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Abstract

We propose a new adaptive empirical Bayes framework, the Bag-Of-Null-Statistics (BONuS)
procedure, for multiple testing where each hypothesis testing problem is itself multivariate or
nonparametric. BONuS is an adaptive and interactive knockoff-type method that helps improve
the testing power while controlling the false discovery rate (FDR), and is closely connected to
the “counting knockoffs” procedure analyzed in Weinstein et al. (2017). Contrary to procedures
that start with a p-value for each hypothesis, our method analyzes the entire data set to
adaptively estimate an optimal p-value transform based on an empirical Bayes model. Despite
the extra adaptivity, our method controls FDR in finite samples even if the empirical Bayes
model is incorrect or the estimation is poor. An extension, the Double BONuS procedure,
validates the empirical Bayes model to guard against power loss due to model misspecification.

1 Introduction

1.1 Multiple multivariate testing

In the literature of multiple testing, it is customary to begin with one p-value for each of n null
hypotheses as the primitive inputs and then focus on designing or analyzing methods for processing
them. In many scientific problems, however, each of the n experiments yields multivariate data,
and it is unclear a priori how best to summarize each one with a univariate p-value. As a result,
the ultimate power of the full procedure may depend much more on how the p-values are calculated
than on what procedure we apply after calculating them. Typical examples of multivariate or
nonparametric testing problems that we may encounter include large scale A/B testing, genome-
wide association studies (GWAS) with multivariate phenotypes, and analysis of dose-response curves
in high-throughput toxicology experiments. In such problems, as the dimension of each problem
grows, an agnostic p-value transformation may yield little power unless an exceptionally strong
signal is present.

In most multivariate hypothesis testing problems, there is no uniformly most powerful (UMP)
test that is efficient against all alternatives. For example, the generalized likelihood ratio test
(GLRT) searches over all possible directions in which the true parameter θ ∈ Rd might differ from
some hypothesized θ0, but is not asymptotically efficient against local alternatives in any given
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direction. In high-dimensional or nonparametric settings, the power tradeoff between different
possible alteratives becomes especially pressing: Janssen (2000) shows that for a Gaussian shift
experiment in a real Hilbert space, for any test there exists a finite-dimension subspace outside of
which the power curve is essentially flat. The same problem exists in nonparametric goodness-of-fit
testing, where methods like Pearson’s χ2 test, Neyman’s smooth test, and the Kolmogorov–Smirnoff
test all represent different compromises across the many different ways that the true distribution
might differ from the hypothesized distribution. Even in relatively low-dimensional multivariate
settings, a well-chosen test statistic that focuses on the right alternatives can substantially improve
a method’s power.

In a single multivariate testing problem, we cannot avoid paying the price of agnosticism with-
out prior knowledge of which alternatives are more likely to occur. By contrast, when testing many
multivariate hypotheses at once, we can pool information across hypotheses to learn the requisite
prior knowledge to craft a more powerful test for each hypothesis. This article proposes an interac-
tive empirical Bayes testing framework that uses a partially masked version of the entire data set
to jointly estimate a prior distribution over the alternative. Our method, which we call the Bag
of Null Statistics (BONuS) procedure, controls the false discovery rate (FDR) criterion proposed
by Benjamini and Hochberg (1995): if R is the number of rejections and V is the number of false
rejections, the false discovery proportion (FDP) is defined as V/(1 ∨R) and the FDR is defined as
its expectation, FDR = E [FDP]. The BONuS procedure adaptively estimates an optimal sequence
of nested rejection regions, selecting the largest region for which an estimator of the FDP is below
a prespecified significance level α. It achieves robust finite-sample control of the FDR at level α
whether or not the empirical Bayes working model for the prior is correctly specified.

To illustrate the cost of using an inefficient agnostic test, we consider a rudimentary multivariate
Gaussian simulation with

X(i) ind.∼ N10(θ(i), I10), for i = 1, . . . , n = 10, 000,

where we wish to test θ(i) = 0 against θ(i) 6= 0 for each i. We generate n1 = 500 non-null
statistics with mean parameters drawn independently from θ(i) ∼ N10(0, 4vv′), and the remaining
n0 = n − n1 parameters are set to 0. In this problem the GLRT statistic is (equivalent to)

TGLRT(X(i)) = ‖X(i)‖22, while the Bayes-optimal test statistic is T (X(i)) = (v′X(i))2, which
focuses all of its power in a single dimension of R10.

Figure 1 compares the single- and multiple-hypothesis testing power of three test statistics: the
GLRT test, the oracle test, and an adaptive test statistic using an estimator v̂ fitted on the full data
set using EM-PCA (Roweis, 1998). Figure 1a shows the average power for a level-α hypothesis test

on a new problem with parameter θ(n+1) drawn at random from the alternative. Even in a relatively
low-dimensional setting with d = 10, we see that there are substantial power gains to be had by
substituting the oracle test for the agnostic test, especially for small values of α. The adaptive
estimate of the oracle test statistic, obtained by plugging in v̂ for v, nearly recovers the power of
the oracle test. These differences are magnified in multiple testing, as shown in Figure 1b, where
we compare the true discovery proportion of the Benjamini-Hochberg (BH) procedure (Benjamini
and Hochberg, 1995) with the GLRT and oracle test statistics, as well as our BONuS procedure
which also uses the plug-in estimator v̂.
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(a) Average power for a single level-α hypothe-
sis test using each of three test statistics: The
GLRT statistic TGLRT(X(i)) = ‖X(i)‖22, the or-
acle test statistic T (X(i)) = (v′X(i))2, and an
adaptive test statistic that estimates v.
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(b) True discovery proportion for three FDR-
controlling multiple testing procedures: the
BH(α) procedure using the GLRT statistic, the
BH(α) procedure using the oracle test statistic,
and our BONuS procedure, which estimates v.

Figure 1: Motivating Gaussian example, where θ(i) ∼ N10(0, 4vv′) under the alternative. The
Bayes-optimal oracle test dramatically outperforms the agnostic GLRT test, but requires prior
knowledge of v. Pooling information across all n hypotheses allows estimation of v using EM-PCA
on the full data set, nearly recovering the oracle performance.

1.2 Multiple testing and the two-groups model

We consider testing the null hypothesis H
(i)
0 : θ(i) = 0 against H

(i)
1 : θ(i) 6= 0 in n independent

experiments

X(i) ind.∼ fθ(i)(X) for i = 1, . . . , n, (1)

with possibly infinite-dimensional parameter θ(i) ∈ Θ. Let H0 = {i : H
(i)
0 is true}, and n0 = #H0,

the number of true null hypotheses.
We assume throughout that we are testing a simple null against a composite alternative, but

it is possible to extend the analysis to some problems with nuisance parameters; for example we
could take X(i) to be a multivariate score statistic for the parameter of interest, calculated at a
maximum likelihood estimate for the nuisance parameters. The data X(i) may represent the entire
data set for the ith experiment or a d-variate sufficient statistic summarizing it; we let X represent
the sample space for a generic experiment and assume all distributions under consideration have
densities with respect to a common measure µ on X .

Because the null hypothesis is simple, we can define a valid hypothesis test and calculate p-
values using any (fixed) univariate transformation T : X → R as our test statistic, rejecting for

large values of T (X(i)); likewise, we could test all H
(i)
0 using the BH, Storey-BH Storey et al. (2004),

or other multiple testing procedure that accepts independent p-values as input. We say another
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test statistic T̃ (x) is monotonically equivalent to T (x) if it can be written as a strictly increasing

function of T (x); if T̃ and T are monotonically equivalent then they yield identical p-values.
If we take a Bayesian perspective and assume that θ ∼ Λ under the alternative, then the test

with highest average power rejects for large values of LRΛ(X) = f̄Λ(X)/f0(X), where the mixture
density f̄Λ(X) =

∫
Θ
fθ(X)dΛ(θ) represents the marginal distribution of X under the alternative.

By contrast, the GLRT rejects for large values of TGLRT(X) = supθ∈Θ\{0} fθ(X)/f0(X). If the
prior Λ is relatively concentrated around a lower-dimensional region of Θ\{0} then the test based
on LRΛ may have much higher power, as illustrated in Figure 1, but we must know Λ to use it.

In real applications we typically have no access to Λ, but when we test many hypotheses simul-
taneously, we can hope to reap many of the gains by jointly estimating Λ in a hierarchical Bayesian

working model. Defining the Bernoulli indicator H(i) = 0 if H
(i)
0 is true and H(i) = 1 if false, we

may introduce a version of the two-groups model Efron (2005, 2008) as follows:

H(i) i.i.d.∼ Bern(1− π0)

θ(i) | H(i) = 1
i.i.d.∼ Λ (2)

X(i) | θ(1), . . . ,θ(n) ind.∼ fθ(i)(x).

We emphasize here that (2) is merely a “working model” in the sense that Λ need not exist at
all for our methods to control FDR: finite-sample control is guaranteed under the fixed effects model
(1) where θ(1), . . . ,θ(n) take arbitrary fixed values. Because (1) can be obtained by conditioning on
the latent parameters in (2), the tower rule implies that FDR control is also marginally guaranteed
under the working two-groups model for any π0 and Λ; in particular, FDR is controlled both
conditionally and marginally regardless of whether the analyst specifies a correct model for Λ.

Under the working model, the data follow a closely related mixture density with

X(i) i.i.d.∼ fmix(x) = π0f0(x) + (1− π0)f̄Λ(x). (3)

The posterior probability that H
(i)
0 is true, called the local FDR or lfdr (Efron, 2005), is given by

lfdrπ0,Λ(x) = Pπ0,Λ

(
H(i) = 0 |X(i) = x

)
=

π0f0(x)

fmix(x)
=

(
1 +

1− π0

π0
· LRΛ(x)

)−1

.

Thus, from either a Bayesian or frequentist perspective, any optimal decision rule should reject
for large values of fmix(x)/f0(x), the ratio of the observable mixture density to the null density,
which is always identifiable and monotonically equivalent to the likelihood ratio LRΛ(x) and the lo-
cal FDR lfdrπ0,Λ(x). In other words, optimal rejection regions are super-level sets of fmix(x)/f0(x).
Calculating LRΛ or lfdrπ0,Λ is more challenging because π0 is nearly unidentifiable: without strong
assumptions it is very difficult to disentangle the proportion π0 of exact nulls from the proportion of
non-nulls with parameter values very close to 0. Fortunately, it is sufficient for purposes of testing
to remain agnostic about π0 and estimate fmix(x)/f0(x) instead.

A natural empirical Bayes idea is to estimate either Λ or fmix directly from the data, calculate
p-values with respect to the plug-in test statistic LRΛ̂(x) or f̂mix(x)/f0(x), and then use a method
like BH to control the FDR. The main difficulty with this plan is that we must account properly
for its using the same data twice. If we implement it with no safeguards, we could very easily arrive
at an anticonservative procedure, for example by overestimating fmix(x) at the observed values
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of X(i). Furthermore, expecting consistent estimation of Λ is highly dubious for several reasons:
first, the space of priors over the alternative is very large, and the number of clearly discernible
observations from the alternative is most often relatively small; second, π0 is difficult to estimate
for the reason given above; and finally, density de-convolution is a hard statistical problem even
without these challenges. As a result, we should demand that any adaptive procedure robustly
account for its own adaptivity without relying on consistent estimation or even correct specification
of the prior Λ. As we will see, our method meets these demands.

1.3 Related Work

As an adaptive procedure for multiple testing, BONuS is motivated by several papers on adaptive
inference. In particular, the idea of creating synthetic controls is inspired by the knockoff proce-
dure Barber et al. (2015), where one constructs synthetic nulls mimicking the original covariance
structure and use the synthetic controls as a natural way to provide FDR control. Both AdaPT
Lei and Fithian (2016) and STAR Lei et al. (2020) perform adaptive inference in multiple testing
and are closely related to the knockoff methods as well. BONuS is especially closely related to the
“counting knockoffs” method of Weinstein et al. (2017), which uses the same martingale structure
to perform multiple testing in a linear regression setting with i.i.d. design matrix. By contrast, our
focus here is to learn a prior distribution over a multivariate parameter space.

BONuS attempts to improve the power by using a better test statistic and the motivation comes
from the empirical Bayes model introduced by Efron (2005).

In BONuS, the objective is to adaptively learn the structure of the problem from the data
and use the srtucture to construct a more powerful test statistics. Similar in spirit, many recent
methodology papers in post-selective inference have explored the use of structural information to
improve testing power when certain prior information is available. For example, Li and Barber
(2017); Lei and Fithian (2016); G’Sell et al. (2016) studied a common type of structure that comes
up in dosage response experiment and LASSO solution path, where the hypotheses are ranked in a
order such that a hypothesis can be rejected only if its preceding hypotheses have been rejected. In
gene expression data, Guo et al. (2018); Ramdas et al. (2017) studied another structure represented
by a directed acyclic graph (DAG). In Li and Barber (2016), a generalization of utilizing prior
information is proposed. Finally, Lei and Fithian (2018); Ignatiadis et al. (2016) studied how to
exploit covariates independent of p-values when they are available.

In applications of genome wide association studies (GWAS), there are many situations where
researchers are interested in diseases related to multiple endophenotypes, which naturally motivates
the study of quantitative trait loci (QTL) that have a joint impact on these endophenotypes.
Following this motivation, practitioners proposed various methods for solving multivariate GWAS
problems. For example, in Ferreira and Purcell (2008), the authors used canonical correlation
analysis to extract linear combinations of traits that explains the most correlation with the markers.
Another approach is given by O’Reilly et al. (2012), where in testing the regression coefficients of
genotypes for some quantitative phenotypes, the authors proposed to use multiple phenotypes
jointly to test the coefficients, different from the traditional approach that adopts a T -test for
each genotype-phenotype pair. There is also a principle component based dimension reduction
method in multivariate GWAS Liu and Lin (2019). However, the aforementioned methods are
often nonadaptive and rely on strong modelling assumptions. There has also been some study of
optimizing multivariate test statistics without much modeling assumption, such as Alishahi et al.
(2016) in high dimensional setting and Fithian and Ting (2017) in the setting of nonparametric
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permutation testing. However, neither method achieves finite-sample FDR control.

2 The Bag of Null Statistics (BONuS) procedure

2.1 Definition of the procedure

The BONuS procedure begins by either generating a set of ñ synthetic controls drawn from the
null distribution,

X̃
(1)
, . . . , X̃

(ñ) i.i.d.∼ f0(x),

and then hiding them among the real statistics X(1), . . . ,X(n), without revealing to the analyst
which test statistics are real samples and which are synthetic nulls. Formally, the analyst observes
a permuted version of the data set,

Z =
(
Z(1), . . . ,Z(n+ñ)

)
= Π

(
X(1), . . . ,X(n), X̃

(1)
, . . . , X̃

(ñ)
)
,

where Π is a uniformly random permutation on n+ = n + ñ elements. Equivalently, the analyst
observes the pooled empirical distribution of synthetic null and real test statistics. We will use the
variable j to refer to indices of the permuted vector, so that if j = Π(i) for i ∈ [n], then Z(j) = X(i),

and likewise Z(j) = X̃
(i)

if j = Π(i+ n).

Under the working Bayesian model (2), the permuted values Z(j) are exchangeable (but not
quite independent) with a marginal distribution closely related to fmix:

Z(j) ∼ f̃mix(x) =
ñ

n+
f0(x) +

n

n+
fmix(x) =

ñ+ π0n

n+
f0(x) +

(1− π0)n

n+
f̄Λ(x).

Because ñ/n+ and f0 are known, estimating f̃mix is equivalent to estimating fmix.
The BONuS method proceeds iteratively, gradually revealing more information to the analyst,

who continually updates an estimator T̂ : X → R of either LRΛ(x) or fmix(x)/f0(x) as new
information arrives. This estimator may be based on plugging in a parametric estimate for the
prior Λ, or on estimating fmix directly; our notation is meant to capture either. The analyst
uses the evolving estimator T̂ to construct a shrinking sequence of candidate rejection regions
X ⊇ R1 ) R2 ) · · · . As soon as an estimator of FDP falls below a pre-specified significance level
α, the analyst halts the procedure and rejects all null hypotheses H(i) for which X(i) is in the
current rejection region.

To formally define the procedure, it will be convenient to define the binary indicator B(j) = 1
if Z(j) is real (i.e., if Π−1(j) ≤ n) and B(j) = 0 if it is a synthetic control, and let B(A) = (B(j) :

Z(j) ∈ A) denote the real/synthetic identities for all observations in a set A ⊆ X . In addition
define the counting processes

N(A) = #{i : X(i) ∈ A}, and Ñ(A) = #{i : X̃
(i)
∈ A},

representing respectively the number of real and synthetic observations in A ⊆ X .
At step t = 0, the analyst uses the permuted data to calculate an initial estimator T̂0(x; Z),

and an initial rejection region R1 ⊆ X . R1 will typically be a super-level set of T̂0(x), which is
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a (random) real-valued function defined on X . In the Storey-BONuS version of our procedure,

the analyst also selects a correction set A ⊆ Rc
1, typically a sub-level set of T̂0(x). At step t =

1, . . . , 1 +n+, the analyst is allowed to observe B(Rc
t), “unmasking” the real/synthetic identities of

all observations excluded from the current rejection region, and then calculates an estimator F̂DPt
(defined below) for the rejection region Rt. The analyst either halts the procedure or proposes a
new candidate rejection region Rt+1 ( Rt, typically Rt intersected with a super-level set of an

updated estimator T̂t(x; Z, B(Rc
t)). Figure 2 illustrates how information gradually accrues to the

analyst as more observations are unmasked. We finally reject all H
(i)
0 with X(i) ∈ Rt̂, where

t̂ = min
{
t ≥ 0 : F̂DPt ≤ α or N(Rt) = 0

}
.

To ensure that the method terminates after at most 1 + n+ steps, we require that at least one
new observation be excluded from the rejection region at every step. This requirement is without
loss of generality because the analyst observes no new information unless a new B(i) is revealed.
Otherwise, there are no restrictions at all on how the analyst may choose Rt+1, provided it depends
only on Z and B(Rc

t).

Figure 2: Schematic illustration of the BONuS procedure as the candidate rejection region shrinks.
Each point represents either a two-dimensional test statistic for one of the real hypotheses (red
triangles), or a synthetic test statistic generated from the null distribution (blue squares). The
points in the rejection region are “masked” in the sense that the analyst does not observe whether
each one is real or synthetic.

We consider two versions of the above procedure, the BH-BONuS procedure and the Storey-
BONuS procedure, which respectively use the FDP estimators

F̂DP
BH

t =
n

ñ+ 1
· Ñ(Rt) + 1

1 ∨N(Rt)
, and F̂DP

St

t =
N(A) + 1

Ñ(A)
· Ñ(Rt) + 1

1 ∨N(Rt)
,

To understand the motivation for these estimators, note that Ñ(Rt)/ñ acts as an estimator of

N0(Rt)/n0, where N0(R) = {i ∈ H0 : X(i) ∈ Rt} is the number of false rejections we would make
if we used Rt as our rejection set. As a result, for large rejection regions, we have

F̂DP
BH

t ≈ n

n0
· N0(Rt)

1 ∨N(Rt)
=

n

n0
FDP(Rt).
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The extra factor of n/n0 makes the BH-BONuS procedure conservative in the same way the usual
BH procedure is. The Storey-BONuS procedure attempts to adjust for this conservatism using
the correction set A. If nulls predominate in A, we have N(A)/Ñ(A) ≈ N0(A)/Ñ(A) ≈ n0/ñ, so

F̂DP
St

t ≈ FDP(Rt).
To avoid Ñ(A) = 0, in which case F̂DP

St

t = +∞, we should be sure to choose ñ and A large

enough that P(Ñ(A) = 0) =
(∫
Ac f0(x) dx

)ñ ≈ 0. Since f0 is known, we can easily ensure this.
Algorithm 1 summarizes the Storey-BONuS procedure; the BH-BONuS procedure is identical

except that there is no A, and we substitute F̂DP
BH

t for F̂DP
St

t .

Algorithm 1: The Storey-BONuS procedure

Input : Real statistics X(1), . . . ,X(n), synthetic statistics X̃
(1)
, . . . , X̃

(ñ)
, FDR level α.

Output: Rejection set
1 Generate random permutation Π;

2 Reveal Z = Π

(
X(1), . . . ,X(n), X̃

(1)
, . . . , X̃

(ñ)
)

;

3 Select initial rejection region R1 ⊆ X and correction set A ⊆ Rc
1;

4 for t = 1, . . . , 1 + n+ do
5 Reveal B(Rc

t);

6 if F̂DP
St

t ≤ α or N(Rt) = 0 then

7 Stop procedure and reject H(i) if X(i) ∈ Rt;
8 end
9 Select new rejection region Rt+1 ( Rt;

10 end

To prove finite-sample control we rely on an optional stopping argument. Both F̂DP
BH

t and

F̂DP
St

t can be computed from Z and B(Rc
t), since

N(Rt) = n −
∑

Z(j)∈Rc
t

B(j), and N(A) =
∑

Z(j)∈A⊆Rc
t

B(j),

and likewise for Ñ(Rt) and Ñ(A) after replacing n with ñ and B(j) with 1−B(j). As a result, for
either estimator, t̂ is a stopping time with respect to the filtration defined by Ft = σ (Z, B(Rc

t)),
the information available to the analyst at step t. We show next that both variants of our method
control FDR in finite samples. Our results rely on a lemma regarding the expectations of two
functions of a hypergeometric random variable:

Lemma 1. Let V ∼ Hypergeom(a+ b, a, k), and define U = k − V . Then

E
[

V

1 + U

]
≤ a

1 + b
, and E

[
V

1 + U
· b− U

1 + a− V

]
≤ 1. (4)

The inequalities in (4) are standard results in the FDR control literature used in Storey et al.
(2004), Barber et al. (2015), Weinstein et al. (2017) and Lei and Fithian (2018), but we include a
proof for completeness in Appendix A.1.
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Theorem 2. Assume that the null test statistics (X(i) : i ∈ H0) are drawn i.i.d. from f0 condi-

tional on the non-null test statistics (X(i) : i ∈ Hc
0). Then the BH-BONuS procedure controls FDR

at level αn0/n and the Storey-BONuS procedure controls FDR at level α.

Proof. For our optional stopping arguments, we will use the augmented filtration that also unmasks
the identities of all real, non-null observations:

F+
t = σ

(
Z, B(Rc

t), (B
(Π(i)) : i ∈ Hc

0)
)
.

We also define the σ-fields F0 = σ(Z) and F+
0 = σ

(
Z, (B(Π(i)) : i ∈ Hc

0)
)
. Conditional on F+

0 ,

the n0 + ñ unmasked observations are exchangeable, so that each of the
(
n0+ñ
n0

)
configurations of

their B(j) values is equally likely. Recall that A and R1 are data dependent subsets chosen by the
analyst after observing F0 ⊆ F+

0 .
As the procedure unfolds, each time more B(j) values are unmasked, the remaining masked

values remain conditionally exchangeable. As a result, defining Vt = N0(Rt) and Ut = Ñ(Rt), and
V0 = n0, U0 = ñ, we have for t ≥ 1

Vt | F+
t−1 ∼ Hypergeom(Vt−1 + Ut−1, Vt + Ut, Vt−1).

Note that Vt +Ut is F+
t−1-measurable since the analyst chooses Rt knowing how many total obser-

vations are in Rt−1 \ Rt (or in X \ R1, for t = 1). As a result, by the first inequality in Lemma 1

the quotient Vt/(1+Ut) is a super-martingale with respect to the filtration F+ = (F+
t )

1+n+

t=0 . More-

over, because both estimators F̂DP
BH

t and F̂DP
St

t are measurable with respect to Ft ⊆ F+
t , t̂ is a

stopping time with respect to F+.
We are now ready to prove the result for the BH-BONuS method:

FDR = E
[ N0(Rt̂)

1 ∨N(Rt̂)

]
(5)

= E
[

F̂DP
BH

t̂ · ñ+ 1

n
· N0(Rt̂)

1 + Ñ(Rt̂)

]
(6)

≤ α · ñ+ 1

n
· E
[ N0(Rt̂)

1 + Ñ(Rt̂)

]
(7)

≤ α · ñ+ 1

n
· E
[ N0(X )

1 + Ñ(X )

]
(8)

= α · n0

n
. (9)

The inequality in (7) follows from the fact that either F̂DP
BH

t̂ ≤ α or N0(Rt̂) = N(Rt̂) = 0. The
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inequality in (8) follows from the optional stopping theorem. For the Storey-BONuS method:

FDR = E
[ N0(Rt̂)

1 ∨N(Rt̂)

]
(10)

= E
[
F̂DP

St

t̂ ·
N0(Rt̂)

1 + Ñ(Rt̂)
· Ñ(A)

1 +N(A)

]
(11)

≤ α · E
[ N0(Rt̂)

1 + Ñ(Rt̂)
· Ñ(A)

1 +N0(A)

]
(12)

≤ α · E
[ N0(R1)

1 + Ñ(R1)
· Ñ(A)

1 +N0(A)

]
(13)

≤ α. (14)

For the expectation in (11), we define the integrand as 0 if Ñ(A) = 0; in that case it coincides

with the integrand in (10) because F̂DP
St

t = +∞ for all t so the method makes no rejections.
The inequality in (13) follows from the optional stopping theorem, applied conditional on F+

1 since

Ñ(A) and N0(A) are F+
1 -measurable (but not F+

0 -measurable).

To justify step (14), define A = N0(A∪R1) and B = Ñ(A∪R1). Since the masked B(j) values
in A ∪R1 are exchangeable, we have

V1 | F+
0 , A,B ∼ Hypergeom(A+B, V1 + U1, A),

and we apply the second inequality in Lemma 1.

The martingales that appear in our method are very similar to those in Section 3 of Weinstein
et al. (2017). With a different focus, their paper studies the power-FDR tradeoff of a knockoff
procedure for linear models with i.i.d. Gaussian design and this martingale structure is used to cal-
ibrate the FDR for their knockoff procedure. Although our procedure has a very similar martingale
structure and shares the use of FDR calibration with the null statistics, we use this martingale for
a different purpose, namely, to adaptively use the data to design a better test statistic for multiple
testing problems with a multivariate structure.

We emphasize once again that Theorem 2 controls FDR in the fixed-effects model (1), and also
in the two-groups model (2) for any π0 and Λ, whether or not the analyst uses a correctly specified
model for the prior.

2.2 Asymptotic Power

In this section we show under the Bayesian two-groups model (2) that, if we can consistently estimate
the optimal test statistic, then the BH-BONuS and Storey-BONuS procedures asymptotically match
the power of the BH and Storey-BH procedures respectively. We adopt the empirical process
perspective common in the literature (e.g. Genovese and Wasserman, 2002, 2004; Storey et al.,
2004; Ferreira and Zwinderman, 2006) with the added twist that the test statistic is estimated.

Let T : X → R denote some version of the optimal test statistic, either the likelihood ratio
statistic LRΛ(x) or any monotonically equivalent proxy such as fmix(x)/f0(x) or 1 − lfdr(x). To
avoid technicalities around randomized p-values, we assume that under sampling from fmix, T (X) is
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a continuous random variable, equivalent to assuming the corresponding p-value p(X) is continuous,
and that T (X) has bounded density under sampling from fmix.

Further, let the random function T̂n(x) denote an estimator of the function T (x) calculated by
the analyst using n real experiments and ñ synthetic nulls. We define the estimation errors

en(x) = T (x)− T̂n(x),

and show next that if most of the en values are small, the BH-BONuS procedure and the BH
procedure differ on op(n) rejections.

Theorem 3. Assume that T (x) is monotonically equivalent to fmix(x)/f0(x), and that it is contin-
uously distributed with bounded density under sampling X from fmix. Assume further that π0 > 0
and ñ/n converges to a nonzero constant.

Further, assume that for any δ > 0,

#{j : |en(Z(j))| > δ} = op(n).

Then the set difference between the rejection sets for the BH method using test statistic T (x) and
the BH-BONuS method has cardinality op(n). Likewise, the set difference between the rejection sets
for the Storey-BH method using test statistic T (x) and the Storey-BONuS method has cardinality
op(n).

The proof is given in the appendix.

2.3 Double BONuS

The BONuS method guarantees FDR control while learning an adaptive test statistic from the
data, but there is no guarantee that it will improve the power in any given example. In particular,
if we specify an inappropriate empirical Bayes model or overfit the data, BONuS may underperform
relative to a method that uses an agnostic test. As a result, it is appealing to have a way to try
out several different competing models, perhaps including the agnostic method as a competitor,
and assess which yields the best power. Even if we choose an appropriate model for the prior, our
estimation method may involve tuning parameters that we will need to choose in a principled way.
However, if we naively run many different variants of our method on the same data set and keep
the one that makes the most rejections, we will violate the FDR control guarantee.

To allow for data-driven choices that make the procedure’s power more robust, this section pro-
poses a validation scheme for assessing the power gain of different variants of the BONuS procedure,
based on introducing a second group of synthetic nulls and running an initial stage of each BONuS
variant. The method, which we call Double BONuS, has three steps:

1. Create a set X̃ of ñ number of synthetic samples, and mix them with n real statistics to get a
mixed sample Z with size and n+ = n+ ñ. Then, generate another set Z̃ of synthetic samples
with size ñ+.

2. Run each variant of BONuS on Z and Z̃, treating the first group as the “real” observations
and the second group as the synthetic nulls.

3. Apply BONuS to Z with the variant that makes the most rejections in Step 2 (or a mixture
of several competitive options from Step 2).
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The above may be applied for either the Storey-BONuS or BH-BONuS method (or to choose
between the BH-BONuS and Storey-BONuS methods). Using Double BONuS does not violate the
FDR guarantee of Theorem 2 because the results of Step 2 are all F0-measurable, i.e. they can all
be calculated from Z without knowing anything about which observations in Z correspond to real
observations and which correspond to (the first group of) synthetic nulls. We recommend always
including a non-adaptive, agnostic test as a competitor in case there is very little structure to find;
this will tend to guard against the BONuS method actively harming the power relative to the BH
or Storey-BH procedures. The Double BONuS method is defined formally in Algorithm 2.

Algorithm 2: The Double BONuS procedure

Input : X, ñ, ñ+, updating rules {M1, · · · ,Mk}
Output: The rejection region

1 generate ñ null statistics and mix them with X to get Z, and generate another ñ+ null

statistics to be mixed with Z to get Z̃;
2 LR for i ∈ {1, · · · , k} do

3 Run algorithm 1 with Z ∪ Z̃ as input and Mi as the updating rule for the rejection

region, where Z is treated as real and Z̃ is treated as synthetic in the computation of
FDP estimator

4 end
5 analyze the results of updating rules to finalize a updating rule M∗ and then run

algorithm 1 with Z and use M∗ to update the rejection region. Return the final rejection
region.

Besides the additional computational cost from the additional modeling assumptions, there is no
extra cost in the use of double BONuS. We note that the intention of double BONuS is to help the
analyst select the most reasonable modeling assumptions among the several competitors, but not to
exhaust the space of all possible modeling assumptions, where they can always find one, among the
astronomical number of options, that generates high power in step 2 as a result of overfitting. In
Section 3, we demonstrate the use of the double BONuS extension, where we also discuss strategies
of finalizing M∗ in Section 3.2.

3 Data Experiment

In this section we discuss implementation techniques, some simulation results, and a real data
experiment.

3.1 Choosing the Number of Synthetic Controls

In choosing the number ñ of synthetic nulls, the main tradeoff to consider is that larger values
of ñ improve the accuracy of our FDP estimates, but also make it more difficult to estimate the
alternative density f̄Λ: as ñ → ∞, the signal from the alternative hypotheses is lost in the sea of
synthetic nulls. The other downside of picking a large ñ is the additional computational cost, which
may be burdensome in extremely large scale experiments.

In particular, for problems where one expects the final number of rejections to be very small, it
is important to choose a value ñ large enough to mitigate the finite sample correction that arises
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in the computation of F̂DP. For example, in the BH-BONuS procedure, unless the procedure can
reject at least n/α(ñ+1) hypotheses, it cannot reject any at all; the minimum number of rejections
for the Storey-BONuS method is roughly the same. As a result, picking ñ in the order of n/α is
a natural choice in problems where there is a chance we will make very few rejections. Iterative
techniques such as the EM algorithm may be employed in the case where we need to adopt a large ñ.

Although the analyst is certainly free to attempt any choice or even a multiple-layer BONuS
that allows them to experiment with different numbers of synthetic controls, hereby we make a
general recommendation as follows. First, we choose ñ in the order of n/α, unless constraint in
computational power or storage forbids us from doing so, in which case we may choose ñ as large
as possible. Then, we choose ñ+, the number of second layer synthetic controls in double BONuS,
to be any sufficiently large number. Note that ñ+ is only used in the double BONuS phase where
one wants to compare different candidate models so its value does not need to match n+ = n + ñ
in order. If the analyst expects the problem to come with many discoveries, they can adjust ñ to
the order of n instead of n/α.

3.2 Ensemble Method in Double BONuS

Double BONuS attempts to cherry pick the optimal model from a pool of candidates. However,
there are often situations where none of the candidate models is exactly the same as the true model
and several models pick up different subsets of alternative hypotheses. The traditional wisdom
from ensemble learning instructs one to use multiple models’ result, and we recommend a similar
approach as well.

Specifically, at the stage of double BONuS and before we decide the model to be used in BONuS,
we assess the performance of different candidate models and check if, besides the winning model’s
discoveries, there is a significant number of discoveries from other candidate models. For example,
suppose the winning model makes 200 discoveries while another candidate model only makes 100
discoveries but many of these 100 discoveries are not in the set of 200 discoveries from the winning
model, we may want to pick them up as well. Essentially, we want to combine the candidate models
when they happen to detect different perspectives of the problem.

There is no consensus on how to use the multiple candidate models and combine their results,
so we encourage the analyst to exploit domain knowledge to make an appropriate judgement. In
addition, we recommend an approach based on p-values’ ranking: among the candidate models, we
can compute the (empirical) p-values of each of these models and use the minimum of them as the
new p-value. If this new p-value, equivalent to a test statistic, turns out to perform even better in
the double BONuS step, we can adopt it as the test statistic in the final step.

3.3 Multivariate Gaussian simulation

In this simulation, we use a sample size n = 5, 000 with the number of true positives being n1 = 500
and choose the dimension d to be 50. The distribution of the summary statistic X is:

X(i)|H(i) = 0 ∼ Nd(0, Id) (15)

X(i)|H(i) = 1 ∼ Nd(0, Id +M) (16)

where M is a fixed matrix of rank 5. In our double BONuS experiment, we use a principal
component analysis (PCA) approach with k principal components, where k ranges from 1 to d.
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Besides the set of real statistics X, we create a set X̃ of ñ = n synthetic controls for BONuS and

mix them to get S = X ∪ X̃. Then, we create another set S̃ of 2n synthetic samples as the second
layer synthetic nulls for double BONuS. We perform PCA with different choices of k on S ∪ S̃ to
cherry pick the optimal model. The result, for a level 0.05 FDR control, is shown in Figure 3.

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●
●

●●

●●
●

●

●●●

●●

●

●●●

●
●

●●●

●●

50

100

150

200

0 10 20 30 40 50
Dimension of learned subspace

N
um

be
r 

of
 d

is
co

ve
rie

s

Double BONuS Implementation

Figure 3: Numerical simulation for multivariate Gaussian with low rank signals, α = 0.05

The optimal choice is the model with 7 components, where we attained 214 ‘discoveries’ in S.

After the screening, we pick this model, with which we apply BONuS to the mixture of X and X̃.
To see the effect, we also run the same set of data with different choices of α, ranging from 0.01

to 0.2. In Figure 4, we compare the false discovery proportion and empirical power of the three
approaches: the agnostic (Chi-squared) test, the double BONuS procedure, and the oracle proce-
dure. All three procedures used the same Storey correction, and the oracle procedure is computed
with knowledge of M. As expected, the double BONuS procedure is able to capture much of the
low rank structure in the problem and thus much more powerful than the agnostic test.

3.4 Multiple Multinomial Testing

BONuS is especially suitable for a high dimensional setting where an appropriate test statistic is
typically not available and the cost of an agnostic test is huge. To illustrate this point, we run a
simulation of multinomial tests with varying dimensions.

We consider the case where each X(i) follows a multinomial distribution MultiNom(N,θ), with
θ = θ0 under the null and θ = θ1 under the alternative, where we know θ0 but not θ1. For
the simulation, we choose θ0 to be (1/d, · · · , 1/d) and add normalized Rademacher perturbation
to θ0 to obtain θ1, a setting from Balakrishnan and Wasserman (2017a). We repeat this simulation
with 120 independent runs for each d ∈ {6, · · · , 30} and N = 2000, where in each run the number
of hypotheses is n = 3000 and the number of alternative hypotheses is n1 = 300. Note that we
generate a new θ1 for each run as well.
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Figure 4: Comparison of false discovery proportions and powers of agnostic, double BONuS, and
oracle procedure for the multivariate normal testing problem.

We compare BONuS with the oracle test and an agnostic test, where the oracle procedure
assumes the knowledge of θ1 and uses the corresponding likelihood ratio test statistic. For the
agnostic test, we use the χ2 test statistics and note that although it is suboptimal for multinomial
test in general, but for the case of uniform null, the χ2 test is equivalent to the truncated χ2 test,
which was shown to be minimax Balakrishnan and Wasserman (2017a,b). We include the result in
Figure 5.

3.5 The Metabolic Syndrome GWAS

In many GWAS experiments, scientists are interested in identifying the SNPs related to certain
diseases, whose severity can be characterized by multiple phenotypes. In this section, we apply
BONuS to study the SNPs associated with metabolic syndrome, a problem studied by Liu and Lin
(2019) with a different focus.

Metabolic syndromes refer to a medical condition found to be associated with a higher risk
in cardiovascular disease and type-II diabetes. In this experiment, we want to identify the SNPs
related to the metabolic syndrome, which in turn is linked to the following list of quantitative
phenotypes: BMI, waist-hip ratio adjusted for BMI, high-density lipoprotein cholesterol (HDL),
low-density lipoprotein cholesterol (LDL), Triglycerides (TG), fasting glucose, and fasting insulin.
Although it is more likely for a SNP to be related to only one or few phenotypes, scientists speculate
about detecting the SNPs with a weak effect on any single phenotype but a non-negligible joint
effect.

For our experiment, we have z-scores for each of the phenotypes from several different medical
research projects: Locke et al. (2015); Shungin et al. (2015); Teslovich et al. (2010); Manning et al.
(2012). Since these projects study slightly different sets of SNPs, we choose to focus only on the
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Figure 5: FDR and power of agnostic, double BONuS, and oracle procedures for the multinomial
testing problem.

intersection of SNPs in all studies.
Before running the experiment, we use LD-pruning, a method described in Purcell et al. (2007),

to prune SNPs such that the remaining SNPs can be considered approximately independent under
the null. After the preprocessing, there are about 1.8 million SNPs left.

One challenge is in the specification of the null. Under the null, a SNP is not associated with
the metabolic syndrome so we expect its z-score vector to have mean 0. However, the z-scores of
different phenotypes are correlated so the covariance matrix of the z-score vector is not the identity
matrix: for example, the z-scores for SNPs in the fasting glucose study and the fasting insulin study
have a 0.26 correlation coefficient. To create synthetic controls, we use a robust covariance matrix
estimation on the z-score matrix X, and then transform X to have a identity covariance matrix,
after which we may assume that under the null, the z-score vector for a SNP follows a standard
multivariate Gaussian distribution and thus create the synthetic controls.

In Figure 6, we show the number of discoveries as a function of α for both BONuS and agnostic
approaches. One may observe that the power gain here is less than those in the previous experi-
ments, but in this study one actually expects a large fraction of discoveries to be related to only
one phenotype so it is the marginal gain that matters.

4 Discussion

The BONuS procedure is a novel method for multiple testing in multivariate or nonparametric
settings. By learning an empirical Bayes prior from a joint analysis of all the data, it estimates a
test statistic to optimize the average power across all hypotheses. By using a data masking scheme,
it prevents the analyst from violating its finite-sample FDR control guarantee even when the analyst
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Figure 6: Metabolic syndrome GWAS experiment.

has full access to the synthetic controls. While BONuS is especially useful in high-dimensional cases
where agnostic testing has very low power, we have seen that it is possible to attain significant power
improvements even in relatively low dimensions. Besides the BONuS procedure, we also presented
its extension, the double BONuS procedure, a cross-validation-like scheme that robustly gains power
by allowing the user to test several models and choose the best-performing one.

For future work, there are two remaining issues with the work that we feel it is especially
pressing to resolve. First, like many other FDR-controlling multiple testing methods, BONuS
assumes independence across the hypotheses, an unrealistic assumption in many of the most popular
applications of multiple testing in genetics and medical imaging. Second, BONuS requires the null
hypotheses to be simple rather than composite, and does not allow for incorporating covariates.
Both of these are important topics for future work.
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A FDR Control and Power

A.1 Proof to Lemma 1

Proof. The probability mass function for (V,U) is:

P(V = v, U = k − v) =

(
a
v

)(
b

k−v
)(

a+b
k

) ,

where we define the binomial term
(
a
k

)
and

(
b

k−v
)

to be 0 when k > a and k − v > b.

Let V −, V + be the minimum and maximum numbers such that P(V = v, U = k− v) > 0. Then
we have:
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and thus we complete the first part, where we note that the result is not contingent on the choice
of k, which can be any of {0, · · · , a+ b}. With a similar approach,

E
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]
=

V +∑
v=V −

v · (b− (k − v))

(1 + k − v)) · (1 + a− v)
· P(V = v) (17)

=

V +∑
v=V −

v · (b− (k − v))

(1 + k − v)) · (1 + a− v)
·
(
a
v

)(
b

k−v
)(

a+b
k

) (18)

=

V +∑
v=V −+1

(
a
v−1

)(
b

k−v+1

)(
a+b
k

) (19)

≤ 1, (20)

where in (19) the term corresponding to V − is 0 since either V − is 0 or b − (k − V −) is 0. Thus
the proof is complete.

Theorem 3. Assume that T (x) is monotonically equivalent to fmix(x)/f0(x), and that it is contin-
uously distributed with bounded density under sampling X from fmix. Assume further that π0 > 0
and ñ/n converges to a nonzero constant.

Further, assume that for any δ > 0,

#{j : |en(Z(j))| > δ} = op(n).

Then the set difference between the rejection sets for the BH method using test statistic T (x) and
the BH-BONuS method has cardinality op(n). Likewise, the set difference between the rejection sets
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for the Storey-BH method using test statistic T (x) and the Storey-BONuS method has cardinality
op(n).

Proof. The maximum density for T (X) under sampling from f0 is no more than 1/π0 times the
maximum density under sampling from fmix; let g∗ be the maximum of either of the two densities.

Define the following functions of ζ ≥ 0:

Q̃n(ζ) =
1 + #{i : T̂n(X̃

(i)
) ≥ ζ}

1 + ñ

P̃n(ζ) =
1 + #{i : T (X̃

(i)
) ≥ ζ}

1 + ñ

Qn(ζ) =
#{i : T̂n(X(i) ≥ ζ}

n

Pn(ζ) =
#{i : T (X(i) ≥ ζ}

n

P0(ζ) = PX∼f0(T (X) ≥ ζ)

P (ζ) = PX∼fmix
(T (X) ≥ ζ)

Then BH-BONuS rejects all hypotheses with

T̂n(X(i)) ≥ ζ̂n = min
{
ζ : Ĝn(ζ) ≤ α

}
, where Ĝn(ζ) =

Q̃n(ζ)

Qn(ζ)
.

The BH procedure with test statistic T (x), on the other hand, rejects all hypotheses with

T (X(i)) ≥ ζ̂BH
n = min

{
ζ : ĜBH

n (ζ) ≤ α
}
, where ĜBH

n (ζ) =
P0(ζ)

Pn(ζ)
.

Define the idealized BH threshold to be the same expression as above but with Pn replaced with
its population counterpart P :

ζ∗ = min {ζ : G(ζ) ≤ α} , where G(ζ) =
P0(ζ)

P (ζ)
.

If no such ζ satisfies the inequality, define ζ∗ or ζ̂BH
n to be the supremum of supp(T (X)), and

ζ̂n to be the supremum of supp(T̂n(X)); either of these suprema could be infinite. If T (x) is
monotonically equivalent to fmix(x)/f0(x), and its distribution is continuous, then G(ζ) must be
strictly decreasing in ζ.

Next, fix ζ0 with P (ζ0) > 0. Our next goal is to show that

sup
ζ≤ζ0

∣∣∣Ĝn(ζ)−G(ζ)
∣∣∣ , sup

ζ≤ζ0

∣∣∣ĜBH
n (ζ)−G(ζ)

∣∣∣ p→ 0. (21)
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For δ > 0 define Eδ to be the event under which:

max

{
#{i : |en(X̃

(i)
)| > δ}

ñ
,

#{i : |en(X(i))| > δ}
n

,

sup
ζ
|P̃n(ζ)− P0(ζ)|, sup

ζ
|Pn(ζ)− P (ζ)|

}
< δ.

The probability of Eδ tends to one, by assumption for the first two expressions and by the Glivenko–
Cantelli Theorem for the other two. Then for sufficiently small δ, on Eδ we have for all ζ ≤ ζ0:

Ĝn(ζ) =
Q̃n(ζ)

Qn(ζ)
≤ P̃n(ζ − δ) + δ

Pn(ζ + δ)− δ
≤ P̃n(ζ) + δg∗ + δ

Pn(ζ)− δg∗ − δ
≤ P0(ζ) + δ + δg∗ + δ

P (ζ)− δ − δg∗ − δ

≤ P0(ζ)

P (ζ)
+

2(P0(ζ) + P (ζ))

(P (ζ)− (2 + g∗)δ)2
· (2 + g∗)δ ≤ G(ζ) + C(P (ζ0), g∗)δ,

where we have used in the last step that P (ζ) is decreasing in ζ, and P0(ζ) ≤ P (ζ) ≤ 1. By similar
means we can establish bounds in the other direction, as well as bounds in both directions for the
difference between ĜBH

n and G, so we have (21) because δ is arbitrary.
Now there are two cases: P (ζ∗) = 0, and P (ζ∗) > 0. In the first case, choose ζ0 and sufficiently

small δ so that P (ζ0) < P (ζ0 − δ) < 1/M . Then by our uniform convergence result we must have

P(ζ̂n, ζ̂
BH
n > ζ0)→ 1, and we will therefore have have op(n) rejections for either procedure.

In the second case, we can choose any ζ0 with 0 < P (ζ0) < P (ζ∗), and it will follow by the

definitions of ζ̂n, ζ̂BH
n , and ζ∗ that

ζ̂n, ζ̂
BH
n

p→ ζ∗. (22)

Because G(ζ) is strictly decreasing in ζ, the result follows.

B Linear Multivariate Gaussian Testing

As we have proved above, the FDR control of BONuS does not rely on specific model assumptions.
However, the gain in power depends on the model we choose. In the following, we demonstrate
a particular theoretical example in multiple testing for multivariate Gaussian distributions, first
illustrating how problems can arise in a high dimensional testing and then demonstrating that the
parameters are learnable via an maximum likelihood estimator (MLE) approach, where we also give
a nonasymptotic upper bound on the error of the MLE.

B.1 Problem Statement and Result

Consider the Bayes two-group model with:

µ(i) |H(i) ∼ H(i) · Nd(0,Ψ) (23)

X(i) |µ(i), H(i) ∼ Nd(µ(i), Id) (24)

An important case is that Ψ is a diagonal matrix that has only k nonzero terms, which corre-
sponds to a feature selection problem, and when k � d, it reduces to a sparse problem. Here we
consider a more general version where Ψ is a rank k matrix.
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In this case, we have X(i)|H(i) = 1 ∼ Nd(0,Ψ + Id), so we may derive the likelihood ratio as:

fΛ(x)

f0(x)
∝ x′x− x′(Ψ + Id)

−1x (25)

= x′
(
Id − (Ψ + Id)

−1
)
x (26)

If we know the matrix Ψ, then we can use X ′
(
Id − (Ψ + Id)

−1
)
X as an oracle test statistic.

Hence, the problem reduces to finding the matrix Ψ from the data mixed with the synthetic
samples. To formulate our problem more precisely, note that the data X(1), . . . ,X(n) can be
thought to be i.i.d. samples from two-components mixture models with true density function
pG∗ := (1− λ∗)N(0, Id) + λ∗N(0, Id + Ψ∗) where G∗ := (λ∗,Ψ∗) such that λ∗ ∈ (0, 1) and Ψ∗ ∈ Ω
are unknown parameters. Here, Ω is a set of positive definite matrices whose eigenvalues are upper
bounded by some fixed constant. If we mix a fixed proportion of synthetic samples with the true
samples, the resulting mixture is still a Gaussian mixture, so without loss of generality we may just
ignore the synthetic samples here.

In this case of Gaussian 2-mixture model, we can show that the maximum likelihood estimator

for Ψ is rate-optimal up to a
(

log(n)
)1/2

factor. We use MLE to obtain an estimation of G∗, i.e.,

we have the following estimator

Ĝn := arg min
G∈(0,1)×Ω

n∑
i=1

log(pG(X(i))) (27)

To talk about density estimation from MLE method, we will utilize the classical result from van de
Geer (2000). In particular, we have the following result regarding the density estimation pĜn

.

Proposition 4. There exist some positive constants C and c depending only on d,Ω such that

P

(
h(pĜn

, pG∗) > C

(
log n

n

)1/2)
≤ exp(−c log n).

The proof of the above proposition is a direct application of Theorem 7.14 in van de Geer (2000).
Note that the standard result holds that the optimal convergence rate for parameter estimation in
finite mixture model with a known number of component is n−1/2, so MLE is rate optimal up to a(

log(n)
)1/2

factor.

Convergence rates of MLE Given the setup of MLE in equation (27), we have the following

result regarding the convergence rates of Ĝn.

Theorem 5. Assume that Ĝn is given as in equation (27). Then, the following holds:

(a) P
(
|λ̂n − λ∗|‖Ψ̂n‖‖Ψ∗‖ > C1

(
log n

n

)1/2)
≤ exp(−c1 log n),

(b) P
(
λ∗‖Ψ∗‖‖Ψ̂n −Ψ∗‖ > C1

(
log n

n

)1/2)
≤ exp(−c1 log n).

Here, the probability P is taken with respect to density function pG∗ . Furthermore, C1, c1 are positive
constants depending only on d and Ω.
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The interesting feature in Theorem 5 is that both constants C1 and c1 are independent of λ∗

and Ψ∗. Therefore, the above results give a rigorous way to evaluate the convergence rates of λ̂n
and Ψ̂n when either λ∗ goes to 0 or Ψ∗ goes go ~0 with the sample size. To further obtain the sole
dependence of the convergence rate of λ̂n on ‖Ψ∗‖ in part (a) of Theorem 5, we will need to enforce
more conditions on λ∗ and ‖Ψ∗‖. In particular, we denote

Θn(ln) =

{
G = (λ,Ψ) :

ln
‖Ψ‖2

√
n
≤ λ

}
.

We have the following convergence result of λ̂n when G∗ ∈ Θn(ln):

Proposition 6. Assume that the sequence ln is chosen such that ln/
√

log(n) → ∞ as n → ∞.
Then, as n is sufficiently large such that C1

√
log n/ln < 1/2, we obtain

P

(
|λ̂n − λ∗|‖Ψ∗‖2 > 2C1

(
log n

n

)1/2)
≤ 2 exp(−c1 log n)

as long as G∗ ∈ Θn(ln) where C1, c1 are two positive constants defined in Theorem 5.

Note that, the condition of Θ(ln) is to guarantee that Ψ̂n is the consistent estimator of Ψ∗. The
detail proof of Proposition 6 is deferred to Section B.2. A minimax result is also available but not
related to our discussion here.

B.2 Proof of Theorem 5

Our approach to obtain the convergence rate of Ĝn to G∗ is based on the comparison between
density estimation and parameter estimation, i.e., we would like to see how close Ĝn to G∗ as long
as pĜn

is close to pG∗ . In particular, we have the following result regarding such approach.

Theorem 7. For any G = (λ,Ψ) and G∗ = (λ∗,Ψ∗), we denote

D(G,G∗) := l‖Ψ‖2 + λ∗‖Ψ∗‖2 −min {λ, λ∗}
(
‖Ψ‖2 + ‖Ψ∗‖2

)
+

(
λ‖Ψ‖+ λ∗‖Ψ∗‖

)
‖Ψ−Ψ∗‖.

Then, there exists a positive constant C depending only on d and Ω such that

‖pG − pG∗‖1 ≥ C · D(G,G∗)

for all G and G∗.

Remark: We can verify that

D(G,G∗) � D1(G,G∗) = |λ− λ∗|‖Ψ‖‖Ψ∗‖+
(
λ‖Ψ‖+ λ∗‖Ψ∗‖

)
‖Ψ−Ψ∗‖

for any Ψ and Ψ∗. Therefore. we also can obtain the lower bound of L1 norm between pG and pG∗
in terms of D1(G,G∗). This particular lower bound is useful for deriving the convergence rates of
MLE estimation later.

To achieve the conclusion of the theorem, we firstly demonstrate the following result
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Proposition 8. Denote G = (λ,Ψ) such that λ ∈ [0, 1] and Ψ can be identical to ~0 where ~0 denotes
matrix with all elements to be 0. Then, the following holds

lim
ε→0

inf
G,G∗

{
‖pG − pG∗‖∞
D(G,G∗)

: D(G,G) ∨ D(G∗, G) ≤ ε
}
> 0.

Proof. Throughout this proof, we denote f1(x|Ψ) to be the density of N(0, Id + Ψ). Here, we
only consider the most challenging setting that Ψ = ~0 as the proof for other possibilities of Ψ
and λ can be argued in the similar fashion. Assume that the conclusion of Proposition 8 does not
hold. It implies that we can find two sequences Gn = (λn,Ψn) and G∗,n = (λ∗n,Ψ

∗
n) such that

D(Gn, G) = λn‖Ψn‖2 → 0, D(G∗,n, G) = λ∗n‖Ψ
∗
n‖2 → 0, and ‖pGn

− pG∗,n‖∞/D(Gn, G∗,n) → 0
as n → ∞. For the transparency of presentation, we denote An = ‖Ψn‖, Bn = ‖Ψ∗n‖, and
Cn = ‖Ψn −Ψ∗n‖. Now, we have three main cases regarding the convergence behaviors of Ψn and
Ψ∗n

Case 1: Both An → 0 and Bn → 0, i.e., Ψn and Ψ∗n vanish to ~0 as n→∞. Due to the symmetry
between λn and λ∗n, we assume without loss of generality that λ∗n ≥ λn for infinite values of n.
Without loss of generality, we replace these subsequences of Gn, G∗,n by the whole sequences of Gn
and G∗,n. Now, the formulation of D(Gn, G∗,n) is

D(Gn, G∗,n) = (λ∗n − λn)B2
n+

(
λnAn + λ∗nBn

)
Cn.

Now, by means of Taylor expansion up to the second order, we get

pGn
(x)− pG∗,n(x)

D(Gn, G∗,n)
=

(λ∗n − λn)[f1(x|~0)− f1(x|Ψ∗n)] + λn[f1(x|Ψn)− f1(x|Ψ∗n)]

D(Gn, G∗,n)

=

(λ∗n − λn)

(
2∑

|α|=1

(−Ψ∗n)α

α!

∂|α|f1

∂Ψα (x|Ψ∗n) +R1(x)

)
D(Gn, G∗,n)

+

λn

(
2∑

|α|=1

(Ψn −Ψ∗n)α

α!

∂|α|f1

∂Ψα (x|Ψ∗n) +R2(x)

)
D(Gn, G∗,n)

,

where R1(x) and R2(x) are Taylor remainders that satisfy R1(x) = O(B2+γ
n ) and R2(x) = O(C2+γ

n )
for some positive number γ due to the smoothness of Gaussian kernel. From the formation of
D(Gn, G∗,n), since An +Bn ≥ Cn (triangle inequality), as An → 0 and Bn → 0 it is clear that

(λn − λ∗n)|R1(x)|/D(Gn, G∗,n) ≤ |R1(x)|/B2
n = O(Bγn)→ 0,

λn|R2(x)|/D(Gn, G∗,n) ≤ |R2(x)|/ {(An +Bn)Cn} = O

(
C2+γ
n /C2

n

)
= O(Cγn)→ 0,

as n→∞ for all x ∈ X . Therefore, we achieve for all x ∈ X that(
(λn − λ∗n)|R1(x)|+ λn|R2(x)|

)
/D(Gn, G∗,n)→ 0.
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Hence, we can treat [pGn(x)− pG∗,n(x)]/D(Gn, G∗,n) as a linear combination of
∂|α|f1

∂Ψα (x|Ψ∗n) for

all x and α ∈ Nd×d such that 1 ≤ |α| ≤ 2. Assume that all the coefficients of these terms go to 0

as n→∞. By studying the vanishing behaviors of the coefficients of
∂|α|f1

∂Ψα (x|Ψ∗n) as |α| = 1, we

achieve the following limits(
λn(Ψn)uv − λ∗n(Ψ∗n)uv

)
/D(Gn, G∗,n)→ 0

for all 1 ≤ u, v ≤ d where Auv denotes the (u, v)-th element of matrix A. For any two pairs
(u1, v1), (u2, v2) (not neccessarily distinct) such that 1 ≤ u1, u2, v1, v2 ≤ d, the coefficients of
∂|α|f1

∂Ψα (x|Ψ∗n) when (α)u1v1 = (α)u2v2 = 1 leads to[
(λ∗n − λn)(−Ψ∗n)u1v1(−Ψ∗n)u2v2 + λn(Ψn −Ψ∗n)u1v1(Ψn −Ψ∗n)u2v2

]
/D(Gn, G∗,n)→ 0. (28)

When (u1, v1) ≡ (u2, v2), the above limits lead to[
(λ∗n − λn)(Ψ∗n)2

u1v1 + λn(Ψn −Ψ∗n)2
u1v1

]
/D(Gn, G∗,n)→ 0.

Therefore, we would have that[
(λ∗n − λn)‖Ψ∗n‖2 + λn‖Ψn −Ψ∗n‖2

]
/D(Gn, G∗,n)→ 0. (29)

Now, as

(
λn(Ψn)uv − λ∗n(Ψ∗n)uv

)
/D(Gn, G∗,n)→ 0 for all 1 ≤ u, v ≤ d, we obtain that

(
λn(Ψn)u1v1(Ψn)u2v2 − λ∗n(Ψ∗n)u1v1(Ψn)u2v2

)
/D(Gn, G∗,n) → 0,(

λn(Ψn)u1v1(Ψ∗n)u2v2 − λ∗n(Ψ∗n)u1v1(Ψ∗n)u2v2

)
/D(Gn, G∗,n) → 0

for any two pairs (u1, v1), (u2, v2). The above results imply that[
(λ∗n − λn)(−Ψ∗n)u1v1(−Ψ∗n)u2v2 + λn(Ψn −Ψ∗n)u1v1(Ψn −Ψ∗n)u2v2

+(λn − λ∗n)(Ψ∗n)u1v1(Ψn)u2v2

]
/D(Gn, G∗,n)→ 0. (30)

By combining the results from (28) and (30), we ultimately achieve for any two pairs (u1, v1) and
(u2, v2) that

(λn − λ∗n)(Ψ∗n)u1v1(Ψn)u2v2/D(Gn, G∗,n)→ 0. (31)
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Using the results from equation (28) and (31), we have

λn(Ψn)u1v1(Ψn −Ψ∗n)u2v2

D(Gn, G∗,n)
→ (λ∗n − λn)(Ψn)u1v1(Ψ∗n)u2v2

D(Gn, G∗,n)
→ 0,

λ∗n(Ψ∗n)u1v1(Ψn −Ψ∗n)u2v2

D(Gn, G∗,n)
→ (λ∗n − λn)(Ψ∗n)u1v1(Ψn)u2v2

D(Gn, G∗,n)
→ 0

for any two pairs (u1, v1) and (u2, v2). Therefore, it leads to∑
(u1,v1),(u2,v2)

λn|(Ψn)u1v1 ||(Ψn −Ψ∗n)u2v2 |

D(Gn, G∗,n)
=

λn
∑

(u1,v1)

|(Ψn)u1v1 |
∑

(u2,v2)

|(Ψn −Ψ∗n)u2v2 |

D(Gn, G∗,n)
→ 0,∑

(u1,v1),(u2,v2)

λ∗n|(Ψ
∗
n)u1v1 ||(Ψn −Ψ∗n)u2v2 |

D(Gn, G∗,n)
=

λ∗n
∑

(u1,v1)

|(Ψ∗n)u1v1 |
∑

(u2,v2)

|(Ψn −Ψ∗n)u2v2 |

D(Gn, G∗,n)
→ 0.

The above results indicate that

λn‖Ψn‖‖Ψn −Ψ∗n‖/D(Gn, G∗,n)→ 0, λ∗n‖Ψ
∗
n‖‖Ψn −Ψ∗n‖/D(Gn, G∗,n)→ 0. (32)

Combining the results from (29) and (32), we have

1 = D(Gn, G∗,n)/D(Gn, G∗,n)→ 0,

which is a contradiction. As a consequence, not all the coefficients of
∂|α|f1

∂Ψα (x|Ψ∗n) go to 0 as

1 ≤ |α| ≤ 2. By denoting mn to be the maximum of the absolute values of the coefficients of
∂|α|f1

∂Ψα (x|Ψ∗n) we achieve for all x that

1

mn

pGn
(x)− pG∗,n(x)

D(Gn, G∗,n)
→

2∑
|α|=1

τα
∂|α|f1

∂Ψα (x|0) = 0

where τα ∈ R are some coefficients such that not all of them are 0. We can check that the previous
equation only holds when τα = 0 for all 1 ≤ |α| ≤ 2, which is a contradiction. As a consequence,
Case 1 cannot happen.

Case 2: Exactly one of An and Bn goes to 0, i.e., there exists at least one component among Ψn

and Ψ∗n that does not converge to ~0 as n → ∞. Due to the symmetry of An and Bn, we assume
without loss of generality that An 6→ 0 and Bn → 0, which is equivalent to Ψn → Ψ′ 6= ~0 while
Ψ∗n → ~0 as n→∞. We denote

D′(Gn, G∗,n) = |λ∗n − λn|Bn + λnAn + λ∗nBn.

Since [pGn(x)− pG∗,n(x)]/D(Gn, G∗,n)→ 0, we achieve that [pGn(x)− pG∗,n(x)]/D′(Gn, G∗,n)
→ 0 for all x as D(Gn, G∗,n) . D′(Gn, G∗,n). By means of Taylor expansion up to the first order,
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we have

pGn
(x)− pG∗,n(x)

D′(Gn, G∗,n)
=

(λ∗n − λn)[f1(x|~0)− f1(x|Ψ∗n)] + λnf1(x|Ψn)− λnf1(x|Ψ∗n)

D′(Gn, G∗,n)

=

(λ∗n − λn)

( ∑
|α|=1

(−Ψ∗n)α

α!

∂|α|f1

∂Ψα (x|Ψ∗n) +R′1(x)

)
D′(Gn, G∗,n)

+
λnf1(x|Ψn)− λnf1(x|Ψ∗n)

D′(Gn, G∗,n)

where R′1(x) is Taylor remainder that satisfies (λ∗n − λn)|R′1(x)|/D′(Gn, G∗,n) = O(Bγ
′

n ) → 0
for some positive number γ′ > 0. Since Ψn and Ψ∗n do not have the same limit, they will be
different when n is large enough, i.e., n ≥ M ′ for some value of M ′. Now, as n ≥ M ′, [pGn(x) −

pG∗,n(x)]/D′(Gn, G∗,n) becomes a linear combination of
∂|α|f1

∂Ψα (x|Ψ∗n) for all |α| ≤ 1 and f1(x|Ψn).

If all of the coefficients of these terms go to 0, we would have λn/D′(Gn, G∗,n) → 0 and (λ∗n −
λn)(−Ψ∗n)uv/D′(Gn, G∗,n)→ 0 for all 1 ≤ u, v ≤ d. It implies that (λ∗n−λn)Bn/D′(Gn, G∗,n)→ 0,
λnAn/D′(Gn, G∗,n)→ 0, and λnBn/D′(Gn, G∗,n)→ 0. These results lead to

1 =

(
|λ∗n − λn|Bn + λnAn + λ∗nBn

)
/D′(Gn, G∗,n)→ 0,

a contradiction. Therefore, not all the coefficients of
∂|α|f1

∂Ψα (x|Ψ∗n) and f1(x|Ψn) go to 0. By

defining m′n to be the maximum of these coefficients, we achieve for all x that

1

m′n

pGn
(x)− pG∗,n(x)

D′(Gn, G∗,n)
→ η′f1(x|~0) +

1∑
|α|=0

τ ′α
∂|α|f1

∂Ψα (x|Ψ′) = 0,

where η′ and τ ′α are coefficients such that not all of them are 0, which is a contradiction to the first
order identifiability of Gaussian distribution with only covariance parameter. As a consequence,
Case 2 cannot hold.

Case 3: Both An and Bn do not go to 0, i.e., Ψn and Ψ∗n do not converge to ~0 as n→∞. Since
Dn(Gn, G∗,n) . K(Gn, G∗,n) = |λn−λ∗n|+ (λn +λ∗n)Cn and [pGn

(x)− pG∗,n(x)]/D(Gn, G∗,n)→ 0,
we achieve that [pGn(x) − pG∗,n(x)]/K(Gn, G∗,n) → 0 for all x. From here, by using the same
argument as that of Case 1 and Case 2, we also reach the contradiction. Therefore, Case 3 cannot
happen.

In sum, we achieve the conclusion of the proposition.

Now, assume that the conclusion of Theorem 7 does not hold. It implies that we can find two
sequences G′n and G′∗,n such that Fn = ‖pG′n − pG′∗,n‖1/D(G′n, G

′
∗,n) → 0 as n → ∞. Since Ω

is bounded set of positive definite matrices, we can find subsequences of G′n and G′∗,n such that

D(G′n, G1) and D(G′∗,n, G2) vanish to 0 as n→∞ where G1, G2 are some parameters in [0, 1]×Ω.
Because Fn → 0, we obtain ‖pG′n − pG′∗,n‖1 → 0 as n→∞. By means of Fatou’s lemma, we have

0 = lim
n→∞

∫
|pG′n(x)− pG′∗,n(x)|dx ≥

∫
lim inf
n→∞

|pG′n(x)− pG′∗,n(x)|dx = ||pG1
− pG2

||1.
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Due to the fact that Gaussian is identifiable, the above equation implies that G1 ≡ G2. However,
from the result of Proposition 8, regardless of the value of G1 we would have Fn 6→ 0 as n → ∞,
which is a contradiction. Therefore, we obtain the conclusion of the theorem.

B.3 Proof of Proposition 6

Let n be such that C1

√
log n/ln < 1/2 where C1 is positive constant in Theorem 5. Then, we obtain

that

P

(
‖Ψ̂n‖ <

‖Ψ∗‖
2

)
= P

(
‖Ψ∗‖ − ‖Ψ̂n‖ >

‖Ψ∗‖
2

)
≤ P

(
‖Ψ∗ − Ψ̂n‖ >

‖Ψ∗‖
2

)
.

≤ P

(
‖Ψ∗ − Ψ̂n‖ >

C1

√
log n‖Ψ∗‖
ln

)
≤ P

(
‖Ψ∗ − Ψ̂n‖ >

C1

√
log n‖Ψ∗‖

λ∗‖Ψ∗‖2
√
n

)
= P

(
λ∗‖Ψ∗‖‖Ψ̂n −Ψ∗‖ > C1

(
log n

n

)1/2)
≤ exp(−c1 log n)

where c1 is positive constant defined in Theorem 5. The above inequality leads to

P

(
|λ̂n − λ∗|‖Ψ∗‖2 > 2C1

(
log n

n

)1/2)
= P

(
|λ̂n − λ∗|‖Ψ∗‖2 > 2C1

(
log n

n

)1/2

, ‖Ψ̂n‖ ≥
‖Ψ∗‖

2

)
+ P

(
|λ̂n − λ∗|‖Ψ∗‖2 > 2C1

(
log n

n

)1/2

, ‖Ψ̂n‖ <
‖Ψ∗‖

2

)
≤ P

(
|λ̂n − λ∗|‖Ψ̂n‖‖Ψ∗‖2 > C1

(
log n

n

)1/2)
+ P

(
‖Ψ̂n‖ <

‖Ψ∗‖
2

)
≤ 2 exp(−c1 log n).

We obtain the conclusion of the proposition.
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