Submitted to the Annals of Statistics

ON POSTERIOR INFERENCE FOR THE NUMBER OF
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Dirichlet process mixture models (DPMMs) and Pitman-Yor pro-
cess mixture models (PYPMMs) have been widely used in density es-
timation, mode detection, and other nonparametric estimation prob-
lems. Due to their discrete, combinatorial nature of the underlying
random measures, these models have also been suggested for inference
in clustering problems, but it has been shown that these methods are
inconsistent in the number of components. We contribute to this line
of work by giving quantitative statements about the clustering be-
havior. Specifically, we provide nonasymptotic and asymptotic lower
bounds on the ratio between the posterior probabilities of consecutive
number of clusters in these models under different choices of prior for
the parameters.

1. Introduction. In the wake of the seminal work of Ferguson [2, 4],
a line of research on Bayesian nonparametric inference emerged that was
based on the use of the Dirichlet process and related combinatorial stochastic
processes, such as the Pitman-Yor process [23], as prior distributions. Most
commonly, these priors are used in the context of mixture models, where
both the prior and the posterior place probability mass on an unbounded
number of mixture components [1].

Statistical applications for these models include a variety of problems
in density estimation [3, 6, 7, 8, 9, 10, 11, 26, 28] and parameter estima-
tion [5, 22, 24, 27]. Further applications can be found in engineering and
scientific fields such as computer vision, information retrieval, economics,
astronomy, molecular biology, and genetics [3, 14, 15, 18, 21, 24, 27]. In these
latter applications, the problem is often one of clustering, and Bayesian non-
parametric mixture models are viewed as a substitute for classical methods
such as K-means, which generally require the number of components K to
be known a priori. Particularly in the setting of dynamically growing data
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sets, it is difficult and even unreasonable to fix the number of clusters a pri-
ori, and Bayesian nonparametric mixture models have been considered as a
natural way to circumvent this issue since they allow the number of clusters
to be random and subject to posterior inference.

However, there is little theoretical support for this methodology. Unlike
the case of density estimation, results on the convergence of the number of
components in Bayesian nonparametric mixtures are largely absent from the
literature. Indeed, it has been demonstrated that under certain parametric
assumptions, these models exhibit posterior inconsistencies in the number
of clusters when the underlying data-generating distribution satisfies some
mild conditions [19, 20]. Moreover, in practice, it has been observed that
inference based on Dirichlet process or Pitman-Yor process mixture models
can generate small clusters that do not reflect the underlying data-generating
process, a serious concern when the real number of components is small.

We study the posterior distribution of the number of clusters of Bayesian
clustering models based on the Dirichlet process and the Pitman-Yor pro-
cess. In contrast to previous work on this topic, we do not assume the under-
lying data-generating process to be be a specific parametric family or even a
finite mixture model, so our results apply to nonparametric data-generating
processes as well. In this general setting, there is no analytic form for the
posterior distribution; nonetheless, we have obtained an analytical charac-
terization of the ratio between the probability of obtaining k& + 1 clusters
and that of obtaining k clusters, for any positive k. We provide novel lower
bounds on these ratios, denoted R(s|{x;}!" ), where x1, ..., z, are exchange-
able observations. We study the setting where the prior on the parameters
is either Gaussian or uniform. Our results are as follows:

e When the prior on the parameters is uniform over a bounded subset of
R, denoted O, the lower bound on R(s|{x;}! ;) is of order %, under a
Dirichlet process mixture model, where « is the scale parameter of the
Dirichlet process prior. In the case of a Pitman-Yor process mixture
model, the lower bound becomes % + % up to a universal constant,
where ¢ denotes the positive discount parameter. These bounds are
nonasymptotic.

e When the prior on the parameters is Gaussian, N(0, ¢?), the asymp-

[

totic lower bound on R(s|{z;} ) is of order #(i7oy under a Dirichlet

process mixture model and of order _ (f‘+a) + s(li—o‘) under a Pitman-

Yor process mixture model.

These lower bounds provide a fine-grained understanding of the posterior
distribution induced by the Dirichlet process and the Pitman-Yor process
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on the number of clusters. We note, however, that in general there does not
exist a finite upper bound. Such an upper bound, should it exist, would
require additional assumptions on the data-generating process.

Besides the lower bounds we demonstrate in this paper, we note that
one can use our techniques to obtain results for more specific cases where
additional assumptions on the data-generating process are imposed.

The remainder of the paper is organized as follows. We begin in Section 2

with background on Dirichlet process and Pitman-Yor process mixture mod-
els. Section 3 is devoted to a study of the posterior distribution of the number
of clusters from Dirichlet process mixture models under two choices of pri-
ors on the parameters: uniform and Gaussian priors. In Section 4, we extend
these results to the case of Pitman-Yor process mixture models. Section 5
presents the results of experiments that explore some of the consequences of
the theoretical results in previous sections. Finally, we conclude the paper
with a discussion of potential future work in Section 6.
Notation: We use {x;}?' , to denote the sample {x1, -, z,}, [n] to denote
the set {1,---,n}, and A™* € ps(n) to denote a set {A]"*,---, As"°} such
that all of the elements A; form an s-partition of [n], where ps(n) is the set
of all s-partitions on [n]. For example, {{1,2},{3,4}} is in p2(4).

2. Preliminaries. In this section, we provide necessary background on
Dirichlet process mixture models and establish key notation for our subse-
quent analysis of the posterior distribution of the number of clusters in these
models.

Dirichlet process mixture models (DPMMs) [1, 16] are specified as follows:

S
aS

(1) p(a™) = 5 [T047 - 1)

(n
« =1

(2) p(6|A™) = []=(6)
i=1

s

(3) p(feyia[{0i)=. 4™°) = [T T Jfo (),

j=1 :BiEA;L’S

where 7 is a prior on the parameter 6 and {fg(-)} is a family of density
functions.

In this paper, we focus on the application of DPMMs to clustering prob-
lems. The prior for the number of clusters with a data set of size n is as
follows:

P(K,=s)= »  p(A™).

Amsepg(n)
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Given this prior distribution, the posterior distribution for the number of
clusters admits the following formulation:

P(K, = sl{zi}y)
P({zi}iy [ Kn = s)P(Ky = s)
P({ﬂ%’}?:l)

Y pA™)- / p({zb i {0 5-0)p({0;} 20| A™) {0, 15

A€ps(n) 10551
= Z p(A"’S)-/ (H H fo, (i Hﬂ' )d{9 Fioa-
Aeps(n) 105}5-1€0° " 214, €A,

To ease the ensuing discussion, we use m(x 4n.s) to denote the probability
J
density function of a cluster of samples, which is given by:

meag) = [ o @30)- oy 210,700,000,

where 1, ,Zjq; € A?’S for all 1 < j < s. Given this definition of
m(z 4ns), we can rewrite P(K,, = s|z,) as follows:
J

Ky =sl{ai}i) o Y (P<An’s)‘ﬁm(“?’s)>

Amsepg(n) Jj=1
(4) - > (G H|A’”|—1 JIm@are)).
Amseps(n) Jj=1 Jj=1

Early theoretical results on these posterior probabilities can be found in [19,
20]. A general qualitative result from [20] is as follows.

THEOREM 2.1.  For a Dirichlet process mixture model, if the component
distribution is Gaussian, log normal, Gamma, exponential, Weibull, or if it
18 discrete and has at least some point with nonzero measure for any choice
of parameter, then, provided that the data are independently and identically
distributed from a K*-component mizture model, (K* is bounded), and with
probability one we have:

lim sup P(K, = K*{z;}i-;) <1

n— o0

Our goal is to supply a quantitative perspective on these posterior proba-
bilities, in a general setting where we do not confine ourselves to the case of
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finite or parametric mixtures. In other words, under more general assump-
tions on the data-generating process, we want to characterize the behavior
of the posterior distribution of the number of clusters.

In order to obtain this characterization, we consider the following ratio
between its values at K,, = s+ 1 and K,, = s:

P(K, = s+ 1| {z:}))
P(K, = 5] {@i}y)

1
ZA"’S‘HEPS.H(H) (p(ATL,s+1) . Hjl_l m(xA?,s)>
ZAn,seps(n) (p(A'rL,S) . Hj:l m(l’A;I,s))
From the formulation of a DPMM, we further obtain that
R(sl{zi}ic1)

R(s|{wi}isq)

ZA"’S+1€pS+1(n) ((Hfj(|A?’sH| -1 Hjﬁ m(%y»sﬂ))
S amreputoy ((TEo1 (A7 = D) - Ty i)

Our focus will be to obtain lower bounds on this ratio.

5) = a

3. A Quantitative Result for the Posterior of the DPMM. In
this section, we study the posterior distribution on the number of clusters
induced by a DPMM. Our first result assumes a uniform prior on a finite
interval, with a boundedness assumption on the data. The second result is
an asymptotic result for the Gaussian prior.

3.1. Uniform prior. We first consider the posterior distribution of the
number of clusters of a DPMM when the data lie in a bounded set. Data
sets of this form often arise in fields such as biology, genetics, and economics.
In this case it is natural to let the parameter space © be a compact set [25].

To ease the complexity of the algebraic aspects of the proof, we specifically
consider a simple uniform prior on the parameter space ©, where O is a
bounded segment of R with size |©]. With this choice, we have w(0) = 1/|0)|
for all 6 € ©. We begin with the following result that establishes a lower
bound on the ratio R(s|{x;} ).

THEOREM 3.1. Given the DPMM defined in Eq. (3), with a uniform
prior Unif(©) on 60, for sufficiently large n, if min({z;}I;) > min(O)
and max({z;}7_ ;) < max(0©), then the ratio R(s|{z;}]_,) between consec-
utive terms is lower bounded by
a

(6) R(s|{zi}i) = C- sop
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where C' > 0 is a universal constant.

REMARK. Note that in many problems when one applies a uniform prior
for the parameters, one expects the uniform prior to have support that is
large enough to capture the means of all the components. It is also possible
to extend to the case where some samples lie outside © by modifying Lemma
3.2, but the result would then have to be dependent on the specifics of the
distribution and lose generality.

PROOF. Given A™* € ps(n), we define its (s+1)-component extension set
Next(A™*), and its (s — 1)-component contraction set neon(A™®) as follows:

Newt(A™*) := {A™F € poyi(n) : A™® € neon (A1)}
Neon (A™?) 1= {[1”’571 € ps—1(n) 134,75 € [s] :
[ADS, AT AP U AT (AP AT} = (AP jxj;f;l}},

where we require s > 1 in the definition of 7.y, (A™*).

In words, neon (A™?) is the set of partitions in ps_1(n) that can be obtained
from A™% by combining two elements of A™* into one element while keeping
everything else the same. On the other hand, 7e,:(A™*) is the set of parti-
tions in psyi1(n) for which we can combine two of its elements into one to
get A™%. For example, if s = 2, and we have A™3 = {A?’?’, Ag’g, Ag’g}, then
Neon(A™3) consists of following three partitions: {A7?, AY® U A} {AT° U
AP AP} AT U ADS ARPY, and gt (A™P) is the set of all 4-partitions
that can contract to A™3.

We further define the posterior probabilities of a partition to be:

p(A™, z) i= p(A™®) - [ m(a are).

i=1
Given these definitions, we claim that we can rewrite the ratio R(s|{z;} ;)
as follows:
P(Kn = s+ 1{zi}i,)
P(Kn = sl{zi}i,)
2 ZA"vSGpS (n) ( ZAn,s+l ENewt (A5) p(An,s+1’ l‘))

7 — ’
(7) (s+1)s ZA"’SE,DS(TL) p(Ams )

for n > s+ 1. The proof of this claim is deferred to the end of the proof and
we proceed while assuming this result. Note that the last fractional term

R(s{wi}ii) =




in the claim takes the generic form %‘1 i; EZ)) , which motivates us to study

f(a)/g(a) in the following.

For each partition in 7e.¢(A™%), there exist exactly two sets that can be
combined to get one set in A™*, and all the others are the same as the other
clusters of A™*. We now let 7., (A™*) denote the subcollection of 7e,:(A™*)
such that for any partition in this subcollection, two sets can be combined
into A"®, and that one set has size j. Since the order of sets in each partition
does not matter, we will assume for simplicity that the two sets are the i-th
and (s + 1)-th clusters. To distinguish the s partition and its induced s + 1
partitions, we use B™* to denote the s-partition, and A™*T! € p...(B™*) to
denote its induced partitions. To simplify the notation, we use b1,...,bs to
denote the cardinalities of B?’S, -+ ,BY° and ay,...,as1 to denote those
of ATPT . AT ffr ! Furthermore, in the following derivation, the value n
is fixed, so w111 omit it in the notation unless there is the necessity to discuss
different n. We obtain the following:

> Astien(pe) P(ATT )
p(B|z)

[LH (AT = D)l gei)
= L2 I B DimGes:)

As+lenezt(BS)
s bzl (G = Dbi =5 = 1)t gesn)m( 4o41)

:O"ZZ Z (bi—l)!m(azB;) -

i=1 j=1 AS+1€7ligt(Bs)

bi—1
s b (G — )b — j — 1)! m(XAf“)m(XAzjg})
(®) ‘C“'Z._l Z_ { (b —1)! ( 2 m(Xpe) )}
=1 j=1 Aen ) i

Next

Recall that, by definition, Af“ Aiﬁ = B;.

LEMMA 3.2. For a set xg with ng elements and xp with ny elements,
suppose © C [Omin, Omax] s an interval in R such that minzg, minzy >
Omin + ¢ and max xg, max 7 < Opax — ¢ for some ¢ > 0, we have:

m(xg)m(zr) < av2r ns+m
m(zgUzp) —  |6O] Vsng

for some positive constant ¢y that does not depend on xg,xzp but only on c.

Given Lemma 3.2, we can derive the following bounds for the term in (8):

Do Astie ezt(Bs)P(ASHVU) acV2r ; 3/2
(9) np(Bsx) - |1@| ZZ( b —7) > '
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Note that:
b;—1 bi—1
. 3/2 7 . 3/2 P
Z(#)/ 2/ (Lydwm
= b =) e=1 z(bj — ) (b; — 1)b;
The inequality implies that the leftmost term is no less than 2 for b; >
. 3/2
4. When b; = 2,3, simple algebra indicates that Z?;_ll ( b ) > 2.

J(bi—3)
Invoking these results, we have the following lower bound:

. A As+1 T
2oA +1enea(B )p( |z) > aclx/27r 22 Tpos =
p(B*|z) S] I@I

Combining this lower bound with Eq. (7), we obtain the following evaluation
of the ratio between consecutive terms R(s):

P(Ky = s+ 1[{zi}l) , a
P(K, = sl{zi}ly) ™ 50l

R(s{witisi) =

As a consequence, we reach the conclusion of the theorem.

Proof of claim (7): Using equation (4), we can rewrite the ratio between
the posterior probability of s + 1 components and that of s components as
follows:

P(K, = s+ 1{@mi},) _ Zastiep,m PA™ )
(K, = s[{zi}y) 5 Becp(my P(B )

Note that for each A1 € p,iq(n), we can merge any two of its s + 1
parts to obtain some B® € pg(n). The number of distinct ways to do so
is exactly (SH) Also, for each B® € pg(n), the set ne,:(B®) contains all
ATt € poiq(n) such that they can merge some parts to get B*. Thus, the
index of the numerator on the right-hand side counts each A**! € pgi1(n)
exactly ( ) times, from which the equation follows. O

Proof of Lemma 3.2: For a set xg with ng elements, we use the following
shorthand:

ﬁ ZXG.’ES : Sgs _ Z X2.

Xexg



After some algebra, we can verify that

m(zs)m(zr)
m(xs Uxr)
_ H)2 )2
/ exp(— Z (X9)>d9./ exp<— Z (X9)>d9
9co Xeus 2 9cO Xeor 2
- X — )2
o [ ew(- > ED )
9€o XexgUzp
. (S3,+mTs?)  (Si, +nTr?)

\/EW eXp( N > ) - - 9 )sz (©)Prsuar (©)

- 2
o) 27 exp< B (S2ouey + (ns +ny)zs Uy ))
Ng + N¢ 2

_Ve2r ngtne exp<n8$52 + T2 — (ns +ny)zs U CCT2>
‘6‘ V1s Mg 2
Py (©) Py (©)

Pﬂ?SU$T(@) ’
where P.(0) := P(# € 0| ~ N(z,+)), which can be shown to be at

? Jaf
least erf(c|x|/+v/2), where erf is the error function. Hence:
s Pu(®)PLO) 1
leLJ:EQ (6) erf(C/\/g)

Note that this range in general is very small (around 1) for ¢ that is not too
small. For example, the range above is (0.997%,1/0.997) for ¢ = 3. Now, we
write ¢; = (erf(c/v/2))2.

On the other hand,

(erf(c/v/2))

nsTs” + T — (ns + n)Ts Uar” _ ngny(Ts — Tr)°
2 2(ns + mny)

Combining these results, we obtain the desired inequality. [

The bound in the result of Theorem 3.1 does not require the original
distribution to be a mixture distribution. Instead, it holds provided that the
true underlying distribution has finite and nonzero variance.

In particular, note that by the law of large numbers, if the observations
in g,z are i.i.d., we may consider the empirical average of the exponential
term in Lemma 3.2 and Eq. (8):

exp (nsnt(ﬁ —77)%/2(ns + nt)>
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The term inside the exponential is approximately %Z—dis‘cribu’ced as
ns and ng go to infinity, where Z is the standard normal distribution and
o2 is the variance of the original distribution. Using the moment-generating
function of the yo distribution, we can see that this term grows unbounded
as ng and n; grow, in contrast to the constant value one we derived in the
proof of the Theorem 3.1. Therefore, given the result of Theorem 3.1, we

obtain the following corollary:

COROLLARY 3.3. If the conditions in Theorem 3.1 hold as n — oo, then
for any s fized, we have:

nh_{lgo R(s{zi}iz,) — oo.

We note that the rate at which R(s|{x;}}'_ ;) grows is unknown and may
be very slow when o2 is small, due to the complicated combinatorial behav-
ior. Combining the results from Theorem 3.1 and Corollary 3.3, we can see
that for any distribution with nonzero variance, the posterior probability of
obtaining s + 1 clusters will eventually exceed that of obtaining s clusters,
and their ratio grows in an unbounded way. An important implication of this
result is that, with a larger sample size we will tend to fit a larger number of
clusters, and this model ultimately leads to an infinite number of clusters al-
most surely. However, in the finite sample-size regime, the model’s behavior
depends more on the variance of the original distribution. In practice, one
should rely on the finite bound in Theorem 3.1 unless additional information
about the distribution is available.

3.2. Gaussian Prior. We now consider the more commonly used Gaus-
sian prior on the parameter 6 [3, 17]. In particular, we choose the prior den-
sity to be that of a univariate Gaussian distribution, A(0,0?), with fixed
variance o > 0. Given this choice of prior, we have the following asymptotic
lower bound on R(s|{x;}I" ;):

THEOREM 3.4. For the DPMM defined in Eq. (3), with a Gaussian prior
N(0,0%) on 0, as n goes to infinity, the ratio R(s|{z;}"_,) satisfies the fol-
lowing asymptotic lower bound:

. n -
(10) nh_{rgo R(s{zi}ic,) = C s2(1+0)’

where C > 0 is a universal constant.

REMARK. The result of Theorem 3.4 holds asymptotically. Its perfor-
mance in finite samples is unknown and is complex, depending heavily on



11

the original distribution. It would be of interest to characterize the finite-
sample behavior of distributions satisfying certain conditions on variance
and the true number of components or the true rate of growth in the number
of components for an infinite-component distribution induced by processes
such as the Dirichlet process.

PROOF. We use the notation from the proof of Theorem 3.1 in this proof.
As in Eq. 8, we study the following term: (m(:];AfH)m(wAzﬁ))/m(xBis),
where as in Theorem 3.1 we assume B® to be some s-cluster formed by
merging two clusters in AstL

LEMMA 3.5. For sets xg with ns elements and x7 with ny elements,

suppose © =R and w(0) = \/17 exp(—2 ) We have:

m(xg)m(zr) - \/1‘ T ns+ng

m(xs U xp) 2 14+7 ngmy

with probability approaching one as ng + ny goes to infinity.

Returning to the computation of the ratio p(Alx)/p(B|x), for fixed s and
a partition B € ps(n), we define

UB):={i€cls|:b> S%}.

For any i € U(B), since b; increases as n increases, we may assume that the
aforementioned condition that F(7;xp,,zp,) > 0 holds asymptotically for
any fixed proportion (less than one) for all the partitions of B;. Then, for
sufficiently large n we have:

p(A*tx)
2 p(B*|z)

At ey (B2

(j— 1) b o 1)' m(XAS+1si)m(XS+1AS+1)
=a- Z Z (bi — 1)! ( Z m(Xg:) )

i=1 j=1 As+le772.7(Bs)
w.h.p. oy ]—1 b—j—l)( b; >
> —
- wm P Z (b —1)! 2 57
Aenem‘(BS)
N/ T

Here, the second step follows with high probability by our previous argu-
ment, and the last step follows by a similar argument as in the case of uniform
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prior, except that we have only a constant term instead of an s in the case
of uniform prior. This is true because it is possible to have |[U(A)| < s, so
the result can only be bounded by a constant multiple of « - \/% without

the s factor in the uniform case.
Finally, note that as n goes to infinity, the result holds with probability
one. Therefore, we obtain that

P(Kn=s+11{z}ly) , a7
~E e

As a consequence, we reach the conclusion of the theorem. ]

li ; noy_— |
nl—>nolo R(S‘{Jj }1—1) nl—>nolo P(Kn — S|{:'U’L}?:1)

Proof of Lemma 3.5: We have:
m(zs)m(zr)

mSUxT

1

ns + nt 02
\/ ns nt + )

o <1 < nsx52 N 2772 (ns+ny)*rs U xT2>>
xp| = — .
2\ns+% m+% (ns +ne) + 25

To simplify the notation, we let 7 := % be the precision, and rewrite this
expression as:

2

(ns +7)(ne +7) ng + 7 nt+7'_ (ns+ng) +7

\f\/ Ns +ng + 7 Xp(l(n?:cg2+n%x;p2 (n5+nt)2x5UxT2>>

F(rzs,xT)

Note that the term F(7;xg,x7) is nonnegative at zero, since

ngn
(75— 77) > 0.

F(0;z5,27) = ——
S

Solving a quadratic function shows that the equation F(7;x1,22) = 0 has
its positive root at:

1 —— _ )2
[\/8nsntM+Q2+Q}, it Z5TT > 0
4 TSTT

4
0 ifZg=0,T7r #0or Tg #0,T7 =0
R* it Tg =77 =0,

1 2
[\/anntM+Q2+Q} or ), if Zgzr <0
rsxT
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T NgTg
where Q := ng——— + ng——2 — 2(ng + ny).
NsTg MZITT
If there is no positive root or every positive number is a root, then

F(r;xg,zp) > 0 for any 7 > 0. Otherwise, there exists a unique posi-

tive root ry(xg,z7) = %[\/Snsnt@%;%y + Q2+ Q}, a random variable
depending on ng, n;, whose probability density function concentrates on in-
creasingly larger values as long as one of ng, n; goes to infinity. That is, the
root grows larger stochastically as ns; and n; increase. For any fixed 7, as
ng + n¢ goes to infinity, it follows that for any fixed 7 > 0, the probability
that [0,74(xg,z7)] contains 7 approaches one asymptotically, so we have
that F(1;xg,z7) > 0.

Note that for any positive integers ng, n; and nonnegative number 7, we
have

1 Ng + Ny

Ng+MNy + T 1
> —_ .
(ns+7)ng+71) " 2 147 ngny

The result follows. [

4. Extension to Pitman-Yor process mixture models. In this sec-
tion, we extend our results to the Pitman-Yor process mixture model, a
model that is similar to the Dirichlet process mixture model but allows a
faster rate of creation of clusters. Accordingly, we will see that the ratio be-
tween the posterior probabilities of consecutive number of clusters is larger
than that of the DPMM.

We retain most of the notation used in the previous section unless other-
wise specified. We also use the standard Chinese restaurant process nomen-
clature to describe the dynamics associated with the partitions formed by
the Pitman-Yor process, where the items to be partitioned are referred to
as “customers,” and partions are referred to as “tables” [23]. Letting (a, &)
denote the parameters of the Pitman-Yor process prior, we obtain:

=€ it e < s
(11) P(customer n + 1 joins table ¢ | A™%) = ¢ &7 -
op, Otherwise.
. : . .. o lc|—¢
The idea is that joining an existing table ¢ has a probability of 7=, a

probability proportional to |c| — &, the number of customers already at the
table, discounted by the value £, and the probability of joining new table is
proportional to a + £K,,. Then, the probability of obtaining A™*® is:

afa+§)---(a+E(s—1))

a(”)

[Ta-9e-9---(a7°

i=1

P(A™*) =

_1_5)7
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where o™ = a(a +1)---(a +n — 1). Note that if [A]**| = 1, the corre-

sponding term in the product is 1. We denote
lcodl=01-82-¢) - (c-8),

and define [0 & ¢|! = 1.

Overall, we write:

(A™*)s) ~ PYP(a,§),
and define the Pitman-Yor Process Mizture Model (PYPMM) as follows:

(12) (A™% 5) ~ PYP(a €)

(13) p(O] A™* s H7r

(14) p({wi}?zl!{93'}?:1,14"’8»8)=H 1T o, (),

Jj=1 :EEA;.L’S

where 7 is a prior on 6 and fy, belongs to a family of (known) densities.
Moreover, analogously with the case of the DPMM, we obtain the following
form for the posterior:

P(Kn = sl{ai}iy)
P({i) iy | Ky = 9P, =)
P{{witi,)
SD D (L B (ST N O P O

Amseps(n) Jj=1

oy e [T e | T

Amsgpg(n) j=1 IiEA;-L’S
— Z ]P’(A”S H/ I o, () | =(6) db;
Amsepg( xieA?‘s

= > P(A”’S)Hm(mA;p,s).

An,seps(n) ]:1
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Thus, we have
P(Ky = sl{zi}iz) ) P({zibis))

_ Z ala+§)- .;l((f:)—k £(s—1)) H (A7) = 1) © € - mlagne).
Amspy(n) =1
Recall the definitions
Newt(A™°) := {A™ € peya(n) : A™° € feon (A1)},
Heon(A™*) i= { A7V € pya(n) 13, € [s]
[AD®, oo AT AT U AP AP AP} = (AP AT

and note that ns4+1(A) is the set of partitions formed by combining A; and
Asi1, and 775(B) is all sets in psy1(n) that can be formed by splitting one of
B into two clusters (and then making one of them the “last cluster”). This

yields:
P(Ky = s+ 1[{zi}i,)
P(Kn = s[{zi}iLy)
2 2 Bnsepa(n) (ZAn»S*lenezt(Bn,s) p(A™* L, fU))
(s+1)s 2 Brsepy(n) P(B™®, ) .
Thus, continuing with the proof, we have:

ZA"’S+1€nezt(Bn’s) p(An,8+1 ‘x)
p(B™*

R(s|{zi}ia) =

(15) -

x)
S e T4 1) @ T me o)
= 8] S n.s S
[ (0B =) o)t TTizy m(zprs)

An,5+1 enex‘t(Bn’s)

s b el bh—j—1) e
oYY T (j )@’(é;_!(l)@g“ )¢l

=1 ]:1 An,s«kleniv’rjf(Bn,s)

(16)
m(xA'(L,s+1 )m(l’An_,:ii»l )

X
m(xBi"’S)
Note that we let b; = |B;|, and let niﬁt(B”’s) be defined to be all A"+ ¢
Next(B™*) obtained by splitting B;"® into two clusters of size j and b; —j — 1.
We now separate into two cases, where the prior is uniform and Gaussian
respectively.
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4.1. Uniform prior. Similar to our analysis with the DPMM, we first
consider the behavior of the posterior distribution for the number of clusters
when the prior is a uniform distribution.

THEOREM 4.1.  Given the PYPMM defined in Eq. (14) with a uniform
prior Unif(©) on 0, when n is sufficiently large, if min({z;}" ;) > min(©)+c
and max({z;}_ ;) < max(©)—c for some ¢ > 0, then the ratio R(s|{z;},)
between consecutive terms is lower bounded by

(a +&s)

(a7 Rislradia) 5 g

PrROOF. By Lemma (3.2) and under the same condition, we have that
when B]"* = AP U AT and letting a = |APS| for k € [s + 1],

MUE g+ )TUE o) S aV2m Vai +asin
mlege) (O] Jaasa |

Now, we obtain that

ZA"’S-’_lenezt(B"’s) p(An,S+1 ‘x)

(B"slx)
(7 —1) @él'l(b —j-ned!
‘”53;; BN

X Z Cl|@|27T' \/E -

Astlenll, (B2 3bi = J)

— (ot clﬁwibfu—l egl|(bi—j-1) e (b> b
o 2 2 [CEDEE] i)\ 3=

Note for j = 1 and j = b; — 1 we have that for b; > 2

\(j—l)@f‘!’(bi—j—l)Gﬂ!.<bz‘> bi b b

[(b; — 1) © ¢! g\ gbi—34) bi—=1-&Vbi—17"

Plugging this back into the expression above

ZAn,sHen (Bs) p(A™s T |z) (0 997)2 Vor (v +&s)s
ex > (a+€s) 20,50 2~
p(B™*[x) el Z (S]
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Then, using Eq. 16 we get that

2 Creeepm (Santtep e PA™ )
s+1)s > Brsepy(n) P(B™*|T)
2 Z p(A™*z)

> ————  min —
05 5500 1y P
2 (a+£s)5>(a—|—£s)_ o +i
T (s+ls |0 T s[O sle] "~ |e]

R(s|{wi}in) = (

As a consequence, we obtain the conclusion of the theorem. O

4.2. Gaussian Prior. We now turn to the case where the prior is a Gaus-

sian distribution. We make similar assumptions on the prior as we made in
Section 3.2 with the DPMM.

THEOREM 4.2. For the PYPMM defined in Eq. (14), with a Gaussian
prior N'(0,0%) on 0, as n goes to infinity, the ratio R(s|{z;}",) satisfies the
following asymptotic lower bound:

. n Cla+¢&s) 1
(18) nl;n;o R(s|{zi}iq) > 2 1rvor

where C > 0 is a universal constant.

PROOF. Most steps are the same as in the derivation for the DPMM. We

denote ' ‘
o _lG-Doee-j-vog
Jibi — . !
(b — 1) & ¢!
Then, by equation (16) we have that

Z p(An,s+l|l,)

p(B™*|x)

s bi—1 m(a: n,s+1)m(x n,s+1)
AT AT
=(a+£&s)> Y Djy, > =
— ~ m(zgn.s)
=1 ]71 An,s+1€névzjt(Bn,s) v

bi—1

w.h.p. bi+7_
> et et Y Dy x > G+Obi—j+7)

i€U(Bms) j=1 Ans+lenbd, (Brs)
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bi—1 [y
> Co(a—i—ﬁs)ﬁ Z ZDjybi X Z
i€U(B™*) j=1 L (Bms) Y 2(1+7) ibi =J)

C\T
>
T l4+T

where most of the steps follow similarly as in the proof of the DPMM in
Theorem 3.4. Thus we conclude that

| nyp ot VT VT (o ¢
nILH;oR(S‘{xi}iZI)z 52 '1+ﬁ_1+ﬁ<+3>'

As a consequence, we reach the conclusion of the theorem. ]

(a +&s),

REMARK. Compared to the DPMM, the PYPMM has a faster rate of
table generation, and accordingly a longer tail for the number of clusters.
As we can see in Theorems 4.1 and 4.2, this leads to a larger lower bound in
the ratio between consecutive posterior probabilities. Essentially, the lower
bound for the uniform case is raised to a constant, and that for the Gaussian
case is raised to the order of 1/s, which corresponds to our intuition that
PYPMM is more likely to fit a bigger number of clusters in the posterior.

5. Experiments. In the current section, we discuss the results of nu-
merical experiments that aim to empirically strengthen our understanding
of the clustering behavior of the DPMM and PYPMM. Throughout this
section, for simplicity of implementation, we consider the Dirichlet mixture
of standard normals; i.e., we assume fy(z) = \/%e_(w_‘))z/&ﬂ, where fy(z) is
the likelihood function in Eq. (3). As for the prior density on the parameters,
we choose 7(6) to be Gaussian.

To compute the posterior density given the data points, we note that if
data points {z;}¥_, fall within the cluster, then it follows that

p(O{zi}isy) ocp( Jp({wi}ie 1\9)

e éxl 0)?

— 92/20 H
Vi 271' 1V 2T

~N 02 Zi:l Li 02
no24+1 'no2+1)°

Moreover, to compute the marginal density of a specific x, we compute as
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follows:

1 ,l(mfg)z 1 _ 0%
= _— 2 . [ 202 d9
V2or V2ro?
~ N(0,0% +1)

We pick @ = 1 and o = 1 for our simulations. Specifically, we use the
“dirichletprocess” R package [12] for these simulations, where the software
package runs a Gibbs sampler on the DPMM model. For all the experiments,
we run the Gibbs sampler with a burn-in period with 2 x 10° burn-in steps,
and then take 10000 succeeding samples with step size 100.

5.1. Finite-cluster models. In this subsection we consider two finite-cluster
distributions. In the first experiment, we generate 300 i.i.d. data points fol-
lowing a standard normal distribution. In the second experiment, we gener-
ate another 300 data points with the following two-cluster distribution:

Fz) = % vz € [0,1]U[2,3].

After running the Gibbs sampler, we compute the posterior frequency
of the number of clusters F; for each s with some nonzero count of poste-
rior frequency. This gives an empirical distribution of P(K,, = s|{x;}! ),
from which we may approximate R(s|{x;}!' ;). Note, however, that this ap-
proximation may be of low quality for large s given the corresponding low
posterior frequency.

Figure 1 presents a plot of posterior frequencies and their ratios. The red
bars correspond to the posterior frequency of the number of components,
and the black dots are the ratios between the posterior frequencies, Fs1/F.

The theoretical bound asserts that the ratio between consecutive posterior
frequencies is at least of the order of 1/s% under a Gaussian prior. To evaluate
this, we plot R(s) - s2 versus s, which, roughly speaking, should look flat
or have an upwards trend. In Figure 2a, we plot f%(s|x) - 52 for both the
one-cluster Gaussian and two-cluster uniform cases, where we observe the
expected upward trend. In Figure 2b, we plot }A%(s|x) -8 to assess whether the
relationship is roughly linear. If linearity holds true then we would expect
to see the dots for both settings to be roughly flat. Finally we note that it
is reasonable to have erratic behavior of R(s|z) when s is large since the
posterior frequencies for large s are all very close to zero and the estimator
R is unstable in that case.
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Fig 1: Plots for empirical P(K,|z) and R(s|z)

5.2. Dirichlet process mizture models. 1t is also of interest to investigate
the behavior when the data follow an infinite-component distribution.
To study this case, we investigate a Dirichlet process data-generating

model, with the oo = 3, 6; i N(0,25) for each ¢, and
$i|0j,’i € A?’S ~ N(Gj, 1).

Again, we generate 300 samples for three independent experiments, which
result in 11, 14, and 17 clusters respectively.

We again plot the empirical values of P(K,|z) and R(s|z) in Figure 3, and
investigate the nature of the growth rate of the posterior number of clusters
in Figure 4. As we see in the latter figure, the ratios between consecutive
posterior frequencies of the number of clusters are at least of order 1/s%.

6. Discussion. We have established lower bounds on the ratio of pos-
terior probabilities R(s|{x;}} ;) for the number of clusters for both the
Dirichlet process mixture model and Pitman-Yor process mixture model,
under several choices of prior distributions on the parameter space. While
the complicated combinatorial structure of the DPMM and PYPMM pre-
clude general characterizations of the posterior distribution, we have shown
that it is possible to obtain analytical results for the posterior distribution
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Fig 2: Plots of R(s|x) with respect to different order of powers

of the number of clusters. We obtained both asymptotic and nonasymptotic
results for the distribution of this important quantity.

An interesting open problem is to consider whether our rates are optimal
or can be further improved. In particular, in the case of a Gaussian prior, our
simulation suggests that instead of the 1/s% rate predicted by our theory,
a tighter 1/s rate may be possible. This seems plausible given that the 1/s
rate arises in the case of uniform prior.

Our results provide a strong negative response to the question of whether
basic nonparametric Bayesian models such as the DPMM or the PYPMM
are able to infer the true number of clusters when the true number of clus-
ters is finite. Indeed, our results provide a quantitative refutation of this
naive hope. Additional mechanisms, such as truncation or some form of
regularization, will be necessary to obtain consistent inference of the num-
ber of clusters in the finite setting. Indeed, recent work has shown that
truncation can yield consistency with the number of clusters when the true
data-generation mechanism is a finite mixtures [13]. However, the trunca-
tion method brings additional tuning parameters into the picture, including
notions of separation of clusters, which may not be easily determined in
practice. The problem of consistent estimation of the number of clusters
remains open.

There is, however, another interesting open problem, which arises when
the true distribution contains an infinite number of components. Do the
DPMM or the PYPMM guarantee an infinite number of clusters in this
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Fig 3: Plots for empirical P(K,|z) and R(s|z) in three simulations from
Dirichlet process.
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Fig 4: Plots of R(s|z) with respect to different order of powers in three
simulations from the Dirichlet process.

case? Does the rate of growth of clusters in the posterior match that of
the data-generating distribution, at least asymptotically? What about the
case in which the truth is Dirichlet process mixture of normals or simply
a general Dirichlet process? Does DPMM generate a posterior number of
clusters at the same rate as implied by the Dirichlet process? In answering
these questions, it will be necessary to derive some sort of upper bound on
the R(s|X), and focus on the asymptotic regime.
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