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Abstract

Prompt-based approaches offer a cutting-edge solution to data privacy issues in continual
learning, particularly in scenarios involving multiple data suppliers where long-term storage of
private user data is prohibited. Despite delivering state-of-the-art performance, its impressive
remembering capability can become a double-edged sword, raising security concerns as it might
inadvertently retain poisoned knowledge injected during learning from private user data. Following
this insight, in this paper, we expose continual learning to a potential threat: backdoor attack,
which drives the model to follow a desired adversarial target whenever a specific trigger is
present while still performing normally on clean samples. We highlight three critical challenges
in executing backdoor attacks on incremental learners and propose corresponding solutions: (1)
Transferability : We employ a surrogate dataset and manipulate prompt selection to transfer
backdoor knowledge to data from other suppliers; (2) Resiliency : We simulate static and
dynamic states of the victim to ensure the backdoor trigger remains robust during intense
incremental learning processes; and (3) Authenticity : We apply binary cross-entropy loss as
an anti-cheating factor to prevent the backdoor trigger from devolving into adversarial noise.
Extensive experiments across various benchmark datasets and continual learners validate our
continual backdoor framework, achieving up to 100% attack success rate, with further ablation
studies confirming our contributions’ effectiveness.

1 Introduction

The adaptability of human learning to absorb new knowledge without forgetting previously acquired
information remains a significant challenge for machine learning models. Continual learning (CL)
endeavors to narrow this chasm by guiding models to sequentially learn new tasks while maintaining
high performance on earlier ones. An outstanding solution to CL is the prompt-based approach
[45, 57, 58, 55, 40], which leverages the power of pre-trained models and employs a set of trainable
prompts for flexible model instruction, accommodating data from various tasks. Thanks to its ability
to remember without storing a memory buffer, prompt-based CL methods are particularly suitable
for scenarios prioritizing data privacy, such as those involving multiple data suppliers.

Nonetheless, such promising results can inadvertently become vulnerabilities, exposing CL to
security threats. Indeed, while CL methods effectively address catastrophic forgetting by preserving
and incorporating previously acquired knowledge, they may also unwittingly retain knowledge
compromised by adversarial actions. These threats become even more formidable in the multi-data
supplier scenario of prompt-based approaches, where the supplied data might contain hidden harmful
information.

One potential threat is backdoor attack, which manipulates neural networks to exhibit the
attacker’s desired behavior when the input contains a specific backdoor trigger. Typically, adversaries
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poison a small portion of the training data, causing models trained on this data to misclassify any
images with the triggers as a given target class while performing normally on clean samples. This
makes the attack less likely to be suspected by the victim learner. As backdoor attacks pose such
dangerous threats, increasingly sophisticated methods are being introduced. These include black-box
scenarios where the attacker has no information about the model and learning procedure [42, 46, 48],
or data-constrained cases where adversaries control only a fragment of the training data [64, 30].
With high efficacy, even in these challenging situations, backdoor attacks are particularly threatening
in multi-data supplier scenarios. In spite of significant attention in various tasks and areas such
as computer vision [48, 31, 36, 13, 12, 37], large language models and natural language processing
[5, 28], point clouds [60, 59, 25], federated learning [61, 54, 65, 11], and more, targeted black-box
backdoor attacks have not been thoroughly explored in continual learning.

Challenges Despite holding such potential danger for CL, extending backdoor attacks to the
incremental setting is non-trivial. Firstly, in the multi-supplier setting where the victim gathers data
from different sources, the attacker lacks information about the actual data distribution used to
train the victim model. Consequently, generalizing backdoor knowledge to be transferable to unknown
data poses the first challenge that our continual backdoor approach must confront. The second
challenge arises from the vulnerability of backdoor attacks during fine-tuning. Recent studies [44, 35]
have highlighted the tendency for backdoor knowledge to be removed when the victim fine-tunes
the poisoned model on a small and clean dataset. This issue is exacerbated in continual learning,
where the victim model undergoes incremental training as new data from various sources arrive. The
final challenge involves the backdoor trigger’s proneness to turn into adversarial noise. Huynh et
al. [18] observed that the trigger, when optimized using a surrogate model, may transform into an
adversarial perturbation, driving the clean model to follow desired adversarial targets even in the
absence of any prior backdoor attacks. Since conventional adversarial defenses can mitigate such
adversarial noise, preempting this behavior is crucial to strengthen the resilience of the backdoor
trigger.

Contributions In response to these shortcomings, we propose a continual backdoor framework
that satisfies three key properties: transferability to unknown data, resilience to incremental
learning procedures, and authenticity to avoid becoming adversarial noise. Initially, we leverage the
natural label mapping characteristic of visual prompting, thereby approaching the data poisoning
issue from the perspective of prompt selection. This approach allows our backdoor trigger to be
generalized to any victim data distribution. Next, we robustify the backdoor trigger by aligning
the optimization process with the continuously changing states of the incremental learner, thus
ensuring the effectiveness of the backdoor trigger when the model is trained on new incoming clean
data. Finally, we reconsider the choice of loss function for trigger optimization. We observe that
the commonly used softmax function with cross-entropy introduces bias towards the target class,
pushing its score excessively high and leading to the adversarial noise problem. Building on this
observation, we propose adopting binary cross-entropy (BCE) with sigmoid function to mitigate this
issue, thereby eliminating the dependency of trigger optimization on other classes and preventing
cheating behavior.

By integrating the components above, our framework, termed backdoor-Attack On Prompt-based
CL (AOP), successfully backdoor-attacks continual learners, achieving an Attack Success Rate
(ASR) of up to 100%. Our contributions are three-fold and can be summarized as follows:

1. We expose prompt-based CL to backdoor attacks. Our approach follows strong assumptions,
with black-box, clean-label, and constrained-data setting;
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2. We highlight three key challenges that our continual backdoor framework must address:
ensuring transferability to unknown data in prompt tuning, preventing the catastrophic forgetting of
backdoor knowledge, and mitigating the tendency to generate adversarial noise due to biases.

Motivated by these challenges, we propose a novel continual backdoor framework comprising
three main components: utilizing a surrogate dataset to manipulate prompt selection, dynamically
optimizing the backdoor trigger, and adopting sigmoid BCE loss to mitigate bias and prevent
cheating;

3. We conduct extensive experiments on various prompt-based continual learners with different
datasets and provide ablation studies to demonstrate the strength of our framework.

Organization The paper is organized as follows. Section 2 provides a brief overview of continual
learning and prompt-based continual learning. In Section 3, we introduce the continual backdoor
threat model, discuss backdoor challenges, and propose our prompt-based continual backdoor AOP
framework. Section 4 empirically verifies the effectiveness of our AOP framework against various
prompt-based incremental learners. Finally, Section 5 concludes the paper. Additional related work,
discussions, and experiments are included in the supplementary material.

2 Background

Continual learning In continual learning scenarios, the model undergoes a sequential presentation
of tasks D1, ...DT . Each task corresponds to distinct subsets of tuples Dt = {xi

t,y
i
t}

i=nt
i=1 , where

xi
t ∈ X t is the input sample, yi

t ∈ Yt is the corresponding label, and nt is the number of samples
for task t. It is important to note that each class is exclusively associated with a single task [7, 3],
meaning that Yt and Yt′ are disjoint, and data from prior tasks become inaccessible during the
training of subsequent tasks [45, 40]. The objective of continual learning is to continuously acquire
the capability to classify newly introduced classes while maintaining proficiency on previously learned
ones in a single model f : X → Y. In this paper, and in prompt-based methods [45, 57, 58, 55, 40],
f represents the pre-trained Vision Transformer (ViT) encoder. Additionally, ϕ is employed as the
shared classification head, and ϕt is the classifier corresponding to classes specific to the given task t.

Prompt-based continual learning We provide a concise overview of L2P [58], which stands as the
first work that integrates prompts into the context of continual learning. L2P introduces a prompt
pool comprising learnable prompts and their corresponding keys

{
(k1,p1) , (k2,p2) , · · · ,

(
knp ,pnp

)}
where np is total number of prompts. These prompts are then combined with image features and
fed into a pre-trained ViT, instructing the model to perform classification. Prompts are queried in
an instance-wise manner using the top-K cosine similarity γ (q(x),ki) between the keys and the
query function q(x) = f(x)[0, :]. Subsequent prompt-based methods are designed based on L2P,
each featuring prompt utility and optimization modifications. A brief explanation of these methods
is in Appendix A.

3 Backdoor Attack on Prompt-based Continual Learning (AOP)
We first outline the threat model and introduce key notations in Section 3.1. Then, we highlight
the challenges when executing a backdoor attack against prompt-based incremental learners in
Section 3.2. Building upon these considerations, we delineate the three primary components of AOP
across Sections 3.3-3.5. A comprehensive overview and the end-to-end algorithm is in Appendix B.
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3.1 Threat Model and Notations

Continual learning protocols We consider the class-incremental learning (CIL) setting in prompt-
based continual learning [57, 58]. In CIL, training data for incremental tasks Dt arrive incrementally
in a discrete manner. Each task consists of data for new M classes that have not been learned
by the model before. Formally, each task Dt = {Dm,t}Mm=1 with each class Dm,t = {xm,t

i , ym,t
i }

nm,t

i=1

comprises input samples xm,t
i ∈ X and their corresponding labels ym,t

i = cm,t ∈ Y, where nm,t

represents the number of training samples for the corresponding class. In CIL, the learner is required
to perform classification across all classes encountered up to task T without being provided with
explicit task labels during inference. Data for different classes m and m′ are gathered from different
suppliers. To ease the ensuing presentation, the index t is omitted unless noted otherwise.

Backdoor attack protocols Let the attacker be the data supplier for class m with labels cm. The
attacker’s goal is to poison the supplying dataset with a small amount of trigger-injected samples,
such that any data from any classes if manipulated with the backdoor trigger, will be misclassified as
cm by the resulting incremental victim model when performing inference at any time t. An example
of a triggered image is given in Figure 4.

Consider Dm = {(xi, yi)}nm
i=1 as the benign training set of class m. The adversary then learns

to generate the poisoned dataset Dp. Specifically, Dp consists of two parts: a modified version of
a selected subset (denoted as Ds) of Dm and the remaining benign samples. Thus, Dp = Db ∪ Dc,
where cm is the adversary target label, Dc = Dm\Ds, Db = {(x′, cm) | x′ = G(x), (x, cm) ∈ Ds},
γ ≜ |Ds|

|Dm| is the poisoning rate, and G : X → X is an adversary-specified poisoned image generator.
We follow [46, 29] and formulate G(x) = x+ δ, where the perturbation δ has a bounded ℓp-norm.

We emphasize that given the considered multi-data supplier scenario, we optimize the backdoor
trigger following a black-box setting (where the attacker has no access to the training model or
procedure) and a clean-label setting (where the attacker cannot change the label of data), which
represent stealthy and challenging conditions in backdoor attacks.

3.2 Three Challenges When Backdooring CL
We outline three challenges encountered when executing backdoor attacks against continual learners.
To generate a poisoned dataset, the adversary optimizes the backdoor trigger, necessitating the
appearance of the training data, learner, and training criterion. However, in accordance with our
threat model, none of these are accessible.

The first challenge, as outlined in the introduction, arises from the lack of knowledge about the
victim’s training data. Given that control is limited to the supplied data, which also represents
the target class, prior research [64] suggests utilizing a public dataset (e.g., Tiny-ImageNet) as a
surrogate training dataset. In this study, we explore the utilization of surrogate datasets in the
context of prompt tuning.

Secondly, the adversary lacks information about the training learner and procedure, making
it difficult to design backdoor knowledge that can withstand the incremental learning process.
Despite impressive memory capabilities, continual learning methods have not yet fully matched the
performance levels of joint training, and recent works [40] are still exploring ways to further avoid
catastrophic forgetting. This issue also affects backdoor attacks, leading to a degradation in attack
performance over time. Therefore, creating a surrogate learner that helps the trigger endure the
incremental learning process is our second challenge.

Lastly, a backdoor attack entails poisoning the training dataset to induce the model to malfunction
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when presented with specific trigger samples while maintaining normal performance on clean data.
Huynh et al. [18] observe that this objective can be achieved even without any poisoning during
training. This trigger, akin to adversarial noise, can deceive the classifier during inference, irrespective
of whether data poisoning occurred during training, thereby counteracting the primary objective
of the backdoor attack. Moreover, such adversarial noise can be mitigated by employing standard
adversarial defenses. Consequently, preventing the generation of adversarial noise poses an additional
challenge when optimizing the trigger.

3.3 Prompt Selection, Label Mapping, and Transferability

The core of prompt-based continual learning methods lies in the prompt pool and the prompt
selection strategy. Specifically, the most relevant prompts are queried in an instance-wise manner
and then concatenated with the sample to optimally guide the model in performing classification.
We leverage this fundamental mechanism of the prompt-based approach to reframe the backdooring
problem as one of manipulating prompt selections. As in Figures 1a and 1b, we aim to ensure that
triggered samples are directed to select specific backdoor prompts, thereby causing the model to
misclassify these backdoor-prompted samples into the desired class.

A key feature of visual prompting is its ability to act as a label mapping mechanism when
performing downstream tasks using a pretrained model. In this context, prompts function as
universal input perturbation templates, enabling the mapping of labels from a source dataset to a
target dataset [10]. From this perspective, our aim of controlling prompt selection translates into
manipulating label mappings between the two datasets. This new perspective paves the way for the
"transferability" of our continual backdoor framework.

When optimizing the backdoor trigger, we employ a surrogate dataset, denoted as Dsurrogate, to
address the backdoor transferability to data from other classes. It is worth noting that Dsurrogate
does not necessarily mirror the actual data distribution used to train the incremental model. This
discrepancy stems from the visual prompting property discussed earlier. In particular, instead of
optimizing a trigger that causes the poisoned data to be misclassified by the model, our backdoor
trigger can be viewed as activating an incorrect mapping to the target class. Since we focus on
manipulating the mapping and prompt selection rather than the dataset itself, Dsurrogate can be
chosen differently from the actual dataset to align with our objectives.

3.4 Static-dynamic Trigger Optimization
Since we lack information about the victim’s continual model, we use Dsurrogate to train a surrogate
incremental learner and simulate the continual learning pipeline. We then optimize the backdoor
trigger δ based on this surrogate incremental model. Specifically, we employ the surrogate learner
with two states: a static state that reflects how prompts learn label mappings between the source
and target datasets, and a dynamic state that reflects the continuous learning procedure of the
victim model. Formally, our static-dynamic trigger optimization involves the following four stages:

(0) Preparation To set up the static-dynamic framework, we partition the surrogate dataset
Dsurrogate into two subsets: Dstatic for the static surrogate stage and Ddynamic for the dynamic
surrogate stage.

(1) Static surrogate stage In this initial stage, we train the prompts on Dstatic∪Dm to capture the
label mapping functionality between the source and target datasets. During this phase, the prompts
are optimized to instruct the model to correctly classify clean input images. Consequently, we obtain
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Figure 1: (a) and (b): AOP’s prompt selection frequency on benign and triggered samples when
attacking DualPrompt. (d) and (e): AOP’s average key-query similarities concerning benign and
triggered samples when attacking DualPrompt-PGP. (c) and (f): Scores obtained from the clean
model for AOP’s triggered samples optimized with CE and BCE, respectively.

a pool of benign prompts for clean data. Denoting the prompt pool as P =
{
p1,p2, · · · ,pnp

}
and

K =
{
k1,k2, · · · ,knp

}
as the corresponding prompt keys, where np is the prompt pool size, the

objective for this optimization step follows [58] and is given by:

minP,K,ϕ L (ϕ (f (x;P )) , y) + λ
∑

Kx
γ (q(x),ki) . (1)

Here, Kx denotes a subset of the top-K keys specifically selected for each sample x. γ is the function
that assesses the similarity between the query feature q(x) and prompt key. The scalar λ weights
the loss. The first term is the softmax cross-entropy loss, while the second term acts as a regularizer
to encourage selected keys to be closer to the corresponding query features.

(2) Trigger optimization stage During this stage, the adversary optimizes the trigger δ to induce
misclassification of the triggered inputs into the target class. Specifically, the trigger loss function
can be expressed as follows:

min
δ

∑
(x,cm)∈Dm

[L (ϕ (f (x+ δ;P )) , cm)] . (2)

(3) Transition stage This stage is designed to align the surrogate learner with the behaviour of
the victim learner when being updated with new incoming tasks. Specifically, we continuously train

6



…

…

…

…

…

…

+

Transition stage Dynamic surrogate stage3 4

AOP Framework

…

…

+

…

…

…

Static surrogate stage Trigger static optimization1 2

Poisoned prompt

Backdoor trigger

Clean image

Clean prompt

Trainable

Surrogate 
dataset is 
partitioned into 
static and 
dynamic subsets.

Prompts are fine-tuned for one epoch after several 
iterations of optimizing the trigger with sigmoid BCE.

 𝒟surrogate 

 𝒟static 

𝒟dynamic 

 𝒟target  𝒟target 

Prompt pool Prompt pool

Prompt poolPrompt pool

𝒟dynamic 

 𝒟target 

Figure 2: The AOP procedure begins by selecting a surrogate dataset, which is then divided into
two subsets: Dstatic and Ddynamic. In stage (1), Dstatic is employed to establish a static surrogate
learner along with prompts. Following this, in stage (2), the trigger optimization process takes place
based on this initial model. Next, in stage (3), the learner is updated from Ddynamic, which serves as
a transition between stages. Finally, in stage (4), the trigger is fine-tuned, with the prompt being
updated periodically throughout the optimization process.

the prompts from Stage (1) with the same objective as outlined in equation (1), but using Ddynamic.
In essence, the goal of this stage is to statically prepare the surrogate learner for the subsequent
dynamic stage.

(4) Dynamic surrogate stage In this stage, we aim to acquaint the backdoor trigger with the
continuously updated prompts resulting from the continual learning process. This dynamic stage
entails fine-tuning the prompt components for one epoch, as in Stage (3), following several iterations
of optimization of the trigger with equation (2). This iterative process is repeated for multiple
rounds to enhance the resilience of the backdoor trigger against the continual learning process.

After optimizing the trigger through the aforementioned four stages, the optimized trigger δ∗ is
used to poison a small portion of Dm, which is then released to the victim learner. Summarization
of AOP is in Figure 2 and Appendix B.

3.5 Towards an Authentic Backdoor Trigger

Are we truly optimizing a backdoor trigger? As discussed in Section 3.2, optimizing the
trigger with these objectives can unintentionally transform it into adversarial noise. While our
static-dynamic framework can generate a robust trigger that withstands intense incremental learning
processes, it might deviate into adversarial perturbation. To further explore this phenomenon, we
analyze the output scores in Figure 1c. The visualization reveals that even when processed by a

7



clean model unaffected by backdoor attacks, the poisoned samples are consistently misclassified
towards the target class with dominant scores. This observation prompts a reconsideration of the
backdoor trigger optimization process. We discovered that the overconfident score bias towards the
target class is primarily induced by the commonly used softmax with cross-entropy loss function.
Softmax introduces competition between classes, and the subsequent cross-entropy loss tends to
elevate the scores of the target class significantly above the others. This pronounced bias compels
the trigger to act like adversarial noise.

Sigmoid with binary cross entropy loss To reduce biases, we mitigate the competition between
the target class and other classes caused by the relative scoring of softmax by employing a sigmoid
function after the logits to compute output scores. This approach shifts the optimization focus towards
independently increasing the scores of target classes rather than suppressing others. Subsequently,
we utilize binary cross-entropy loss to enable independent optimization processes. Following [8], the
gradient of the loss at score (sj) for class j is computed as ∂LBCE(θ)

∂sj
= σ(sj) − I{j = ỹ}, thereby

constraining the score of the target class to a certain level regardless of the scores of other classes. As
a result, during inference with a non-backdoored clean model, the output scores are more balanced
between classes, as shown in Figure 1f. This balance prevents the problem of generating adversarial
noise when optimizing the backdoor trigger.

4 Experiments

In this section, we first describe the experimental setups, followed by presenting the results in four
key aspects: the overall backdooring ability of AOP, its performance with different surrogate datasets,
the robustness of AOP with varying attack times, and the efficacy of adopting BCE in preventing the
generation of adversarial perturbations. Further discussions on performance, visualizations, baselines,
efficacy against defenses, and poisoning rate sensitivity are deferred to Appendix D.

4.1 Experimental Setup

Victim incremental learners We evaluate our continual backdoor framework against 6 prompt-
based continual learning methods: L2P [58], DualPrompt [57], HiDe-Prompt [55], CODA-Prompt
[45], and two variants of PGP [40], namely L2P-PGP and DualPrompt-PGP. We follow the original
settings and implementations of each method. All learners utilize the ViT-B/16 backbone [14],
pre-trained on ImageNet-1K [41], except for HiDe-Prompt, which is pre-trained on iBOT-1K [66].
Detailed experimental information is in Appendix C.

Datasets For the victim’s training dataset, we use three variants of ImageNet-R [17]: 5-Split,
10-Split, and 20-Split ImageNet-R. These variants divide the 200 classes of the original dataset into 5,
10, and 20 tasks, respectively. Additionally, we conduct experiments on the 5-Split-CUB200 dataset,
which partitions the original CUB200 [52] dataset into 5 tasks, each containing 40 classes. For the
attacker’s surrogate dataset, we primarily use TinyImageNet [23] for all experiments and CIFAR100
[22] in specific settings.

Backdoor setting Following the guidelines of [64], we set the maximum poison ratio to 25 images,
corresponding to 0.1% of ImageNet-R and 0.5% of CUB200. Additionally, we set the upper bound
of the ℓ∞-norm of triggers to 16

255 , in line with standard practices in the literature [48, 42]. During
inference, the trigger is amplified by a factor of 3 [48, 64].
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Table 1: Backdoor performance against L2P, DualPrompt, and PGP on 5-Split-CUB200. The
attacker is the supplier for a random class in task 1. The dynamic stage takes place over 5 rounds.
Results are reported when using TinyImageNet and CIFAR100 as surrogate datasets. For ACC, we
additionally report the change in clean accuracy compared to clean-training learners. For ASR, we
provide a comparison with the baseline [64] (without dynamic optimization and not using BCE).

Surrogate dataset → TinyImageNet CIFAR100

ASR ACC ASR ACC

L2P 99.96± 0.02 74.71± 0.58 99.99± 0.02 74.44± 0.54
(↑ 86.44) (↓ 0.17) (↑ 64.91) (↓ 0.44)

DualPrompt 99.93± 0.02 82.62± 0.66 99.95± 0.05 82.71± 0.55
(↑ 57.08) (↑ 0.10) (↑ 42.36) (↑ 0.19)

L2P-PGP 99.97± 0.01 74.97± 0.83 100.00± 0.00 75.70± 0.50
(↑ 89.73) (↓ 0.48) (↑ 68.82) (↑ 0.25)

DualPrompt-PGP 99.93± 0.02 82.45± 0.29 99.99± 0.01 82.84± 0.12
(↑ 56.70) (↓ 0.31) (↑ 44.83) (↑ 0.08)

Table 2: Backdoor performance across different prompt-based continual learning methods on three
variants of Split-ImageNet-R. The adversary’s target class is chosen randomly from the classes in
task 1. The dynamic stage is iterated for 10 rounds. The surrogate dataset used is TinyImageNet.
We also report the change in ACC compared to non-attacked learners.

5-Split-ImageNet-R 10-Split-ImageNet-R 20-Split-ImageNet-R

ASR ACC ASR ACC ASR ACC

L2P 99.76± 0.10 64.27± 0.65 99.56± 0.22 62.43± 0.58 98.24± 0.21 60.51± 1.17
(↓ 0.77) (↓ 0.12) (↓ 0.83)

DualPrompt 99.57± 0.25 70.69± 0.56 99.26± 0.39 69.17± 0.27 96.17± 0.89 66.04± 0.43
(↓ 0.62) (↓ 0.85) (↓ 0.21)

CODA-Prompt 98.16± 1.01 74.15± 0.11 96.55± 1.29 72.86± 0.11 71.27± 2.86 70.86± 0.94
(↓ 1.04) (↓ 0.02) (↓ 0.04)

HiDe-Prompt 98.65± 0.90 74.89± 0.60 94.66± 0.93 71.99± 0.37 93.79± 0.66 70.93± 0.86
(↓ 0.32) (↓ 0.46) (↓ 0.09)

L2P-PGP 99.33± 0.05 64.38± 0.57 99.36± 0.15 61.73± 0.38 98.84± 0.16 60.74± 1.17
(↑ 0.10) (↑ 0.33) (↓ 0.15)

DualPrompt-PGP 99.83± 0.27 70.80± 0.08 99.17± 0.43 69.24± 0.41 97.01± 0.75 66.32± 1.04
(↓ 0.08) (↓ 0.18) (↓ 0.76)

Metrics The evaluation of our framework utilizes two key metrics: (1) average accuracy (ACC) and
(2) attack success rate (ASR). ACC assesses the accuracy of the backdoored model on benign test
samples, whereas ASR measures the proportion of attacked samples that the compromised model
predicts as the target label, reflecting the backdoor attack’s effectiveness. In the context of continual
learning, ACC and ASR at a given time t are averaged across the corresponding metrics for all data
from task 1 to task t. All results are averaged over 3 runs for fair comparisons.

4.2 Effectiveness of AOP

We report the ASR and ACC when performing backdoor attacks against various incremental learners
in Table 1 and Table 2. As observed from the tables, our framework consistently achieves high
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Table 3: Backdoor performance when the target class belongs to different tasks T . The results are
reported when the victim’s training dataset is 10-Split-ImageNet-R, and the attacker’s surrogate
dataset is TinyImageNet.

T = 1 T = 4 T = 10

ASR ACC ASR ACC ASR ACC

L2P 99.56± 0.22 62.43± 0.58 99.61± 0.19 62.09± 0.06 99.89± 0.05 62.27± 0.26
L2P-PGP 99.36± 0.15 62.73± 0.38 99.77± 0.08 62.88± 0.73 99.85± 0.35 62.32± 0.82

Table 4: ASR of clean, non-attacked learners on triggered samples. Results are compared between
triggers optimized with CE softmax and BCE sigmoid loss.

L2P DualPrompt

10-Split- 5-Split- 10-Split- 20-Split-
ImageNet-R ImageNet-R ImageNet-R ImageNet-R

AOP with CE Top-1 ASR 74.18 34.18 42.85 96.93
Top-5 ASR 96.89 92.78 97.01 99.63

AOP with BCE Top-1 ASR 0.00 0.00 0.00 0.00
Top-5 ASR 0.00 0.72 0.12 2.68

ASR with negligible effect on the ACC of clean samples. This is due to the inherent characteristics
of continual learning, which enable the learner to perform well across different tasks, making it
vulnerable to backdoor attacks. By considering backdooring in continual learning as an additional
"backdoor task," the plasticity of continual learning allows the ASR, or performance on the backdoor
task, to be high without degrading the ACC on clean tasks.

It is worth noting that ASR still suffers from the catastrophic forgetting phenomenon of continual
learning for long sequence tasks. Specifically, in Table 2, the 20-Split-ImageNet-R performs worse
than the 5-split and 10-split versions across all experiments. This indicates that the more tasks and
the longer the incremental learning process, the higher the chance for a decrease in ASR. However,
the ACC also suffers from this phenomenon, as it is a major issue in continual learning.

While prompt-based methods share a common core of utilizing prompt pools and selecting relevant
prompts for each task or class, each exhibits distinct characteristics. Our framework observes a
significantly lower ASR when backdooring CODA-Prompt. This is because CODA-Prompt utilizes
all prompts in the prompt pool through its weighted mechanism instead of selecting only the top-K
relevant prompts. Consequently, even with triggered samples, clean prompts still exert some influence,
leading to degradation in ASR.

Different surrogate datasets Another factor that makes prompt-based continual learning vul-
nerable is the utilization of prompting. As shown in Figures 1d and 1e, AOP’s triggered samples
consistently have the highest similarity with prompt ID 2, which, in contrast, shows the smallest
similarity with benign samples. Thus, as discussed in Section 3.3, prompting allows for actual
data differences when choosing surrogate datasets. We report the backdoor performance using
TinyImageNet and CIFAR100 as surrogate datasets in Table 1. The experiments show consistently
high ASR results for both surrogate data choices, confirming the transferability of our continual
backdoor framework.
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Figure 3: ASR when varying number of dynamic rounds.

Different attack times We report the ASR in Table 3, considering scenarios where the target
class belongs to different tasks that arrive at different times. We observe slight increases in ASR
when the attack class is part of later tasks, as it experiences less forgetting. Nonetheless, our
method AOP consistently maintains a high ASR, exceeding 99% at all three reported attack times.
This convincingly demonstrates that the backdoor knowledge can be effectively transferred to both
previously learned and incoming future classes.

Different dynamic rounds We illustrate the attack performance across varying numbers of dynamic
rounds in Figure 3. As discussed above, the ASR decreases when tested on the 20-Split-ImageNet.
We observe that increasing the number of dynamic rounds does not consistently lead to higher
performance. However, from a positive perspective, since the adversary lacks information about the
total number of tasks, decreasing and increasing dynamic rounds should not have too much impact
on ASR. We emphasize that in long sequence tasks, both ASR and ACC degrade due to forgetting.

Enhancing backdoor authenticity via sigmoid BCE As shown in Table 4, triggers optimized
with softmax CE retain considerable scores even when tested on non-backdoored models. This
suggests that CE optimization might lead to the generation of adversarial perturbations. Conversely,
when optimized using sigmoid BCE, the ASR on clean models remains consistently low. This
confirms that adopting BCE can enhance the authenticity of backdoor triggers and avoid generating
adversarial noise.

5 Conclusion
This paper explores the vulnerability of prompt-based continual learning methods and their sus-
ceptibility to backdoor attacks. We emphasize three critical properties that a backdoor continual
framework should possess: transferability to unknown data from other classes, resilience against
incremental learning procedures, and the authenticity of the backdoor trigger. Building upon these
considerations, we propose a novel continual backdoor framework. We leverage the label mapping
functionality of prompting to promote transferability, incorporate a static-dynamic optimization
approach to enhance resilience, and employ BCE sigmoid loss to mitigate the adversarial noise
problem. Extensive experiments confirm the effectiveness of our backdoor framework against various
prompt-based continual learners.

Nonetheless, we acknowledge some limitations in our work. Firstly, competition between the
target classes and the remaining classes remains necessary to some extent. Relying solely on BCE to
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eliminate relative scoring might hurt the performance. Secondly, certain defenses we employed to
assess our approach may not be optimal for continual learning scenarios. Thus, regarding future
directions, there is potential in exploring other threat models and defenses for backdooring continual
learning and extending backdoor attacks to other continual learning approaches.
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Supplementary Material for “Backdoor Attack in Prompt-Based
Continual Learning”

In this supplementary material, we first review related work on continual learning, prompt-based
continual learning, and backdoor attacks in Appendix A. Next, we summarize our AOP in Appendix
B. Implementation details, additional experiments, and visualizations are provided in Appendices C
and D, respectively. Finally, we discuss broader impacts in Appendix E.

A Related Work

Continual learning Adapting to new knowledge is an innate human capability, yet it poses
significant challenges for machine learning models. Continual learning emerges as one approach to
bridge this gap between models and humans, which encourages models to continuously acquire new
knowledge from new data while retaining previously learned ones. The regularization/prior approach
[21, 38, 15, 33, 19, 2, 63] effectively preserves learned knowledge by controlling the learning of the
model’s parameters through a regularization term in the objective function. Architecture-based
approaches [26, 34, 43, 56, 62, 1, 32] extend the model’s plasticity by expanding its network to
accommodate new knowledge. Rehearsal-based approaches [4, 6, 39, 9] rely on a memory buffer to
retain past knowledge. Continual learning primarily focuses on the class-incremental learning (CIL)
setting, which is the most challenging and representative setting since the task boundaries are not
available during inference. While rehearsal-based approaches achieve state-of-the-art performance [4]
in CIL, they violate data privacy requirements as they necessitate the storage of past data.

Prompt-based continual learning With few learnable parameters and not relying on memory
buffers, prompt-based continual learning methods achieve state-of-the-art performance. These
methods are especially suitable for scenarios where data privacy is crucial. Specifically, prompt-based
approaches leverage the power of pre-trained models, learning only a small number of prompts to
guide the model’s performance across different tasks or classes. L2P [58] is the first work to explore
prompting in continual learning. It constructs a prompt pool and selects appropriate prompts for
each input. Building on L2P, DualPrompt [57] employs prefix-tuning and constructs two types of
prompts: task-sharing and task-specific. CODA-Prompt [45] enhances prompt selection with an
adaptive attention mechanism. HiDe-Prompt [55] examines the influence of various pretraining
paradigms and decomposes the objective into hierarchical components. PGP [40] uses prompt
gradient projection to promote updates in orthogonal directions, effectively preventing forgetting.

Backdoor attack A backdoor attack aims to cause a model to misbehave according to an
adversary’s target when the input data contains a specific backdoor trigger, while still performing
normally on clean input data. Backdoor attacks have been explored in different settings and under
various threat models, which identify the attacker’s accessibility. In a black-box setting [42, 46, 27, 47],
the attacker has no control over the training process and only has access to the dataset, which they
then poison and release to the victim. Another line of work [42, 46, 64, 48] assumes that the attacker
cannot flip the labels of the dataset (clean-label). Recently, attackers’ control has been limited to
data-constrained scenarios where they only have access to a small proportion of data. For example,
[64] employs a surrogate clean model to optimize a clean-label backdoor trigger, while [30] leverages
the zero-shot capabilities of the CLIP model to suppress clean features and augment the poisoning
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(a) Clean image (b) Backdoor trigger (c) Poisoned image

Figure 4: Visualizations of the clean image, backdoor trigger, and poisoned image.

features. Additionally, [18] observes that even with carefully alternated training to train a surrogate
poisoned model, the optimized backdoor trigger tends to become adversarial noise.

Previous works on backdoor attacks against continual learning have primarily focused on non-
targeted attacks, aiming to degrade the model’s performance in general. These studies typically
explore task-incremental and domain-incremental settings using various approaches. For instance,
[24] describes a white-box attack where the attacker has control over the training model and seeks to
force the neural network to forget previously learned knowledge. Other works, such as [49, 50, 51],
focus on regularization-based and replay-based learners in domain-incremental and task-incremental
learning scenarios, aiming to degrade the performance of the first task. Similarly, [24] and [20] aim to
undermine the performance of continual learners. In contrast, our work focuses on targeted backdoor
attacks. We aim to manipulate the attacked learner to classify poisoned data from any task into
a desired target class while maintaining high accuracy on clean data. Furthermore, our research
emphasizes state-of-the-art prompt-based continual learning and tackles the most challenging setting
in continual learning, which is class-incremental learning.

B AOP end-to-end pipeline

In this Appendix, we provide an overview of the key algorithms utilized in AOP. Specifically,
Algorithm 1 details the process for prompt tuning, Algorithm 2 outlines the method for trigger
optimization, and Algorithm 3 presents the comprehensive end-to-end pipeline of AOP.

C Implementation Details

In this section, we provide the implementation details of all experiments.

Victim prompt-based Learners Our implementations of L2P, DualPrompt, L2P-PGP, and
DualPrompt-PGP are based on the source code provided by [40]. The implementations of HiDe and
CODA-Prompt are based on the original papers by [55] and [45], respectively. All experiments were
conducted on NVIDIA V100 GPUs. For all victim learners, we utilize the Adam optimizer with
β1 = 0.9 and β2 = 0.999.
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Algorithm 1: Prompt Tuning
Input: (1) Surrogate model f

1 (2) Dataset D
2 (3) Prompt components P =

{
(k1,p1) , (k2,p2) , · · · ,

(
knp ,pnp

)}
3 (4) Query function q
4 (5) Cosine similarity γ
5 (6) Top-K selected keys Kx

6 (7) Number of iterations for trigger generating K
7 (8) Learning rate α > 0

Output: The optimized prompts P ∗

/*Initialization /*
8 Initialize with input P ;
9 k ← 0;

10 while k < K do
/*Update prompts /*

11 P k+1 ← P k − α
∑

(x,y)∈D∇PL(f(x;P ), y)− λ
∑

Kx
γ (q(x),ki)

12 end
return: P ∗

Algorithm 2: Trigger Optimization
Input: (1) Surrogate model f

1 (2) Target class data samples Dm = {(x, y) | y = cm}
2 (3) Prompt components P
3 (4) Trigger δ
4 (5) Criterion ζ
5 (6) Allowable set of trigger patterns ∆
6 (7) Number of iterations for prompt tuning I
7 (8) Learning rate η > 0

Output: The optimized adaptive trigger δ∗

/*Initialization /*
8 δ0 ← δ;
9 i← 0;

10 while i < I do
/*Update trigger /*

11 δi+1 ← δi − η
∑

(x,cm)∈Dm
∇δL(f(x+ δ;P ), cm);

/*Constraint trigger in ℓp-norm ball /*
12 δi+1 ← Proj∆(δi+1)

13 end
return: δ∗

For the L2P and L2P-PGP methods, we train the victim learner on the 5-Split-CUB200 dataset
for 5 epochs per task, using a batch size of 16 and a prompt length of 5. When training on the
5/10/20-Split-ImageNet-R datasets, the number of epochs per task increases to 50, with a prompt

19



Algorithm 3: AOP End-to-end Pipeline
Input: (1) Initial surrogate model f

1 (2) Prompt pool P
2 (3) Target class cm
3 (4) Target class data samples Dm

4 (5) Surrogate Dsurrogate

5 (6) Number of iterations for full optimization E
Output: The optimized adaptive trigger δ∗

/*Partition the surrogate datasets into two subsets. /*
6 Dsurrogate = Dstatic ∪ Ddynamic
/*Static surrogate stage. /*

7 P ← PromtTuning(f , Dstatic ∪ Dm, P)
8 /*Static trigger optimization /*
9 Initializeδ;

10 δ ← TriggerUpdate(f,Dm,P, ζ = CE);
/*Transition stage /*

11 P ← PromtTuning(f , Ddynamic, P, δ)
/*Dynamic stage /*

12 while e < E do
/*Update trigger /*

13 δe+1 ← TriggerUpdate(f,Dm,Pe, δe, ζ = BCE);
/*Update malicious prompt /*

14 P e+1 ← PromptTuning(f,Ddynamic,Pe);
15 end

return: δ∗

length of 20. For DualPrompt and DualPrompt-PGP, training on the 5-Split-CUB200 dataset
involves 10 epochs per task, with a prompt length of 5 and a batch size of 24. For the 5/10/20-Split-
ImageNet-R datasets, these methods are trained for 50 epochs per task, with a prompt length of 20
and a batch size of 24. The HiDe-Prompt method employs 10 prompts, each with a length of 20,
across all Split-ImageNet-R variants, training the main architecture for 50 epochs with a batch size
of 24. Lastly, the CODA-Prompt method uses a configuration with 50 prompts, a pool size of 100,
and a prompt length of 8.

The training times for the 6 incremental learners on the 5/10/20-SplitImageNet-R dataset range
from 8 to 10 hours. For the Split-CUB200 dataset, the training times for L2P, L2P-PGP, DualPrompt,
and DualPrompt-PGPP are 0.5 hours, 1 hour, 1.5 hours, and 2 hours, respectively.

Backdoor framework Our surrogate learner adopts the same settings as L2P. In the initial stage,
training spans 5 epochs. Stage 2 focuses on trigger optimization, utilizing RAdam optimizer for 100
epochs with a learning rate of 0.01. Stage 3 follows a training setting akin to stage 1. Subsequently,
we initiate the dynamic stages, where the surrogate learner undergoes an update for one epoch after
every 20 rounds of trigger optimization. This dynamic stage iterates for 10 rounds during attacks
on Split-ImageNet-R and 5 rounds for Split-CUB200. For Split-ImageNet-R, the training times for
stages (1) and (3) are both 2 hours, stage (2) takes 0.2 hours, and stage (4) takes 8 hours. For
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Split-CUB200, the training times for the four stages are 2 hours, 0.1 hours, 2 hours, and 5 hours,
respectively.

D Additional Experiments

D.1 Further discussion on AOP

In this Appendix, we discuss the differences in ASR when using AOP to backdoor prompt-based
continual learners. As shown in Table 2, in most experiments, L2P and PGP achieve the highest
ASR, followed by DualPrompt and DualPrompt-PGP.

Firstly, our surrogate prompt uses the same prompt techniques and objectives as L2P, which
explains its highest performance. DualPrompt introduces shared-task prompts, which might affect
the ASR when updated with new classes. Additionally, unlike L2P, DualPrompt uses prefix tuning,
which could cause the slight decrease in ASR. However, the ASR of DualPrompt remains higher
than 96%, highlighting the potential for backdoor transfer between different prompt techniques. The
two versions of PGP achieve performance similar to the original ones, as PGP focuses only on the
update direction of prompts.

Compared to the above four versions, HiDe and CODA-Prompt show lower performance. The
lower ASR of HiDe might result from using iBOT-1K as the pre-trained model for HiDe, which
differs from the other learners and our surrogate learner. As prompting serves as label mapping,
different source datasets might influence the mapping and thus the backdoor performance. Lastly,
CODA suffers from the lowest ASR and the highest standard deviation. This is due to CODA’s
prompt selection mechanism, which uses an attention mechanism to get the weighted summation of
all prompts, differing from the other methods.

D.2 Additional comparison between AOP and baseline

Narcissus [64] also assumes that the attacker only has access to target data. They employ a public
dataset as a surrogate dataset and optimize the trigger using the clean surrogate dataset. Our work
is motivated by Narcissus, we extend the surrogate dataset in the context of prompting and exploit
the label mapping property. Additionally, we employ dynamic stages and adopt BCE to prevent
adversarial noise.

In Table 1, we compare AOP and Narcissus, showing that Narcissus experiences catastrophic
forgetting. To provide further discussion, in Figure 5, we visualize the ASR flow for each task
between our AOP and Narcissus. We trained Narcissus using the same dataset and the same number
of epochs as in stages (1) and (2) of our AOP. As visualized in Figure 5, although Narcissus initially
achieves high performance, it tends to experience catastrophic forgetting over time. Consequently,
the performance gap between AOP and Narcissus increases as the training process continues.

D.3 Defenses

In this Appendix, we evaluate the robustness of AOP against several popular defenses, namely
Neural Cleanse, STRIP, and FST.

Neural Cleanse Neural Cleanse [53] is a widely used model defense. Specifically, for each class,
Neural Cleanse optimizes a trigger that induces all data to be misclassified to the target class. It then
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Figure 5: Comparison of ASR history for each task during the incremental learning process between
AOP and Narcissus, using CODA-Prompt with 10-Split-ImageNet-R dataset for visualization.
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Figure 6: Evaluation of AOP against Neural Cleanse. Results are reported at three checkpoints:
tasks 1, 5, and 10, when attacking L2P on Split-ImageNet-R.

detects backdoor models by checking for abnormally small patterns among the optimized triggers
using the Anomaly Index with a flag threshold of 2. We experimented with Neural Cleanse on
10-Split-ImageNet-R using checkpoint models from tasks 1, 5, and 10. AOP successfully passed
Neural Cleanse as in Figure 6.

STRIP STRIP [16] is a popular test-time defense method. Given the model and a suspicious
input, STRIP perturbs the input using a set of clean images from different classes and records the
prediction entropy over the perturbed images. STRIP flags images as poisoned if the predictions
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Figure 7: Comparison of AOP against STRIP. The results are visualized based on the attacked L2P
on the 10-Split-ImageNet-R dataset.

are consistent, indicated by low entropy. We visualized the entropy of our AOP on ImageNet-R
using checkpoint models from tasks 1 to 10 in Figure 7, and observed that our backdoored models
exhibited a similar entropy range to benign ones, thereby passing the STRIP test.

FST We evaluated AOP against a robust fine-tuning-based defense method, FST [35]. FST operates
by storing a small amount of clean data to fine-tune the model, reinitializing the classifier weights,
and encouraging deviation from the originally compromised weights. We report the performance of
FST with respect to different fine-tune data ratios as in the original paper (2% and 5%) and varying
weights on the deviation regularizer.

We found that FST was successful in mitigating AOP, confirming its effectiveness in addressing
backdoor knowledge. However, we observed that reinitializing the classifier weights results in
significant forgetting, causing a considerable drop in accuracy. Thus, FST is impractical because
it severely hurts the utility of the continual model while lacking verification of whether an attack
exists. Furthermore, it is essential to note that FST conflicts with our data privacy prioritization
scenario, as it requires storing data from all tasks.

We hope our findings will inspire the development of strong defense methods compatible with
multi-data supplier scenarios while upholding data privacy in continual learning.

Discussion on potential defenses As observed in Figures 1b and 1b, poisoned samples consis-
tently exhibit queries for specific prompt IDs, while clean samples demonstrate a more balanced
distribution in prompt frequency selection. Consequently, potential defenses against AOP may
involve monitoring the frequency selections of test samples during inference. A backdoor flag can be
raised if biases in prompt selection frequencies are observed in suspected input samples. Furthermore,
drawing inspiration from Fine-Pruning techniques [44], which prune inactive neurons when predicting
clean images, one could extend this approach to Prompt-Pruning, effectively eliminating inactive
prompts.
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Table 5: ACC and ASR of AOP on L2P with 10-Split-ImageNet-R when applying FST as the defense
method. Here, α represents the weight of the feature shifting regularization, and N denotes the
number of samples saved for finetuning.

N = 600 N = 1200
2.5% 5%

ACC ASR ACC ASR

α = 2e− 5 # epochs = 10 41.78 0.00 56.87 0.00
α = 2e− 5 # epochs = 20 38.88 0.00 53.75 0.00

α = 2e− 4 # epochs = 10 40.53 0.0 55.31 0.0

Table 6: Backdoor performance when varying poison rates on 10-Split-ImageNet-R. P denotes the
number of poisoned images during training and γ is the corresponding poisoning rate.

P = 0 P = 2 P = 5 P = 25 P = 100
γ = 0% γ = 0.01% γ = 0.02% γ = 0.1% γ = 0.5%

L2P 0.00 13.76 91.86 99.56 99.99
L2P-PGP 0.00 10.08 90.77 99.36 99.94

D.4 Sensitivity to poisoning rates

We validate the sensitivity of AOP with respect to varying poisoning rates. We emphasize that this
factor is particularly crucial in the context of backdooring CL, where the adversary only has access
to the target class data—a small proportion of the overall dataset. Therefore, maintaining backdoor
effectiveness with a low poisoning rate is essential. Our AOP demonstrates favorable performance,
achieving over 90% accuracy even with a poisoning rate as low as 0.01%. This highlights the efficacy
of our method in scenarios with minimal poisoning.

E Broader Impacts

Our research contributes to the research community and AI systems by exploring the potentiality of
targeted backdoor attacks in continual learning settings. By shedding light on the capabilities of such
attacks, we heighten awareness about the backdoor threat, especially in private multi-data supplier
scenarios. This heightened awareness encourages looking for potential protection and defenses against
backdoor manipulation, a crucial key in enhancing the safety and trustworthiness of AI systems.

Nonetheless, it is essential to acknowledge that our findings could inadvertently provide insights
for attackers seeking to exploit continual learners with backdoors. Nevertheless, we believe that
strong and efficient defense mechanisms will emerge to safeguard continual learners against such
threats. Consequently, the positive impact of our research outweighs potential negative repercussions.
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