J

 ,

Finally, for all q ∈ (1, 2], there exist constants δ > 0 and ν > 0 such that for all g ∈ Rm
satisfying ‖g − g∗‖ ≤ δ, we have

‖v(g)− v(g∗)‖ ≤ ν‖g − g∗‖.

Proof. By the definition of (s∗,g∗) ∈ Rd × Rmn in Proposition 3.4, g∗j = 0 refers to the case
that the optimal set of problem (6) without the constraint over the j-th block is still contained
in Bnq . Putting these pieces together with Proposition 3.5 yields that

{α∗j ∈ Rm | D>α∗ = s∗} ⊆ Bq.

If g∗j 6= 0, then α∗ ∈ Ω∗ if and only if there exists µ ≥ 0 such that

1− ‖α∗j‖q ≥ 0,

s∗ −D>α∗ = 0,

g∗j + µ ·

(
sign((α∗j)1)|(α∗j)1|q−1, . . . , sign((α∗j)m)|(α∗j)m|q−1

)
‖α∗j‖

q/p
q

= 0,

µ
(
‖α∗j‖q − 1

)
= 0.

Since g∗j 6= 0, we have µ > 0 and ‖α∗j‖q = 1. Then, we can solve α∗j in terms of g∗j by using
the above relationship and obtain that

s∗ −D>α∗ = 0, α∗j +
v(g∗j)

‖v(g∗j)‖q
= 0.

12

Putting these pieces together yields that

Σ(s∗,g∗) =

α∗ =

α
∗
1
...
α∗n

 ∈ Rmn
∣∣∣∣∣ D

>α∗ = s∗

α∗j = − v(g∗
j)

‖v(g∗
j)‖q , ∀j ∈ J

 .

Finally, if q ∈ (1, 2], then p/q ≥ 1. In this case, the function s 7→ sign(s)|s|
p
q is continuously

differentiable and hence locally Lipschitz. Thus, there exist constants ν > 0 and δ > 0 such
that for all s1, s2 ∈ R satisfying |s1 − s2| ≤ δ, we achieve that∣∣∣sign(s1)|s1|

p
q − sign(s2)|s2|

p
q

∣∣∣ ≤ ν |s1 − s2| .

Therefore, we conclude that ‖v(g)− v(g∗)‖ ≤ ν‖g − g∗‖ for all g ∈ Rm. As a consequence,
we reach the conclusion of the proposition. �

The above proposition shows that Σ(s∗,g∗) is closed. Since Σ(s∗,g∗) ⊆ Bnq , then Σ(s∗,g∗)

is bounded where (s∗,g∗) ∈ Rd × Rmn be given in Proposition 3.4. Given the above results,
we are ready to study the ULC property of the set-valued mapping Σ.

Theorem 3.11. The GEB condition is satisfied by problem (6) when q ∈ (1, 2].

Proof. Define the sets S1 and S2 as

S :=
{
α∗ ∈ Rmn | D>α∗ = s∗

}
, Sj :=

α∗ =

α
∗
1
...
α∗n

 ∈ Rmn
∣∣∣∣∣ α∗j = −

v(g∗j)

‖v(g∗j)‖q

 .

Then, by Proposition 3.10, we have

Σ(s∗,g∗) = S ∩ (∩j∈JSj)

Moreover, S and {Sj , ∀j ∈ J } are all polyhedral subsets of Rmn. Thus, by Lemma 3.9, there
exists a constant κ̄ > 0 such that for any α ∈ Rmn,

d (α,Σ(s∗,g∗)) ≤ κ̄

d(α,S) +
∑
j∈J

d(α,Sj)

 . (17)

Thus, it suffices to bound the right-hand side of (17) for all α ∈ Σ(s,g) satisfying that (s,g)
lies in the neighborhood of (s∗,g∗) ∈ Rd × Rmn and Σ(s,g) is nonempty. Towards that end,
we discuss the bound on d(α,S) and d(α,Sj) separately.

The bound on d(α,S1) follows from the well-known Hoffman bound [13]. In particular,
there exists a constant θ > 0 such that d(α,S1) ≤ θ‖D>α− s∗‖ for any α ∈ Rmn. In addition,
for all α ∈ Σ(s,g) with g 6= 0, we have D>α = s. Putting these pieces together yields that

d(α,S) ≤ θ‖s− s∗‖, ∀α ∈ Σ(s,g).

Since g∗j 6= 0 for ∀j ∈ J , there exists a constant δj > 0 such that ‖(s,g) − (s∗,g∗)‖ ≤ δj
implies gj 6= 0. Therefore, for any α ∈ Σ(s,g) that satisfies ‖(s,g) − (s∗,g∗)‖ ≤ δj must
satisfy the following conditions:

s−D>α = 0, αj +
v(gj)

‖v(gj)‖q
= 0.

13

Since gj ,g
∗
j 6= 0, we have ‖v(gj)‖q, ‖v(g∗j)‖q > 0 and

d(α,Sj) ≤

∥∥∥∥∥ v(gj)

‖v(gj)‖q
−

v(g∗j)

‖v(g∗j)‖q

∥∥∥∥∥ .
This implies that∥∥∥∥∥ v(gj)

‖v(gj)‖q
−

v(g∗j)

‖v(g∗j)‖q

∥∥∥∥∥ =
‖v(gj)− v(g∗j)‖q‖v(gj)‖+ ‖v(gj)− v(g∗j)‖‖v(gj)‖q

‖v(gj)‖q‖v(g∗j)‖q
.

Furthermore, since ‖(s,g)−(s∗,g∗)‖ ≤ δj , then ‖v(gj)‖ and ‖‖v(gj)‖q are both bounded. Since

q ∈ (1, 2], then the Hólder inequality implies that ‖v(gj) − v(g∗j)‖q ≤ m
2−q
2q ‖v(gj) − v(g∗j)‖.

Putting these pieces together yields that

d(α,Sj) ≤ C
(
m

2−q
2q + 1

)
‖v(gj)− v(g∗j)‖

Proposition 3.10
≤ Cνj

(
m

2−q
2q + 1

)
‖gj − g∗j‖.

Therefore, we obtain that

d (α,Σ(s∗,g∗)) ≤

κ̄max

θ, C (m 2−q
2q + 1

)∑
j∈J

νj

 ‖ (s,g)− (s∗,g∗) ‖

for any α ∈ Σ(s,g) with ‖(s,g) − (s∗,g∗)‖ ≤ minj∈J δj . This implies that Σ has the ULC
property at (s∗,g∗) ∈ Rd × Rmn, which completes the proof the theorem. �

4 Algorithmic Framework

In this section, we analyze a generalized dual gradient ascent (GDGA) algorithm for solving
the filtering-clustering problems (1). In particular, we prove that the proposed approach is
linear convergent without considering the number of gradient or stochastic gradient oracles
used in the subroutine, which will be carefully analyzed for different scenarios in Section 5.

4.1 Generalized dual gradient ascent

The GDGA algorithmic framework is summarized in Algorithm 1. It is worthy noting that
the information we can only access is the gradient of f , the matrix D and the parameter
λ. Roughly speaking, this framework can be simply seen as an inexact gradient ascent for
solving the dual problem (6). Indeed, since f∗ is inaccessible for general f , we need to design a
subroutine and approximately solve f(β)− λα>t Dβ to get an inexact gradient of f∗. In what
follows, we provide some comments on the GDGA algorithmic framework.

Firstly, this framework has a solid theoretical guarantee. In particular, the algorithm has
linear convergence without considering the number of gradient or stochastic gradient oracles
used in the subroutine (see Section 4.2). This complexity analysis is based on the fact that
problem (6) has a global error bound (see Section 3).

Secondly, the subroutine can be constructed based on the different efficient algorithms as
mentioned before. Indeed, we show that the total complexity of the GDGA algorithm with
the subroutines is near-optimal in deterministic, finite-sum, and online settings. Furthermore,
if f is in some special form, such as least squared loss, this subroutine can even be removed
since the exact minimizer of f(β)− λα>t Dβ is available.

14

Algorithm 1: Generalized Dual Gradient Ascent (GDGA)

Input: (β0, α0), learning rates η > 0.
for t = 0, 1, . . . , T do

Find βt+1 ∈ Rd such that βt+1 is an ε̂-minimizer of f(β)− λα>t Dβ using (∇f,D, βt).
αt+1 ← projBn

q
(αt − ηλDβt+1).

end for
Return: βT+1.

Finally, the proposed algorithm is simple and matrix-free. Thus, it can be easily imple-
mented in distributed setting and amenable to large-scale filtering-clustering problems. This
makes the proposed algorithm intrinsically different from PDIP [14], the projected Newton
algorithm [39], ADMM [6, 28] and the semismooth Newton algorithm [41].

4.2 Complexity of GDGA algorithmic framework

In this subsection, we establish the main result on the linear convergence of the GDGA
algorithmic framework without considering the number of gradient or stochastic gradient
oracles used in the subroutine. The proof is based on the global error bound of problem (6) (cf.
Theorem 3.8 and Theorem 3.11). Note that, this result is surprising for the filtering-clustering
problem due to the following reasons:

1. Despite the regularity of f (cf. Assumption 2.1), problem (1) is nonsmooth without a
computationally friendly nonsmooth terms. More specifically, the proximal mapping of
‖Djβ‖p can not be easily computed in general and hence the proximal algorithms [25]
are not applicable in practice.

2. Despite the regularity of f∗ (cf. Lemma 3.3), problem (6) is not strongly convex.
Furthermore, ∇f∗ is not available. Thus, it is not obvious if the dual gradient ascent
can be applicable with linear convergence.

3. Despite the objective in problem (5) is convex-concave, it is not strongly convex-concave
yet. Thus, the gradient descent ascent (GDA) can not be proven linearly convergent
using the existing theory [23, 36, 8].

We denote ᾱt as the projection of αt onto the optimal set of problem (6), i.e., Ω∗, and trace
the objective gap between f̄(αt) and f̄(ᾱt) by defining

∆t := f̄(αt)− f̄(ᾱt).

Theorem 4.1 (Complexity of GDGA algorithm). Let η ∈
(

0, µ
4σmax{1,λ2}

)
in Algorithm 1

and τ be defined in Theorem 3.8 and Theorem 3.11. Given any tolerance ε > 0, let ε̂ satisfy

ε̂ ≤ min

{√
ε

2
,

√
ελµ

4
√
`

√
τ

C(17τ2 + (14 + ηλ2)τ + 1)

}
(18)

where C = 2τ2λ4σ
17τ2+14τ+1

+ σ
2 . Then the number of iterations required by the GDGA algorithm to

find an ε-optimal solution is bounded by

N ≤
(

17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
,

15

Proof. Denote δt = ‖βt − β∗(αt)‖ and β∗ as an optimal solution to filtering-clustering prob-
lem (1). Then we have

‖βt − β∗‖2 ≤ 2
(
‖βt − β∗(αt)‖2 + ‖β∗(αt)− β∗‖2

)
= 2

(
δ2
t + ‖β∗(αt)− β∗‖2

)
. (19)

Letting ᾱt be the projection of αt onto the optimal set. By the uniqueness of the optimal
solution to problem (1), we have β∗ = β∗(ᾱt). Then we have

‖β∗(αt)− β∗‖2
Lemma 3.2
≤

∥∥λD>αt − λD>ᾱt∥∥2

µ2

Lemma 3.1
≤

2`
(
f∗(λD>αt)− f∗(λD>ᾱt)

)
µ2

=
2`∆t

µ2
.

Since ∆t ≤ µ2ε
8` if t ≥

(
17τ2+14τ+1

τλ2η

)
log
(

16`∆0
µ2ε

)
(cf. Lemma 7.3), we have

‖β∗(αt)− β∗‖2 ≤
ε

4
.

By the definition of ε̂, we have δ2
t ≤ ε

4 . Putting these pieces together with (19) implies that

‖βt − β∗‖2 ≤ ε. We achieve the conclusion of the theorem. �

Finally, we proceed to a corollary concerning about the stochastic setting. In particular,
the GDGA algorithm is intrinsically stochastic if the subroutines are based on the stochastic
gradient-type algorithms, e.g., Katyusha and SGD. However, it does not affect the complexity
bound of the iteration numbers without considering the number of stochastic gradient oracles
used in the subroutine.

Corollary 4.2. Under the same setting as Theorem 4.1 but the subroutine is based on stochastic
algorithm, the number of iterations required by the GDGA algorithm to find a ε-optimal solution
is bounded by

N ≤
(

17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
,

Proof. The proof is nearly the same as that in Theorem 4.1. In particular, we take expectation
of both sides of (19) and use Lemma 7.6 instead of Lemma 7.3. �

5 Different Variants of GDGA Algorithm

In this section, we consider the subroutines in the GDGA algorithmic framework in different
scenarios. In particular, we remark that the subroutines are unnecessary if f is in the special
form. For example, the minimizer of f(β)− α>t Dβ is available if f is ‖·‖2, which is commonly
used in real applications of filtering-clustering problems, such as trend filtering and `1 convex
clustering. This leads to the simplified GDGA algorithm (Algorithm 2) with the direct
complexity analysis; see Section 5.1.

For the general case of f , we can design the subroutines by applying the appropriate
gradient-type optimization methods in different scenarios, e.g., the accelerated gradient descent
(AGD) [20] for the deterministic setting, the accelerated stochastic variance reduced gradient
(Katyusha) [1] for the finite-sum setting and the stochastic gradient descent (SGD) [27] for
the online setting. The complexity analyses based on the regularity of f are presented in
Sections 5.2, 5.3 and 5.4.

16

Algorithm 2: Simplified GDGA algorithm

Input: (β−1, α0), learning rates η > 0.
for t = 0, 1, . . . do
βt = 0.5λD>αt.
αt+1 ← projBn

q
(αt − ηλDβt).

end for
Return: βT .

5.1 Simplified GDGA algorithm

In this subsection, we focus on the case that f is the squared `2 norm, i.e., f(β) = (1/2)‖β‖2.
This particular case is crucial since the squared loss function arises from the specific setting of
trend filtering and convex clustering. By exploiting this special structure of f , we arrive at the
simplified GDGA algorithm by removing the subroutine in the GDGA algorithm but using the
exact minimizer instead. The resulting algorithm for convex clustering with `2-regularization
recovers the algorithm in [38]. We present the simplified GDGA algorithm in Algorithm 2.

The complexity bound of the simplified GDGA algorithm can be directly obtained by
Theorem 4.1. In particular, the subroutine is removed since we do not need to approximately
solve f(β)− α>t λDβ. This implies that the per-iteration computational cost will not depend
on ε̂. We summarize the result in the following theorem.

Theorem 5.1 (Complexity bound of simplified GDGA algorithm). Let the step size η > 0 in

Algorithm 2 satisfy η ∈
(

0, µ
4σmax{1,λ2}

)
. Then, for any ε > 0, the number of iterations Ñtotal

for Algorithm 2 to to find an ε-optimal solution is bounded by

Ñtotal ≤
(

17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
.

The proof of Theorem 5.1 is similar to that used for Theorem 4.1; therefore, it is omitted.
The result of Theorem 5.1 implies that the simplified GDGA algorithm (Algorithm 2) has
linear convergence. Later, in experiment section (Section 6), we provide careful simulation
studies with simplified GDGA algorithm on various real datasets with applications to trend
filtering and convex clustering and compare its performance with state-of-the-art baseline
optimization methods in these problems.

5.2 Deterministic GDGA algorithm

In this subsection, we focus on the deterministic setting in which the gradient oracle ∇f is
used in each iteration of the subroutine in Algorithm 1. Different from the simplified case
discussed in Section 5.1, the minimizer of f(β)− α>t Dβ is not available. Instead, we obtain
an ε̂-minimizer by applying the subroutine based on the accelerated gradient descent (AGD)
algorithm [20]. The resulting algorithm based on that subroutine is termed as deterministic
GDGA algorithm. We provide the pseudocode of that algorithm in Algorithm 3.

The complexity bound of the deterministic GDGA algorithm is obtained by combining
Theorem 4.1 and the complexity bound of the AGD algorithm in terms of gradient oracles.
We summarize the complexity bound of the subroutine based on the AGD algorithm in the
following lemma.

17

Algorithm 3: Deterministic GDGA algorithm

Input: (β−1, α0), learning rates η > 0.
for t = 0, 1, . . . do

Find βt ∈ Rd such that βt is an ε̂-minimizer of f(β)− λα>t Dβ using AGD algorithm.
αt+1 ← projBn

q
(αt − ηλDβt).

end for
Return: βT .

Lemma 5.2. Let ε̂ ∈ (0, 1) be given in deterministic GDGA algorithm. Then, the number of
gradient oracles to reach ‖βt − β∗(αt)‖ ≤ ε̂ is bounded by

Nt ≤

√
κ log

(
‖β−1−β∗(α0)‖

ε̂

)
t = 0,

√
κ log

(
1+λ
√
σDq/µ
ε̂

)
t ≥ 1.

(20)

The proof of Lemma 5.2 is deferred to Section 7.2. Equipped with the result of that lemma,
we are ready to present the main result on the complexity bound of the deterministic GDGA
algorithm in terms of the number of gradient oracles.

Theorem 5.3 (Complexity of deterministic GDGA algorithm). Let the step size η > 0 satisfy
η ∈ (0, µ/4σ) in the deterministic GDGA algorithm. Then, for any ε > 0, the number of
gradient oracles Ñgrad for the deterministic GDGA algorithm to to find an ε-optimal solution
is bounded by

Ñgrad ≤

(√
κ
(
17τ2 + 14τ + 1

)
τλ2η

)
log

(
16`∆0

µ2ε

)
log

(
1 + λ

√
σDq/µ

ε̂

)
+
√
κ log

(
‖β−1 − β∗(α0)‖

ε̂

)
.

(21)
where ε̂ satisfies condition (18).

The result of Theorem 5.3 guarantees the linear convergence of the deterministic GDGA
algorithm for solving filtering-clustering problems. We now proceed to the proof of that
theorem.
Proof. By the definition of Ñgrad, we get Ñgrad = N0 +

∑N
t=1Nt. Therefore, we conclude that

Ñgrad

Lemma 5.2
≤ N

√
κ log

(
1 + λ

√
σDq/µ

ε̂

)
+
√
κ log

(
‖β−1 − β∗(α0)‖

ε̂

)
Theorem 4.1
≤

(√
κ
(
17τ2 + 14τ + 1

)
τλ2η

)
log

(
16`∆0

µ2ε

)
log

(
1 + λ

√
σDq/µ

ε̂

)
+
√
κ log

(
‖β−1 − β∗(α0)‖

ε̂

)
,

where ε̂ is defined in (18). This completes the proof. �

5.3 Stochastic variance reduced GDGA algorithm

In this subsection, we concentrate on the finite-sum setting of filtering-clustering problems in
which the loss function f is of the form 1

nsam

∑nsam
i=1 fi and the component gradient oracle ∇fi

is used in each iteration of the subroutine in Algorithm 1. To ease the ensuing presentation,

18

Algorithm 4: Stochastic Variance Reduced GDGA algorithm

Input: (β−1, α0), learning rates η > 0.
for t = 0, 1, . . . do

Find βt ∈ Rd such that βt is an ε̂-minimizer of f(β)− λα>t Dβ using Katyusha
algorithm [1] with f = (

∑nsam
i=1 fi)/nsam.

αt+1 ← projBn
q

(αt − ηλDβt).
end for
Return: βT .

we denote nsam the total number of samples. To this end, we obtain an ε̂-minimizer of
f(β) − α>t λDβ by applying the subroutine based on the Katyusha algorithm [1]. This
procedure results in stochastic variance reduced GDGA algorithm where its pseudocode is
summarized in Algorithm 4.

The complexity bound of the stochastic variance reduced GDGA algorithm is obtained by
combining the complexity of GDGA algorithm from Theorem 4.1 and the complexity bound of
the Katyusha algorithm in terms of component gradient oracles. We summarize the complexity
bound of the subroutine based on the Katyusha algorithm in the following lemma.

Lemma 5.4. Let ε̂ ∈ (0, 1) be given in stochastic variance reduced GDGA algorithm (Algo-

rithm 4). Then the number of component gradient oracles to reach E
[
‖βt − β∗(αt)‖2

]
≤ ε̂2 is

bounded by

Nt ≤ CKat ·

 nsam +
√
κnsam log

(
κ‖β−1−β∗(α0)‖

ε̂

)
t = 0,

nsam +
√
κnsam log

(
κ+λκ

√
σDq/µ
ε̂

)
t ≥ 1.

(22)

where CKat is a constant defined in [1, Theorem 2.1] and independent of `, µ, σ and ε.

The proof of Lemma 5.4 is provided in Section 7.3. Drawing on the result of Lemma 5.4,
we are ready to present the main result on the complexity bound of the stochastic variance
reduced GDGA algorithm in terms of the number of component gradient oracles.

Theorem 5.5 (Complexity of stochastic variance reduced GDGA algorithm). Let the step

size η > 0 satisfy η ∈
(

0, µ
4σmax{1,λ2}

)
in the stochastic variance GDGA algorithm. Then, for

any ε > 0, the number of component gradient oracles Ñcgrad for the stochastic variance reduced
GDGA algorithm to find an ε-optimal solution is bounded by

Ñcgrad ≤ CKatnsam

((
17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
+ 1

)
+CKat

√
κnsam

(
17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
log

(
κ+ λκ

√
σDq/µ

ε̂

)
+CKat

√
κnsam log

(
κ ‖β−1 − β∗(α0)‖

ε̂

)
where ε̂ satisfies condition (18) and CKat is a constant defined in [1, Theorem 2.1].

Proof. By the definition of Ñcgrad, we get Ñcgrad = N0 +
∑N

t=1Nt. Therefore, we conclude

19

Algorithm 5: Stochastic GDGA algorithm

Input: (β−1, α0), learning rates η > 0.
for t = 0, 1, . . . do

Find βt ∈ Rd such that βt is an ε̂-minimizer of f(β)− λα>t Dβ based on SGD
algorithm [27] with f(β) = Eξ [F (β, ξ)].
αt+1 ← projBn

q
(αt − ηλDβt).

end for
Return: βT .

that

Ñcgrad

Lemma 5.4
≤ CKatnsam(N + 1) + CKatN

√
κnsam log

(
κ+ λκ

√
σDq/µ

ε̂

)
+CKat

√
κnsam log

(
κ ‖β−1 − β∗(α0)‖

ε̂

)
Corollary 4.2
≤ CKatnsam

((
17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
+ 1

)
+CKat

√
κnsam

(
17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
log

(
κ+ λκ

√
σDq/µ

ε̂

)
,

+CKat
√
κnsam log

(
κ ‖β−1 − β∗(α0)‖

ε̂

)
where ε̂ is defined in (18) and CKat is a constant defined in [1]. This completes the proof. �

The result of Theorem 5.5 guarantees the linear convergence of the stochastic variance
reduced GDGA algorithm for solving filtering-clustering problems. Additionally, the complexity
bound of stochastic variance GDGA algorithm outperforms that of the deterministic GDGA
algorithm in terms of the number of component gradient oracles. In particular, we can also
apply the deterministic GDGA algorithm in the finite-sum setting. By Theorem 5.3,

√
κnsam

appears in the complexity bound based on the number of the number of component gradient
oracles. In contrast, since CKat does not depend on κ, only

√
κnsam appears in the complexity

bound of stochastic variance reduced GDGA algorithm (cf. Theorem 5.5). This also matches
the recognized superiority of the Katyusha algorithm over the AGD algorithm [1].

5.4 Stochastic GDGA algorithm

In this subsection, we focus on the online setting in which f is in the form of Eξ [F (·, ξ)] and
the stochastic gradient oracle G(·, ξ) is used in each iteration of the subroutine in Algorithm 1.
To this end, we obtain an ε̂-minimizer of f(β) − λα>t Dβ by applying the subroutine based
on the stochastic gradient descent (SGD) algorithm [27]. The resulting algorithm based on
that subroutine is called stochastic GDGA algorithm. The pseudocode of that algorithm is
presented in Algorithm 5.

The complexity bound of the resulting stochastic GDGA algorithm is obtained by combining
the complexity bound of GDGA algorithm in Theorem 4.1 and the complexity bound of the
SGD algorithm in terms of stochastic gradient oracles. We summarize the complexity bound
of the subroutine based on the SGD algorithm in the following lemma.

20

Lemma 5.6. Let ε̂ ∈ (0, 1) be given in stochastic GDGA algorithm (Algorithm 5). Then the

number of stochastic gradient oracles to reach E
[
‖βt − β∗(αt)‖2

]
≤ ε̂2 is bounded by

Nt ≤
4C2

µ2ε̂2
, ∀t ≥ 0. (23)

The proof of Lemma 5.6 is provided in Section 7.4. Based on the result of Lemma 5.6,
we are ready to present the main result on the complexity bound of the stochastic GDGA
algorithm in terms of the number of stochastic gradient oracles.

Theorem 5.7 (Complexity of Stochastic GDGA algorithm). Let the step size η > 0 satisfy
η ∈ (0, µ/4σ) in the stochastic GDGA algorithm. Then, for any ε > 0, the number of stochastic
gradient oracles Ñsgrad for the stochastic GDGA algorithm to find an ε-optimal solution is
bounded by

Ñsgrad ≤
4C2

µ2ε̂2

((
17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
+ 1

)
.

where ε̂ is defined in (18).

Proof. By the definition of Ñsgrad, we get Ñsgrad =
∑N

t=0Nt. Therefore, we conclude that

Ñsgrad

Lemma 5.6
≤ 4C2(N + 1)

µ2ε̂2

Corollary 4.2
≤ 4C2

µ2ε̂2

((
17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
+ 1

)
,

where ε̂ is defined in (18). This completes the proof. �

The result of Theorem 5.7 guarantees the sublinear convergence of the stochastic GDGA
algorithm for solving filtering-clustering problems. Furthermore, by the definition of ε̂ in (18),
we obtain that ε̂ = Ω(

√
ε). Therefore, the complexity bound of the stochastic GDGA algorithm

in terms of the number of stochastic gradient oracles is O (log(1/ε)/ε) (cf. Theorem 5.7).
This complexity bound is slightly worse than the optimal complexity bound of O (1/ε). It
is unclear if the improvement of the complexity bound of stochastic GDGA algorithm to
O (1/ε) is possible by further exploring the filtering-clustering problems structure. We leave
this direction for the future work.

6 Experiments

In this section, we conduct extensive simulation studies of the GDGA algorithm for `1-trend
filtering problem. The simplified GDGA algorithm (Algorithm 2) with Barzilai-Borwein step
size [9] are applied since the loss functions are both squared `2-norm. The baseline algorithms
include standard ADMM algorithm, specialized ADMM algorithm [39, 28], and projected
Newton algorithm [39].

Datasets: We consider three real images with various sizes: 128 by 128 pixels (small
image), 256 by 256 pixels (medium image), and 512 by 512 pixels (large image)1.

Experimental settings: We present comparative experiments between the simplified
GDGA, ADMM, specialized ADMM, and projected Newton algorithms as the order k varies

1These images can be found at: http://sipi.usc.edu/database/database.php?volume=misc

21

http://sipi.usc.edu/database/database.php?volume=misc

0 0.5 1 1.5 2

Clock time in second

10
2

10
3

10
4

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=1

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Clock time in second

10
2

10
3

10
4

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=2

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 2 4 6 8 10 12 14 16

Clock time in second

10
2

10
3

10
4

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=3

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 5 10 15 20 25

Clock time in second

10
2

10
3

10
4

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=4

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 5 10 15 20 25 30 35 40

Clock time in second

10
2

10
3

10
4

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=5

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 10 20 30 40 50 60

Clock time in second

10
2

10
3

10
4

10
5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=6

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

Figure 1: Performance of GDGA, ADMM, specialized ADMM, and projected Newton algo-
rithms for small image.

in the discrete difference operator D(k+1) (see Section 2.2.1 for the details). The evaluation
metric for our comparison is the objective function value of the `1-trend-filtering problem.

Experimental results: Figure 1-3 present the experimental results for different settings
of images. The simplified GDGA algorithm and the two ADMM algorithms are consistently
comparable, all of which significantly outperform the projected Newton algorithm. In particular,
the performance of simplified GDGA algorithm is the best consistently among all the algorithms
when k = 1. As k increases, the performance of the projected Newton algorithm deteriorates
quickly. This makes sense since the subroutine based on the conjugate gradient algorithm is
known to be inefficient if the conditioning of the Hessian is bad. In contrast, the simplified
GDGA algorithm and the two ADMM algorithms remain effective while the ADMM algorithms
are slightly better in general. The good performance of these two ADMM algorithms arises
from the use of a Cholesky factorization, which alleviates the ill-conditioning of the matrix
D(k+1). On massive-scale problems, however, this advantage becomes a liability since the
computational and memory requirements for ADMM become severe. By way of contrast, our
GDGA algorithm with Barzilai-Borwein step size is purely matrix-free, in which no matrix
factorization is required. Moreover, the usage of Barzilai-Borwein step size accelerates the
algorithm by exploring the curvature information and alleviates the ill-conditioning.

7 Proofs

In this section, we first present the proof for the complexity bounds of the GDGA algorithmic
framework. Then we combine it with the complexity bounds for the best-known algorithms [20,

22

0 1 2 3 4 5 6 7

Clock time in second

10
2

10
3

10
4

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=1

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 2 4 6 8 10 12

Clock time in second

10
2

10
3

10
4

10
5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=2

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 10 20 30 40 50

Clock time in second

10
2

10
3

10
4

10
5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=3

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 10 20 30 40 50 60 70

Clock time in second

10
2

10
3

10
4

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=4

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 20 40 60 80 100 120

Clock time in second

10
2

10
3

10
4

10
5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=5

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 20 40 60 80 100 120 140 160 180

Clock time in second

10
2

10
3

10
4

10
5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=6

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

Figure 2: Performance of GDGA, ADMM, specialized ADMM, and projected Newton algo-
rithms for medium image.

1, 27] and obtain the complexity bounds of the specifications of the GDGA algorithmic
framework to different settings of filtering-clustering problems.

7.1 Technical lemmas for complexity bounds

In this subsection, we prove several technical lemmas used for establishing complexity bounds
in the paper. To ease the ensuing proof argument, we trace the distance between βt and β∗(αt)
by defining

δt := ‖βt − β∗(αt)‖ .
Additionally, we denote ᾱt as the projection of αt onto the optimal set of problem (6), i.e., Ω∗,
and trace the objective gap between f̄(αt) and f̄(ᾱt) by defining

∆t := f̄(αt)− f̄(ᾱt).

The first lemma provides a key lower bound for the iterative objective gap, i.e., ∆t −∆t+1.

Lemma 7.1. Let (αt, βt)t≥0 be the iterates generated by Algorithm 1 with a stepsize η ∈(
0, µ

4σmax{1,λ2}

)
. Then, for any t ≥ 0, the following holds

∆t −∆t+1 ≥
λ2 ‖αt − αt+1‖2

4η
− ησε̂2

2
. (24)

Proof. Since αt+1 = projBn
q

(αt − ηλDβt), we obtain from the definition of the projection
operator that

(α− αt+1)> (αt+1 − αt + ηλDβt) ≥ 0, ∀α ∈ Bnq .

23

0 5 10 15 20

Clock time in second

10
3

10
4

10
5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=1

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 5 10 15 20 25 30 35 40 45

Clock time in second

10
3

10
4

10
5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=2

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 20 40 60 80 100 120 140 160

Clock time in second

10
3

10
4

10
5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=3

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 50 100 150 200 250

Clock time in second

10
3

10
4

10
5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=4

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 50 100 150 200 250 300 350 400

Clock time in second

10
3

10
4

10
5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=5

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

0 100 200 300 400 500

Clock time in second

10
3

10
4

10
5

10
6

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

GTF with k=6

Specialized ProjDGA

ProjNewton

Specialized ADMM

ADMM

Figure 3: Performance of GDGA, ADMM, specialized ADMM, and projected Newton algo-
rithms for large image.

Let α = αt, then

(αt − αt+1)> λDβt ≥
‖αt − αt+1‖2

η
. (25)

Furthermore, we have the following inequalities

(αt − αt+1)> λDβt = (αt − αt+1)>∇f̄(αt) + (αt − αt+1)>
(
λDβt −∇f̄(αt)

)
(26)

≤ f̄(αt)− f̄(αt+1) +
σλ2 ‖αt − αt+1‖2

µ
+ (αt − αt+1)>

(
λDβt −∇f̄(αt)

)

where the last inequality holds since f̄ is σλ2

µ -gradient Lipschiz (cf. Lemma 3.3). Furthermore,

since ∇f̄(αt) = λDβ∗(αt) (cf. Lemma 3.2), then an application of Cauchy-Schwarz’s inequality
yields that

(αt − αt+1)>
(
λDβt −∇f̄(αt)

)
= (αt − αt+1)> (λDβt − λDβ∗(αt)) (27)

≤ λ2

2η
‖αt − αt+1‖2 +

η

2
‖Dβt −Dβ∗(αt)‖2

≤ λ2

2η
‖αt − αt+1‖2 +

ησε̂2

2
.

24

Plugging (26) and (27) into (25) yields that

f̄(αt)− f̄(αt+1) ≥
(
λ2

2η
− σλ2

µ

)
‖αt − αt+1‖2 −

ησε̂2

2

≥ λ2 ‖αt − αt+1‖2

4η
− ησε̂2

2
.

To this end, we complete the proof by concluding (24). �

The second lemma presents an upper bound for ∆t+1 based on ‖αt − αt+1‖2 using the
global error bound (cf. Theorem 3.8 and Theorem 3.11).

Lemma 7.2. Let (αt, βt)t≥0 be the iterates generated by Algorithm 1 with a stepsize η ∈(
0, µ

4σmax{1,λ2}

)
. Then, for any t ≥ 0, the following holds

‖αt+1 − αt‖2 ≥
4τη2∆t+1

17τ2 + 14τ + 1
− 8τ2λ2ση2ε̂2

17τ2 + 14τ + 1
. (28)

Proof. We observe that∥∥∥αt − projBn
q

(
αt − η∇f̄(αt)

)∥∥∥ =
∥∥∥αt − projBn

q
(αt − ηλDβ∗(αt))

∥∥∥
≤ ‖αt − αt+1‖+

∥∥∥αt+1 − projBn
q

(αt − ηλDβ∗(αt))
∥∥∥

where the second inequality is due to triangle inequality. Since αt+1 = projBn
q

(αt − ηλDβt)
and the projection operator is nonexpansive, we achieve that∥∥∥αt+1 − projBn

q
(αt − ηλDβ∗(αt))

∥∥∥ ≤ ηλ
√
σδt. (29)

From [10, Lemma 1], the term
∥∥∥αt − projBn

q

(
αt − η∇f̄(αt)

)∥∥∥ /η is monotonically decreasing

for ∀η > 0. Since η ∈ (0, 1), we find that

η
∥∥∥αt − projBn

q

(
αt −∇f̄(αt)

)∥∥∥ ≤ ∥∥∥αt − projBn
q

(
αt − η∇f̄(αt)

)∥∥∥ . (30)

Recall that, ᾱt is the projection of αt onto Ω∗, the following inequalities hold

‖αt − ᾱt‖
Theorems 3.8, 3.11

≤ τ
∥∥∥α− projBn

q

(
αt −∇f̄(αt)

)∥∥∥
(30)

≤
τ
∥∥∥αt − projBn

q

(
αt − η∇f̄(αt)

)∥∥∥
η

(29)

≤ τ ‖αt − αt+1‖
η

+ τλ
√
σε̂. (31)

Finally, we bound the term ∆t+1. More specifically, since αt+1 = projBn
q

(αt − ηλDβt), we
obtain from the definition of the projection operator that

(α− αt+1)> (αt+1 − αt + ηλDβt) ≥ 0, ∀α ∈ Bnq .

Let α = ᾱt, then

(ᾱt − αt+1)> λDβt ≥
(ᾱt − αt+1)> (αt − αt+1)

η
. (32)

25

Furthermore, we obtain from the convexity of f̄ that

∆t+1 = f̄(αt+1)− f̄(ᾱt+1) = f̄(αt+1)− f̄(ᾱt) ≤ (αt+1 − ᾱt)>∇f̄(αt+1). (33)

Combining (31), (32), (33) and ∇f̄(αt) = λDβ∗(αt) yields that

(αt+1 − ᾱt)>∇f̄(αt+1)

= (αt+1 − ᾱt)>
(
∇f̄(αt+1)−∇f̄(αt)

)
+ (αt+1 − ᾱt)> (λDβ∗(αt)− λDβt) + (αt+1 − ᾱt)> λDβt

≤ ‖αt+1 − ᾱt‖
(
σλ2 ‖αt+1 − αt‖

µ
+ λ
√
σδt +

‖αt+1 − αt‖
η

)
≤

(
(τ + η) ‖αt+1 − αt‖

η
+ τλ

√
σε̂

)(
λ
√
σε̂+

(
σλ2

µ
+

1

η

)
‖αt+1 − αt‖

)
.

Since η ≤ 1 and σλ2/µ < 1/4η, we have

(αt+1 − ᾱt)>∇f̄(αt+1) ≤ 2(τ + 1) ‖αt+1 − αt‖2

η2
+

(3τ + 1)λ
√
σε̂ ‖αt+1 − αt‖
η

+ τλ2σε̂2.

(34)
Applying the Young’s inequality to the term ε̂ ‖αt+1 − αt‖ yields that

ε̂ ‖αt+1 − αt‖ ≤
τηλ
√
σε̂2

(3τ + 1)
+

(3τ + 1)‖αt+1 − αt‖2

4τηλ
√
σ

. (35)

Plugging (35) into (34) yields that

(αt+1 − ᾱt)>∇f̄(αt+1) ≤ (17τ2 + 14τ + 1) ‖αt+1 − αt‖2

4τη2
+ 2τλ2σε̂2.

Combining the above bound with (33) yields that

‖αt+1 − αt‖2 ≥
4τη2∆t+1

17τ2 + 14τ + 1
− 8τ2λ2ση2ε̂2

17τ2 + 14τ + 1
.

As a consequence, we reach the conclusion of the lemma. �

Equipped with the bounds of iterative objective gap ∆t −∆t+1 and objective gap ∆t+1

in Lemma 7.1 and 7.2, we are ready to prove the main lemma for the number of iterations
of GDGA algorithm to reach a certain threshold with objective gap ∆t. Before stating that
result, we assume the following key technical assumption with approximation error ε̂:

ε̂ ≤ min

{√
ε

2
,

√
ελµ

4
√
`

√
τ

C(17τ2 + (14 + ηλ2)τ + 1)

}
, (36)

where C > 0 is defined as

C :=
2τ2λ4σ

17τ2 + 14τ + 1
+
σ

2
.

Lemma 7.3. Let (αt, βt)t≥0 be the iterates generated by Algorithm 1 with η ∈
(

0, µ
4σmax{1,λ2}

)
.

Given the bound (36) with ε̂, the number of iterations to reach ∆t ≤ µ2ε
8` is

N ≤
(

17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
.

where ∆0 ≥ 0 is the distance between α0 and the optimal solution set of problem (6).

26

Proof. Invoking the results from (24) (cf. Lemma 7.1) and (28) (cf. Lemma 7.2) yields that

∆t −∆t+1 ≥ λ2

4η

[
4τη2∆t+1

17τ2 + 14τ + 1
− 8τ2λ2ση2ε̂2

17τ2 + 14τ + 1

]
− ησε̂2

2

=
τλ2η∆t+1

17τ2 + 14τ + 1
−
(

2τ2λ4σ

17τ2 + 14τ + 1
+
σ

2

)
ηε̂2.

Let ρ > 0 be defined as

ρ =

(
1 +

τλ2η

17τ2 + 14τ + 1

)−1

.

Then, for any t ≥ 0, we find that

∆t+1 ≤ ρ
(
∆t + Cηε̂2

)
.

Recursively performing the above inequality yields that

∆t ≤ ρt∆0 +

 t−1∑
j=0

ρt−1−j

 · Cηε̂2 ≤ ρt∆0 +
Cηε̂2

1− ρ
.

By using the definition of ρ, we have

Cη

1− ρ
= Cη +

C
(
17τ2 + 14τ + 1

)
τλ2

.

By the definition of ε̂ in (36), we have ∆t ≤ ρt∆0 + µ2ε
16` . Therefore, the number of iterations

to reach ∆t ≤ µ2ε/8` is

N ≤
(

17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
.

As a consequence, we achieve the conclusion of the lemma. �

Finally, we consider the lemmas in the stochastic setting. More specifically, the GDGA
algorithm is intrinsically stochastic if the subroutines are based on the stochastic gradient-type
algorithms, e.g., Katyusha and SGD algorithms. Since the proofs of lemmas with the stochastic
setting are nearly the same as those from deterministic setting, we present these lemmas but
omit their proofs.

Lemma 7.4. Let (αt, βt)t≥0 be the iterates generated by Algorithm 1 with stochastic subroutine,
then

E [∆t]− E [∆t+1] ≥ λ2

4η
E
[
‖αt − αt+1‖2

]
− ησε̂2

2
. (37)

Lemma 7.5. Let (αt, βt)t≥0 be the iterates generated by Algorithm 1 with stochastic subroutine
and η ∈ (0, µ/4σ), then

E
[
‖αt+1 − αt‖2

]
≥ 4τη2E [∆t+1]

17τ2 + 14τ + 1
− 8τ2λ2ση2ε̂2

17τ2 + 14τ + 1
. (38)

Lemma 7.6. Let (αt, βt)t≥0 be the iterates generated by Algorithm 1 with η ∈
(

0, µ
4σmax{1,λ2}

)
.

Given the bound (36) with ε̂, the number of iterations to reach E[∆t] ≤ µ2ε
8` is

N ≤
(

17τ2 + 14τ + 1

τλ2η

)
log

(
16`∆0

µ2ε

)
.

where ∆0 ≥ 0 is the distance between α0 and the optimal solution set of problem (6).

27

7.2 Proof of Lemma 5.2

We establish our result by using the existing complexity bound of the AGD algorithm with
the step size 1/` [20, Theorem 2.2.2]. Since f is µ-strongly convex and `-gradient Lipschitz, it
holds true that f(β)−α>t λDβ is µ-strongly convex and `-gradient Lipschiz with the condition
number `

µ . For t = 0, the initial distance is ‖β−1 − β∗(α0)‖ so N0 is bounded by

N0 ≤
√
κ log

(
‖β−1 − β∗(α0)‖

ε̂

)
.

For t ≥ 1, the initial distance is ‖βt−1 − β∗(αt)‖ so Nt is bounded by

Nt ≤
√
κ log

(
‖βt−1 − β∗(αt)‖

ε̂

)
.

Furthermore, by using the triangle inequality, we have

‖βt−1 − β∗(αt)‖ ≤ ‖βt−1 − β∗(αt−1)‖+ ‖β∗(αt−1)− β∗(αt)‖
≤ 1 + ‖β∗(αt−1)− β∗(αt)‖ .

Since β∗(α) is λ
√
σ

µ -Lipschitz over Bnq (cf. Lemma 3.2), we have

‖β∗(αt−1)− β∗(αt)‖ ≤
λ
√
σ ‖αt − αt−1‖

µ
≤ λ

√
σDq

µ

Therefore, we have

Nt ≤
√
κ log

(
1 + λ

√
σDq/µ

ε̂

)
.

This completes the proof of the lemma.

7.3 Proofs of Lemma 5.4

We establish our result by using the existing complexity bound of the Katyusha algorithm
with the step size max

{
2/3`, 1/

√
3nµ`

}
[1, Theorem 2.1]. Since f is µ-strongly convex and

`-gradient Lipschitz, it holds true that f(β) − α>t λDβ is µ-strongly convex and `-gradient
Lipschiz with the condition number κ := `/µ. For t = 0, the initial distance is ‖β−1 − β∗(α0)‖
so N0 is bounded by

N0 ≤ CKat

(
nsam +

√
κnsam log

(
κ ‖β−1 − β∗(α0)‖

ε̂

))
.

For t ≥ 1, the initial distance is ‖βt−1 − β∗(αt)‖ so Nt is bounded by

Nt ≤ CKat

(
nsam +

√
κnsam log

(
κ ‖βt−1 − β∗(αt)‖

ε̂

))
.

By applying the similar argument as that in the proof of Lemma 5.2 in Section 7.2, we find
that

Nt ≤ CKat

(
nsam +

√
κnsam log

(
κ+ λκ

√
σDq/µ

ε̂

))
.

As a consequence, we achieve the conclusion of the lemma.

28

7.4 Proofs of Lemma 5.6

We establish our result by using the existing complexity bound of the SGD algorithm with the
diminishing step size 1/µk [27, Lemma 1]. Since f is µ-strongly convex and `-gradient Lipschitz,
it holds true that f(β) − α>t λDβ is µ-strongly convex and `-gradient Lipschiz. Also, the
stochastic gradient oracle is unbiased and bounded by a constant C > 0 (cf. Assumption 2.1).
Therefore, we conclude that

Nt ≤
4C2

µ2ε̂2

for all t ≥ 0. This completes the proof of the lemma.

8 Discussion

In the paper, we have proposed and analyzed a class of first-order gradient-type optimization
algorithms to solve the filtering-clustering problems (1). In particular, deterministic generalized
dual gradient ascent (GDGA) algorithms are shown to have optimal linear convergence rates
for finding a global optimal solution of the filtering-clustering problems. The favorable
convergence of GDGA is based on a crucial global error bound of the dual form of these
problems. Furthermore, stochastic versions of GDGA algorithm, including stochastic GDGA
algorithm and accelerated stochastic variance reduced GDGA algorithm, have been proposed
to deal with the finite sum setting or online setting of filtering clustering problems. These
algorithms are demonstrated to have the optimal convergence rates in their respective settings.
Finally, careful experiments with `1-trend filtering show that our GDGA algorithms have
competitive performance with several state-of-the-art algorithms for these problems.

Acknowledgements

This work was supported in part by the Mathematical Data Science program of the Office of
Naval Research under grant number N00014-18-1-2764.

References

[1] Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In
STOC, pages 1200–1205. ACM, 2017. (Cited on pages 3, 16, 19, 20, 23, and 28.)

[2] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex feasibility
problems. SIAM Review, 38(3):367–426, 1996. (Cited on page 12.)

[3] A. Beck and S. Shtern. Linearly convergent away-step conditional gradient for non-strongly
convex functions. Mathematical Programming, 164(1-2):1–27, 2017. (Cited on page 2.)

[4] G. H. G. Chen and R. T. Rockafellar. Convergence rates in forward–backward splitting.
SIAM Journal on Optimization, 7(2):421–444, 1997. (Cited on page 2.)

[5] A. Cherukuri, B. Gharesifard, and J. Cortes. Saddle-point dynamics: conditions for
asymptotic stability of saddle points. SIAM Journal on Control and Optimization,
55(1):486–511, 2017. (Cited on page 2.)

29

[6] E. C. Chi and K. Lange. Splitting methods for convex clustering. Journal of Computational
and Graphical Statistics, 24(4):994–1013, 2015. (Cited on pages 1, 2, 6, and 15.)

[7] D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear convergence
of proximal methods. Mathematics of Operations Research, 2018. (Cited on page 2.)

[8] S. S. Du and W. Hu. Linear convergence of the primal-dual gradient method for convex-
concave saddle point problems without strong convexity. ArXiv Preprint: 1802.01504,
2018. (Cited on pages 2 and 15.)

[9] R. Fletcher. On the Barzilai-Borwein method. In Optimization and control with applica-
tions, pages 235–256. Springer, 2005. (Cited on page 21.)

[10] E. M. Gafni and D. P. Bertsekas. Two-metric projection methods for constrained
optimization. SIAM Journal on Control and Optimization, 22(6):936–964, 1984. (Cited on

page 25.)

[11] A. Guntuboyina, D. Lieu, S. Chatterjee, and B. Sen. Adaptive risk bounds in univariate
total variation denoising and trend filtering. Annals of Statistics, To appear. (Cited on

page 1.)

[12] T. Hocking, J.-P. Vert, F. Bach, and A. Joulin. Clusterpath: an algorithm for clustering
using convex fusion penalties. In ICML, 2011. (Cited on pages 1 and 5.)

[13] A. Jourani. Hoffman’s error bound, local controllability, and sensitivity analysis. SIAM
Journal on Control and Optimization, 38(3):947–970, 2000. (Cited on page 13.)

[14] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky. `1 trend filtering. SIAM Review,
51(2):339–360, 2009. (Cited on pages 1, 4, 5, and 15.)

[15] G. Lan and Y. Zhou. An optimal randomized incremental gradient method. Mathematical
Programming, pages 1–49, 2017. (Cited on page 6.)

[16] C. Leser. A simple method of trend construction. Journal of the Royal Statistical Society:
Series B, 23:91–107, 1961. (Cited on page 1.)

[17] K. Lin, J. L. Sharpnack, A. Rinaldo, and R. J. Tibshirani. A sharp error analysis for the
fused lasso, with application to approximate changepoint screening. In NIPS, 2017. (Cited

on page 1.)

[18] Z.-Q. Luo and P. Tseng. On the linear convergence of descent methods for convex essentially
smooth minimization. SIAM Journal on Control and Optimization, 30(2):408–425, 1992.
(Cited on page 2.)

[19] Z.-Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent
methods: a general approach. Annals of Operations Research, 46(1):157–178, 1993. (Cited

on page 2.)

[20] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013. (Cited on pages 2, 3, 16, 17, 23, and 28.)

[21] O. H. M. Padilla, J. Sharpnack, Y. Chen, and D. M. Witten. Adaptive non-parametric
regression with the K-NN fused lasso. Arxiv Preprint: 1807.11641, 2018. (Cited on page 1.)

30

[22] O. H. M. Padilla, J. Sharpnack, J. G. Scott, and R. J. Tibshirani. The DFS fused
lasso: Linear-time denoising over general graphs. Journal of Machine Learning Research,
18(1):136, 2018. (Cited on page 1.)

[23] B. Palaniappan and F. Bach. Stochastic variance reduction methods for saddle-point
problems. In NeurIPS, pages 1416–1424, 2016. (Cited on pages 2 and 15.)

[24] J.-S. Pang. A posteriori error bounds for the linearly-constrained variational inequality
problem. Mathematics of Operations Research, 12(3):474–484, 1987. (Cited on pages 2 and 9.)

[25] N. Parikh, S. Boyd, et al. Proximal algorithms. Foundations and Trends R© in Optimization,
1(3):127–239, 2014. (Cited on pages 6 and 15.)

[26] P. Radchenko and G. Mukherjee. Convex clustering via `1 fusion penalization. Journal
of the Royal Statistical Society: Series B, 79(5):15271546, 2017. (Cited on page 1.)

[27] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly
convex stochastic optimization. In ICML, pages 1571–1578. Omnipress, 2012. (Cited on

pages 3, 16, 20, 23, and 29.)

[28] A. Ramdas and R. J. Tibshirani. Fast and flexible admm algorithms for trend filtering.
Journal of Computational and Graphical Statistics, 25(3):839–858, 2016. (Cited on pages 1,

2, 5, 6, 15, and 21.)

[29] R. T. Rockafellar. Convex analysis. Princeton University Press, 2015. (Cited on pages 6, 7,

and 10.)

[30] L. I. Rudin, S. Osher, and E. Faterni. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60:259–268, 1992. (Cited on page 5.)

[31] K. M. Tan and D. Witten. Statistical properties of convex clustering. Electronic Journal
of Statistics, 9(2):2324–2347, 2015. (Cited on page 1.)

[32] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness
via the fused lasso. Journal of the Royal Statistical Society: Series B, 67(1):91–108, 2005.
(Cited on page 5.)

[33] R. J. Tibshirani. Adaptive piecewise polynomial estimation via trend filtering. Annals of
Statistics, 42(1):285–323, 2014. (Cited on pages 1 and 4.)

[34] R. J. Tibshirani and J. Taylor. The solution path of the generalized lasso. Annals of
Statistics, 39(3):13351371, 2011. (Cited on page 5.)

[35] P. Tseng. Approximation accuracy, gradient methods, and error bound for structured
convex optimization. Mathematical Programming, 125(2):263–295, 2010. (Cited on page 2.)

[36] J. Wang and L. Xiao. Exploiting strong convexity from data with primal-dual first-order
algorithms. In ICML, pages 3694–3702, 2017. (Cited on pages 2 and 15.)

[37] P.-W. Wang and C.-J. Lin. Iteration complexity of feasible descent methods for convex
optimization. The Journal of Machine Learning Research, 15(1):1523–1548, 2014. (Cited

on page 2.)

31

[38] Q. Wang, P. Gong, S. Chang, T. S. Huang, and J. Zhou. Robust convex clustering analysis.
In ICDM, pages 1263–1268. IEEE, 2016. (Cited on pages 2 and 17.)

[39] Y. Wang, J. Sharpnack, A. J. Smola, and R. J. Tibshirani. Trend filtering on graphs.
The Journal of Machine Learning Research, 17(1):3651–3691, 2016. (Cited on pages 1, 5, 15,

and 21.)

[40] C. Wu, S. Kwon, X. Shen, and W. Pan. A new algorithm and theory for penalized
regression-based clustering. Journal of Machine Learning Research, 17:125, 2016. (Cited

on page 1.)

[41] Y. Yuan, D. Sun, and K. Toh. An efficient semismooth Newton based algorithm for
convex clustering. In ICML, 2018. (Cited on pages 2, 6, and 15.)

[42] Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized empirical
risk minimization. The Journal of Machine Learning Research, 18(1):2939–2980, 2017.
(Cited on pages 2 and 6.)

[43] Z. Zhou, Q. Zhang, and A. M.-C. So. `1,p-norm regularization: error bounds and
convergence rate analysis of first-order methods. In ICML, pages 1501–1510. JMLR. org,
2015. (Cited on pages 2, 3, 7, 9, and 11.)

[44] C. Zhu, H. Xu, C. Leng, and S. Yan. Convex optimization procedure for clustering:
Theoretical revisit. In NIPS, 2014. (Cited on page 1.)

32

	Introduction
	Background
	Filtering-clustering problems
	Specific instances of filtering-clustering problems
	Univariate 1-trend filtering
	Graph 1-trend filtering
	2-Convex clustering

	Filtering-clustering problems in different forms

	Global Error Bound Condition
	Problem structure
	GEB condition and ULC property
	GEB condition holds when q=1 or q=+
	GEB condition holds when q (1, 2]

	Algorithmic Framework
	Generalized dual gradient ascent
	Complexity of GDGA algorithmic framework

	Different Variants of GDGA Algorithm
	Simplified GDGA algorithm
	Deterministic GDGA algorithm
	Stochastic variance reduced GDGA algorithm
	Stochastic GDGA algorithm

	Experiments
	Proofs
	Technical lemmas for complexity bounds
	Proof of Lemma 5.2
	Proofs of Lemma 5.4
	Proofs of Lemma 5.6

	Discussion

