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Abstract

Recent years have witnessed substantial progress in understanding the behavior
of EM for mixture models that are correctly specified. Given that model mis-
specification is common in practice, it is important to understand EM in this more
general setting. We provide non-asymptotic guarantees for the population and
sample-based EM algorithms when used to estimate parameters of certain mis-
specified Gaussian mixture models. Due to mis-specification, the EM iterates no
longer converge to the true model and instead converge to the projection of the
true model onto the fitted model class. We provide two classes of theoretical guar-
antees: (a) a characterization of the bias introduced due to the mis-specification;
and (b) guarantees of geometric convergence of the population EM to the model
projection given a suitable initialization. This geometric convergence rate for pop-
ulation EM implies that the EM algorithm based on n samples converges to an es-
timate with 1/

√
n accuracy. We validate our theoretical findings in different cases

via several numerical examples.

1 Introduction

Mixture models play a central role in statistical applications, where they are used to capture hetero-
geneity of data arising from several underlying subpopulations. However, estimating the parameters
of mixture models is a challenging task, due to the non-convexity of the log likelihood function.
As shown by classical work, the maximum likelihood estimate (MLE) often has good properties for
mixture models, but its computation can be non-trivial. One of the most popular algorithms used to
compute the MLE (approximately) is the expectation maximization (EM) algorithm. Although EM
is widely used in practice, it does not always converge to the MLE, and its convergence rate can vary
as a function of the problem. Classical results provide guarantees about the convergence rates of EM
to local maxima [4, 16]. In the specific setting of Gaussian mixtures, population EM (idealized EM
with infinite samples) was shown to have a range of behavior from super-linear convergence to slow
convergence like a first-order method depending on the overlap between the mixtures [9, 18]. More
recently, there has been a renewed interest in providing explicit and non-asymptotic guarantees on
the convergence of EM. Notably, Balakrishnan et al. [1] developed a rather general framework for
characterizing the convergence of EM. For well-specified problems—including the two-component
Gaussian location mixture as a particular example—they provided sufficient conditions for the EM
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algorithm to converge to a small neighborhood of global maximum; in addition, they provided ex-
plicit bounds on the sample complexity of EM, meaning the number of samples n required, as a
function of the tolerance ε, problem dimension and other parameters, to achieve an ε-accurate so-
lution. A line of follow-up work has generalized and extended results of this type (e.g., see the
papers [20, 15, 7, 17, 3, 19, 5, 2]).

A shared assumption common to this body of past work is that either the true distribution of each
subpopulations is known, or that the number of components is exactly known; in practice, both of
these conditions are often violated. In such settings, it is well known that the MLE, instead of ap-
proximating the true parameter, approximates a Kullback-Leibler projection of the data-generating
distribution onto the fitted model class. Thus, the MLE exhibits a desirable form of robustness to
model mis-specification.

On the other hand, it is not obvious a priori that this robustness need be shared by the solutions
returned by the EM algorithm. Since these solutions are those actually used in practice, it is impor-
tant understand under what conditions the EM algorithm, when applied with mis-specified models,
converges to an (approximate) KL projection. The main contribution of this paper is to provide
some precise answers to this question, and moreover to quantify the bias that arises from model
mis-specification. Our analysis focuses on two classes of mis-specified mixture models.

• Under-specified number of components: Suppose that the true model is given by location-shifted
mixture of k ≥ 3 univariate Gaussians, but we use EM to fit a location-shifted Gaussian mix-
ture with k − 1 components. This scenario is very common: it arises naturally when either the
mixture components are very close or some of the mixture weights are very small, so that the
data generating distribution appears to have fewer components. Analysis of the EM algorithm
when the fitting distribution has fewer mixture components than the data-generating distribution
poses new challenges; in particular, it requires an understanding of the model bias, meaning the
Kullback-Leibler discrepancy between the true model from its projection(s) onto the class of
fitted models. In this paper, we provide a detailed analysis of the k = 3 case. First, we charac-
terize the model bias induced by fitting a two-component mixture to a three-component mixture
with unknown means but known variance. We then provide sufficient conditions for the popula-
tion EM updates to converge at a geometric rate to the KL projection of the true model onto the
fitted model class. Finally, using Rademacher-complexity based arguments and the geometric
convergence of population EM, we conclude that with high probability, the EM updates with n
samples converge to a ball of radius 1/

√
n around the aforementioned KL projection.

• Incorrectly specified weights or variances: In our second problem class, we assume that the
number of components is correctly specified, but either the mixture weights or the variances
are mis-specified. Concretely, suppose that the true model is a two-component location-shifted
Gaussian mixture with weights/variances that differ from those in the fitted model class. Our
analysis reveals a rather surprising phenomenon with respect to EM convergence: despite the
potential non-convexity of the problem, the iterates converge at a geometric rate to a unique
fixed point from an arbitrary initialization. Our results suggest that the projection from the true
model to the fitted model is actually unique. Finally, we prove that the sample-based EM updates
achieve standard minimax convergence rate of order 1/

√
n.

Table 1 provides a high-level summary of our results, where we use (θ, σ, α) to denote the Gaussian
mixture component with mean θ, variance σ2 and weight α, i.e., αN (θ, σ2).

The remainder of our paper is organized as follows. In Section 2, we introduce the problem set-up
and provide the background information on the EM algorithm. In Section 3, we present our results
for the first framework and provide expressions for the bias and rate of convergence of EM for dif-
ferent 3 component mixture of Gaussians. Section 4 contains results when the mixture weights and
variance are mis-specified. Numerical experiments illustrating our theoretical results are presented
in Section 5. Finally in Section 6, we conclude the paper with a discussion of our results and a few
possible venues for future work.

Notation: We use c, c′, c1, c2 to denote universal constants whose value may vary in different con-
texts. For two distributions P and Q, the Kullback-Leibler divergence between them is denoted by
KL(P,Q). We use the standard big-O notation to depict the scaling with respect to a particular
quantity and hide constants and other problem parameters.
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True Model Best fit with two
components

Bias
min{|θ − θ∗|, |θ + θ∗|}

Statistical error |θ̂n − θ|
of sample EM

3-component mixture:
(−θ∗(1+ρ), σ, 1/4);
(−θ∗(1−ρ), σ, 1/4);
(θ∗, σ, 1/2)

(−θ, σ, 1/2);
(θ, σ, 1/2)
σ known

ρ |θ∗|+ c (ρ |θ∗|/σ)
1/4

n−1/2

3-component mixture:
(−θ∗, σ, (1−ω)/2);
(θ∗, σ, (1−ω)/2);
(0, σ2, ω)

(−θ, σ, 1/2);
(θ, σ, 1/2);
σ known

cω1/8 |θ∗|1/4√
1−ωσ1/4

n−1/2

2-component mixture:
(−θ∗,

√
σ2−θ∗2, 1/2);

(θ∗,
√
σ2−θ∗2, 1/2);

(−θ, σ, π);
(θ, σ, 1−π)
σ, π 6=1/2 known

c |θ∗| ((2−4π) + θ∗2)1/2

σ
n−1/2

Table 1. Summary of the main theoretical gurantees of this paper. Here the parameter θ∗ denotes the
true parameter value (in the data-generating distribution), θ̄ denotes the value of the parameter of the
best fit model, and θ̂n denotes the estimate returned by running the EM algorithm. Recall that the true
model is not in the class of fitted models, and we can only hope to estimate θ̄; consequently, in the
above table lists the performance of the EM algorithm in estimating θ̄ for different settings. The first
column lists the true model, while the second column shows the fitted model. In the third column, we
summarize the bias of the parameter of the best fitted model (2). When using EM with n samples, the
final statistical error |θ̂n−θ| has the statistical rate of order n−1/2 in all cases, as depicted in the fourth
column (here θ̂n denotes the final sample EM estimate).

2 Problem set-up

Throughout this paper, we assume that data is generated according to some true distribution P∗,
which admits a continuous density over R. We are interested in the performance of the EM algorithm
when we fit the model below using a two-component mixture of location-shifted Gaussians with
known variance σ2 and known mixture weight π ∈ (0, 1):

Pθ = πN (θ, σ2) + (1− π)N (−θ, σ2) (1)

We consider two distinct settings of the mixture weights in model (1):

• Balanced mixtures: the mixture weights are assumed to be equal, i.e., π = 1− π = 1/2.

• Unbalanced mixtures: the mixture weights are assumed to be unequal π = 1
2 (1 − ε) and

1− π = 1
2 (1 + ε) where |ε| ∈ (0, 1).

In order to estimate the location parameters, we apply the EM algorithm, allowing θ to vary over
some compact set Θ. Since the true distribution P∗ may not belong to the class of fitted models, the
best possible estimator is the projections of P∗ to the fitted model (1). It is given by

θ ∈ arg min
θ∈Θ

KL (P∗,Pθ) . (2)

Our main goal in the paper is to establish the convergence rate of EM updates to θ for various choices
of the data-generating model P∗ and the fitted model (1).

2.1 EM algorithm for two-component location-Gaussian mixtures

Let us now introduce some notation as well as a brief description of the EM algorithm for two-
component Gaussian location mixtures (1). The population version of EM is based on the function

Q(θ′; θ) := −1

2
E
[
wθ(X) (X − θ′)2

+ (1− wθ(X)) (X + θ′)
2
]
, (3)

where the expectation is taken over the true distribution P∗. For any fixed θ, the M-step in the EM
updates for the model (1) is obtained by maximizing the minorization function (3); for a detailed
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derivation, see the paper [1]. More precisely, we denote the population EM operator M : R→ R as

M(θ) := arg max
θ′

Q(θ′, θ) = E [(2wθ(X)− 1)X] , (4a)

where the weighting function wθ in the above formulation is given by

wθ(x) :=
π exp

(
− (θ−x)2

2σ2

)

π exp
(
− (θ−x)2

2σ2

)
+ (1− π) exp

(
− (θ+x)2

2σ2

) . (4b)

Note that the parameter θ, defined in equation (2), minimizes the KL-distance between the fitted
model and the true model, thereby ensuring that the log-likelihood is maximized at the model in-
dexed by the parameter θ. Consequently, the parameter θ is a fixed point of the population EM
update—that is, M(θ) = θ. The sample version of the EM algorithm—the method actually used
in practice—is obtained by simply replacing the expectations in equations (3) and equation (4a) by
the sample-based counterpart. In particular, given a set of n i.i.d. samples {Xi}ni=1 from the true
model, the sample EM operator Mn : R 7→ R takes the form

Mn(θ) :=
1

n

n∑

i=1

(2wθ(Xi)− 1)Xi. (5)

With this notation in place, we are now ready to state our main results.

3 Guarantees for EM algorithm for mis-specified number of components

In this section, we study the convergence of the EM algorithm in the setting of under-fitted mixtures,
where the number of components in the true model is larger than that in the fitted model. In sharp
contrast to the traditional setting of correctly specified mixture models, where the number of com-
ponents of the true model is known to the EM algorithm, we analyze the performance of the EM
algorithm in the setting where the true number of the components is not known. Such a scenario
naturally occur in many practical cases, examples include: (1) Some components in the mixture are
very close, and it is hard to distinguish them; (2) Some components have very small mixture weights
and thereby are difficult to detect. Consequently, in the aforementioned situations, the number of
components observed from the data may be much smaller compared to the number of components
present in the true model. In this section, we characterize the bias of the two-component fit and
analyze the convergence properties of EM for such a fit.

3.1 Three-component mixtures with two close components

First, we consider the case, where the true model has distribution P∗ is a mixture of three-component
Gaussian location mixture given by

P∗ =
1

4
N (−θ∗(1 + ρ), σ2) +

1

4
N (−θ∗(1− ρ), σ2) +

1

2
N (θ∗, σ2) (6)

for some θ∗ in a compact subset Θ of the real line, and a small positive scalar ρ that characterizes the
separation between two cluster means−θ∗(1+ρ) and−θ∗(1−ρ). For fitting the model, we assume
that the variance σ2 is known, and we suspect that the true model is a two-component mixture (since
ρ is small). Consequently, we fit the data with the model

Pθ =
1

2
N (−θ, σ2) +

1

2
N (θ, σ2), (7)

and we use the EM algorithm to estimate the location parameter θ. Clearly, the performance of
model (7) and consequently the EM algorithm depends on the relationship between the separation
factor ρ and the SNR η := |θ∗| /σ of the true model (6). Since the true model does not belong in the
family of two components location-Gaussian mixtures in model class (7), the role of the projection
parameter θ ∈ arg minθ∈Θ KL(P∗,Pθ) becomes crucial. In the next proposition, we provide an
explicit bound for the bias between θ and θ∗ as a function of the problem parameters.
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Proposition 1. Given the true model (6) and any ρ > 0, we have

min
{∣∣θ∗ − θ

∣∣ ,
∣∣θ∗ + θ

∣∣} ≤ ρ |θ∗|+ c

(
ρ |θ∗|
σ

)1/4

, (8)

where c is a universal positive constant that depends only on the set Θ.

In order to simplify our results in the sequel, we assume that η = |θ∗| /σ ≥ 1 and use a simpler
bound on the bias—viz.:

min
{∣∣θ∗ − θ

∣∣ ,
∣∣θ∗ + θ

∣∣} ≤
(
ρ+

ρ1/4

η3/4σ

)
|θ∗| ≤

(
ρ+

ρ1/4

σ

)
|θ∗| . (9)

The bound above directly implies that
∣∣θ
∣∣ belongs to the interval [(1 − Cρ) |θ∗| , (1 + Cρ) |θ∗|],

assuming that Cρ := ρ + ρ1/4/σ ≤ 1. As ρ → 0, we have Cρ → 0 implying that |θ∗| and
∣∣θ
∣∣

are almost identical. In the sequel, we utilize this precise control of
∣∣θ
∣∣ in terms of |θ∗|, provided

by Proposition 1, to analyze the behavior of the EM algorithm in a neighborhood of θ. Defining
ρ? := sup {ρ > 0|Cρ ≤ 1/9}, the following result characterizes the behavior population EM oper-
ator for the three-component Gaussian location mixture described by equation (6).
Theorem 1. There exist universal constants c′, c′′ such that the population EM operator for
model (6) with ρ ≤ ρ? and η ≥ c′ satisfies∣∣M(θ)− θ

∣∣ = E
∣∣2(wθ(X)− wθ(X))X

∣∣ ≤ γ
∣∣θ − θ

∣∣ , for any θ ∈ B(θ,
∣∣θ
∣∣ /4).

In words, Theorem 1 establishes that the population EM iterates (in the ideal, infinite data limit)
are γ-contractive with respect to θ over the ball B(θ,

∣∣θ
∣∣ /4), where γ ≤ e−c

′′η2 . Combining that
result with the condition Cρ ≤ 1/9, we can demonstrate that

∣∣θ
∣∣ is unique (See Section A.1.4 in

the Appendix). These results have a direct implication for the sample-based version of EM that
is implemented in practice. In particular, the next result shows that EM updates with n samples
converge in a constant number of steps to a neighborhood of θ.
Corollary 1. Consider any scalar δ ∈ (0, 1), sample size n ≥ c1 log(1/δ) and starting point
θ0 ∈ B(θ,

∣∣θ
∣∣ /4). Then under the assumptions of Theorem 1, the sample-based EM sequence

θt+1 = Mn (θt) for the model (6) satisfies

∣∣θt − θ
∣∣ ≤ γt

∣∣θ0 − θ
∣∣+

c2
1− γ |θ

∗|
(
θ∗2 + σ2

)√ log(1/δ)

n
(10)

with probability at least 1− δ, where γ ≤ e−c′η2 .

Note that the bound (10) consists of two main terms: the first term captures the geometric conver-
gence of the population EM operator from Theorem 1, while the second term characterizes the radius
of convergence in terms of sample complexity, which is O(

√
1/n). Therefore, with probability at

least 1− δ, we have
∣∣θT − θ

∣∣ ≤ c |θ∗| (θ∗2 + σ2)

1− γ

√
log(1/δ)

n
for T ≥ c′ log(n/(log(1/δ) |θ∗| (θ∗2 + σ2)))

log(1/γ)
,

where c, c′ are universal constants.

3.2 Three-component mixtures with small weight for one component

Next, we consider the case where the true model P∗ is a three-component Gaussian location mixture
model of the form

P∗ =
1− ω

2
N (−θ∗, σ2) + ωN (0, σ2) +

1− ω
2
N (θ∗, σ2). (11)

In other words, two components are dominant with means −θ∗ and θ∗ respectively, and we have
a small component at the origin. For such a model, it is again conceivable to fit a 2-component
mixture given by equation (7). The primary interest in such a setting is driven by the fact that, when
ω > 0 is sufficiently small, recovering the third small component with center at origin is usually
hard; consequently clustering that component with one of the other two may be a good idea. Once
again, the convergence of EM is governed by the properties of θ that we characterize in the next
proposition.
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Proposition 2. For the three components location-Gaussian mixtures in model (11), we have

min
{∣∣θ∗ − θ

∣∣ ,
∣∣θ∗ + θ

∣∣} ≤ cω1/8 |θ∗|1/4
σ1/4
√

1− ω , (12)

where c is a universal positive constant that depends only on the set Θ.

In order to simplify further results, we assume under the condition η := θ∗

σ ≥ 1. Then we have
min

{∣∣θ∗ − θ
∣∣ ,
∣∣θ∗ + θ

∣∣} ≤ Cω |θ∗|, where Cω := cω1/8/(σ
√

1− ω). Such a bound on bias leads
to slightly different conditions for convergence of the EM algorithm for model (11) compared to
the EM convergence for model (6). Note that for any fixed variance σ2, the function Cω increases
with ω and C0 = 0. Let ω? = sup {ω > 0|C(ω) ≤ 1/9}. Similar to the model (6), we analyze the
convergence rate of EM under a strong SNR condition of true model (11). We define γ̃ := γ(η, ω) =

(1−ω)e−η
2/64 +ω < 1. With the above notations in place, we now establish the contraction of the

population EM operator M(θ) for the three components location-Gaussian mixture (11).

Theorem 2. For SNR η ≥ 1 sufficiently large and ω ≤ ω?, and for any θ0 ∈ B(θ,
∣∣θ
∣∣ /4), the

population EM operator for the Gaussian mixture (11) satisfies

|M(θ0)− θ| = E
∣∣2(wθ0(X)− wθ(X))X

∣∣ ≤ γ̃
∣∣θ0 − θ

∣∣ . (13)

Consequently, the population EM sequence θt+1 = M(θt) converges to θ at a linear rate.

The precise expression for the contraction parameter γ̃ provides sufficient conditions for a fast con-
vergence of EM, which involves an interesting trade off between the SNR η and weight ω. More
concretely, if the SNR is large enough, the population EM converges fast towards the projection θ,
which is unique in its absolute value (See Section A.1.4 in the Appendix). This fast convergence of
the population EM again enables us to derive the following convergence rate of sample-based EM:
Corollary 2. Consider the model (11) such that the assumptions of Theorem 2 hold. For any fixed
δ ∈ (0, 1), θ0 ∈ B(θ,

∣∣θ
∣∣ /4), if n ≥ c1 log(1/δ) then the sample EM iterates θt+1 = Mn(θt) satisfy

∣∣θt − θ
∣∣ ≤ γ̃t

∣∣θ0 − θ
∣∣+

c2
1− γ̃ |θ

∗|
(
θ∗2 + σ2

)√ log(1/δ)

n

with probability at least 1− δ.

Similar to the structure of the convergence result of sample EM updates in Corollary 1, the result in
Corollary 2 also consists of two key terms: the first term is the linear rate of convergence from the
population EM operator in Theorem 2 while the second term characterizes the radius of convergence
in terms of sample complexity, which is of O(

√
1/n) after T = O(log n/ log(1/γ̃)) iterations.

4 Robustness of EM for mis-specified variances and weights

In this section, we focus on establishing the convergence rate of EM under different mis-specified
regime of the fitted model (1). In particular, we assume that the true data distribution P∗ is given by:

P∗ =
1

2
N (θ∗, σ2 − θ∗2) +

1

2
N (−θ∗, σ2 − θ∗2), (14)

where σ > 0 is a given positive number, and |θ∗| ∈ (0, σ/2) is a true but unknown parameter. Note
that the assumption that |θ∗| ∈ (0, σ/2) ensures that the variance σ2 − θ∗2 is bounded away from
zero. We fit the above model by unbalanced two-component Gaussian location mixture model Pθ
given by

Pθ = πN (−θ, σ2) + (1− π)N (θ, σ2), (15)

where π := 1
2 (1− ε) and |ε| ∈ (0, 1) are known apriori and only the parameter θ is to be estimated.

In the fitted model Pθ, we have mis-specified the variance σ2 and the weight π, and we wish to
understand the rate of convergence of EM to θ̄, where θ̄ is the parameter of the model Pθ̄, and Pθ̄ is
the projection of the true model P∗ onto the model class Pθ := {Pθ : θ ∈ R}. We emphasize that
the main goal here is to see how the mis-specification with variance and weight affects the statistical
inference of EM. We choose variance of the form σ2 − θ∗2 because under this setting, we obtain
interesting behavior of EM without rendering the proof too technical. We begin with the first result
establishing the global linear convergence rate of population EM to θ.
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Theorem 3. For a two-component Gaussian location mixture model (14) and fitted model (15), the
population EM operator θ 7→M(θ) satisfies

∣∣M(θ)− θ
∣∣ ≤

(
1− ε2

2

) ∣∣θ − θ̄
∣∣ .

Hence, the population EM sequence {θt} converges geometrically to θ from any initialization θ0.

There are two interesting features regarding the geometric convergence of population EM updates to
θ: (1) it does not require an evaluation of bias which was needed for our previous results; (2) it holds
under any initialization θ0. Overall, we have that θ̄ is unique, thereby we conclude that the projection
of P∗ to the model class (15) is unique. Before proceeding to the sample-based convergence of EM,
we establish the following upper bound on the bias of the parameter θ:

Proposition 3. For the two-component Gaussian location mixture model (14), we have

min
{∣∣θ − θ∗

∣∣ ,
∣∣θ + θ∗

∣∣} ≤ c(θ∗, σ) ·
√[

2 (1− 2π)
]
θ∗2 + θ∗4,

where c(θ∗, σ) is a positive constant depending only on θ∗, σ, and the set Θ.

Given the above bound, we obtain the range of
∣∣θ
∣∣ as

∣∣θ
∣∣ ∈ [(1− Cθ∗)| |θ∗| , (1 + Cθ∗) |θ∗|] where

Cθ∗ := c(θ∗, σ)
√[

2(1− 2π)
]

+ θ∗2. Equipped with this bound on
∣∣θ
∣∣, we have the following result

regarding the convergence of sample-based EM:

Corollary 3. Consider the model (14). Let radius r > 0 and n ≥ c1 log(1/δ) and θ0 ∈ B
(
θ̄, r
)
,

then the sample-based EM sequence θt+1 = Mn(θt), satisfies

∣∣θt − θ
∣∣ ≤

(
1− ε2

2

)t ∣∣θ0 − θ
∣∣+

c2 ((1 + Cθ∗) |θ∗|+ r)σ2

ε2

√
log(1/δ)

n
,

with probability at least 1− δ where ε := 1− 2π.

The proof of Corollary 3 is similar to those of Corollary 1 or Corollary 2; therefore, it is omitted. The
last corollary demonstrates that the sample-based EM iterates converge to ball of radius O(

√
1/n)

around θ after T = O(log n/ log(1/(1− ε2/2))) iterations.

5 Simulation studies

In this section, we illustrate our theoretical results using a few numerical experiments. In particular,
we use the EM algorithm to fit 2-component Gaussian mixtures for the three mis-specified settings
considered above. For convenience in discussion, we refer to three settings as follows:
• Case 1 refers to the true model (6) from Section 3.1, namely a three component Gaussian mixture

where two of the components very close to each other and the quantity ρ ∈ (0, 1) denotes the
extent of weak separation.

• Case 2 refers to the true model (11) from Section 3.2, namely, a three components Gaussian
mixture where one of the components has very small weight at origin and the quantity ω ∈ (0, 1)
denotes the small mixture-weight.

• Finally, Case 3 refers to the true model (14) from Section 4, namely where the true model is a
two-Gaussian mixture.

For cases 1 and 2, we fit a symmetric balanced two-Gaussian mixture given by equation (7); while
for the third case we fit the unbalanced two-Gaussian mixture given by equation (15) for different
values of π. Let θ̂n denote the final sample EM estimate. Since our results establish that population
EM converges to θ (2), we use the final iterate from the population EM sequence to estimate the
error |θ̂n − θ|. We now summarize our key findings:

(i) In Figure 1(a), we observe that for all cases the final statistical error |θ̂n−θ| has a parametric
rate n−1/2 which verifies the claims of Corollaries 1, 2 and 3.
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(ii) For all cases, the population EM sequence has a geometric convergence (we omit illustra-
tions for Cases 1 and 2). From Figure 1 (b), we note that for Case 3, the linear convergence
of the population EM sequence θt+1 = M(θt) is affected by the extent of unbalancedness:
as π → 0.5, the rate of decay of the error of population EM sequence decreases which is
consistent with the contraction result stated in Theorem 3.

(iii) In panels (c) and (d) of Figure 1, we plot the biases for Case 1 and 2, with respect to ρ and
ω respectively. Least squares fit on the log-log scale suggest that the biases stated in Propo-
sition 1 and Proposition 2 are potentially sub-optimal: the numerical scaling of the biases
|θ∗−θ| is of the order ρ2 and ω for Case 1 and 2 respectively, which is significantly smaller
than the corresponding scaling of the order ρ1/4 and ω1/8 stated in Propositions 1 and 2.
In Appendix B, we illustrate the scaling of the bias with θ∗ in these cases via further simu-
lations.

102 103 104
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Case 1: Scaling of bias vs ρ

θ∗ = 1.0

slope= 2.00

θ∗ = 3.0

slope= 2.12

10−3 10−2 10−1

ω →

10−3

10−2

10−1

|θ∗
−
θ ω
|

Case 2: Scaling of bias vs ω

θ∗ = 1.0

θ∗ = 3.0

slope= 0.98

θ∗ = 5.0

(c) (d)
Figure 1. Plots depicting behavior of EM when fitting two Gaussian mixture (7) for the three mis-
specified mixtures cases (6), (11) and (14), referred to as Case 1, 2 and 3 respectively. (a) For all cases,
the statistical error |θ̂n − θ| has the parametric rate n−1/2. (b) For Case 3, convergence of population
EM sequence θt+1 = M(θt) is affected by the mixture weight π. The convergence rate slows down
as π → 0.5. (c) For Case 1, the bias scales quadratically with the extent of weak-separation ρ for
different values of θ∗. (d) For Case 2, the bias scales linearly with the weight ω of the third component,
for different values of θ∗. Refer to the text for more details.

6 Discussion

In this paper, we analyzed the behavior of the EM algorithm for certain classes of mis-specified
mixture models. Analyzing the behavior of the EM algoirithm under general mis-specification is
challenging in general, and we view the results in this paper as a first step towards developing a
more general framework for the problem. In this paper, we studied the EM algorithm when it is used
to fit Gaussian location mixture models to data generated by mixture models with larger numbers
of components, and/or differing mixture weights. We considered only univariate mixtures in this
paper, but we believe that several of our results can be extended to multivariate mixtures. It is also
interesting to investigate the behavior of the EM algorithm when it is used to fit models with scale
parameters that vary (in addition to the location parameters). Besides deriving sharper results for the
settings considered in this paper, analyzing the behavior of EM for non-Gaussian and more general
mixture models is an appealing avenue for future work.
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A Supplementary material

In this appendix, we provide self-contained proofs for our results in the paper. In particular, Sec-
tion A.1 contains the proofs of our theorems, Section A.2 contains the proof of our propositions and
in Section A.3 we prove the corollaries stated in the paper.

A.1 Proofs for population EM

In this section, we prove our main results on the contraction properties of the population EM algo-
rithm toward the projection onto the model class—namely, Theorems 1, 2 and 3. We treat each of
these theorems one-by-one.

A.1.1 Proof of Theorem 1

The proof of the theorem makes use of Proposition 1 that relates
∣∣θ
∣∣ in terms of ρ, |θ∗|, and η =

|θ∗| /σ. Without loss of generality, we assume that min
{∣∣θ∗ − θ

∣∣ ,
∣∣θ∗ + θ

∣∣} =
∣∣θ∗ − θ

∣∣. For each
u ∈ [0, 1], we define θu = θ + u(θ − θ). Applying Taylor’s theorem along the direction θu, we
obtain that

∣∣∣∣E
(

2(wθ(X)− wθ(X))X

)∣∣∣∣ = 4
∣∣

1∫

0

E
[

X2

σ2(e−θuX/σ2 + eθuX/σ2)2

]
(θ − θ)du

∣∣

≤ 4 sup
u∈[0,1]

{E [Γu(X)]}
∣∣θ − θ

∣∣ , (16)

where we have defined

Γu(X) := X2/(σ2(e−θuX/σ
2

+ eθuX/σ
2

)2), (17)

and the expectation is taken overX which is drawn from the Gaussian mixture given by equation (6).
Clearly, we have

E [Γu(X)] =
1

4
EX∼N (−θ∗(1+ρ),σ)Γu(X) +

1

4
EX∼N (−θ∗(1−ρ),σ)Γu(X) +

1

2
EX∼N (θ∗,σ)Γu(X).

We now bound the three expectations on the right, which we denote by T1, T2 and T3 respectively.
We claim that

T1, T2 ≤ e−η
2/64/16 and T3 ≤ e−η

2/64/8,

which in turn implies that E [Γu(X)] ≤ γ = e−η
2/64/4 and our theorem follows.

We now provide a full derivation for an upper bound on T1. The upper bounds on T2 and T3 can
be derived in a similar way and their explicit derivation is omitted here. Letting R = sign(θu) and
V = −RX/σ, we have

Du := 4T1 = EX∼N (−θ∗(1+ρ),σ)Γu(X) = E[V 2/(e−|θu|V/σ + e|θu|V/σ)2],

where the expectation in the last expression is taken with respect to V ∼ N (Rθ∗(1 + ρ)/σ, 1). We
have

Du ≤ E[V 2e−2|θu|V/σ] ≤ E
[
V 2e−2|θu|V/σ

∣∣∣∣E
]
· P[E ] + E

[
V 2e−2|θu|V/σ

∣∣∣∣Ec
]
· P[Ec],

where we define the event E = {V |V ≤ |θ∗| (1 + ρ)/(4σ)}. Given a scalar µ, consider the real-
valued function f such that f(t) = t2e−µt. Observe that f(t) ≤ 4

e2µ2 for all t ∈ R and that f
is decreasing on the interval [2/µ,∞). Invoking these observations with µ = 2 |θu| /σ, as long as
|θ∗| (1 + ρ)/(4σ) ≥ 2/µ or equivalently |θ∗| (1 + ρ) |θu| ≥ 4σ2, we find that

Du ≤
σ2

e2θ2
u

· P[E ] +
θ∗2(1 + ρ)2

16σ2
e−|θ

∗|(1+ρ)|θu|/(2σ2). (18)

Note that θ ∈ B(θ,
∣∣θ
∣∣ /4) implies that |θu| ≥ 3

∣∣θ
∣∣ /4 and sign(θu) = sign(θ) for all u ∈ [0, 1].

Proposition 1 implies that θ ∈ [(1−Cρ)θ∗, (1 +Cρ)θ
∗]. Since ρ is small enough such that Cρ < 1,

A1



we also have that sign(θ) = sign(θ∗). As a result E[V ] = sign(θu)θ∗(1 + ρ)/σ = |θ∗| (1 + ρ)/σ.
Invoking standard Gaussian tail bounds, we have

P[E ] = P
[
V − E[V ] ≤ −3

4

|θ∗| (1 + ρ)

σ

]
≤ exp

(
−9θ∗2(1 + ρ)2

32σ2

)
.

Plugging this bound along with the fact that |θu| ≥ (1−Cρ) |θ∗| in the inequality (18), we find that

Du ≤
16σ2 exp

(
− 9θ∗2(1+ρ)2

32σ2

)

9e2θ∗2(1− Cρ)2
+
θ∗2(1 + ρ)2 exp

(
− θ
∗2(1+ρ)(1−Cρ)

8σ2

)

16σ2

≤ 16

9e2

(
σ2

θ∗2(1− Cρ)2
+
θ∗2(1 + ρ)2

σ2

)
exp

(
−θ
∗2(1 + ρ)(1− Cρ)

8σ2

)

≤ (η2 + η−2) exp(−η/16) (since 64 ≤ 9e2)

≤ 2η2 exp(−η2/16) (for η ≥ 1)

≤ exp(−η2/64)/16 (for η ≥ 14),

where we have used the fact that ρ ∈ (0, 1) is small enough and that Cρ ≤ 1/9 < 1/2. The claim
follows.

A.1.2 Proof of Theorem 2

Equipped with the bounds for the bias term
∣∣θ − θ∗

∣∣ from Proposition 2, the steps in this proof are
similar to the ones used in the proof of Theorem 1. Using Taylor expansion along the direction
θu = θ̄ + u(θ − θ̄) for u ∈ [0, 1], we find that

E[2(wθ(X)− wθ(X))X] ≤ 4 sup
u∈[0,1]

E [Γu(X)]
∣∣θ − θ

∣∣ , (19)

where Γu(X) is the same term defined above in equation (17). The difference compared to the proof
of Theorem 1 is in the distribution of X . In particular, now we have

E [Γu(X)] = (1/2− ω/2)EX∼N (−θ∗,σ)Γu(X) + (1/2− ω/2)EX∼N (θ∗,σ)Γu(X)

+ ωEX∼N (0,σ)Γu(X)

= (1/2− ω/2)(S1 + S2) + ωS3.

Imitating the steps for bounding T1 in the proof of Theorem 1, we can derive the following bounds
for S1 and S2:

S1, S2 ≤ e−η
2/64/4,

provided that C(η, ω) :=
c(η2σ2ω)1/4

√
(1− ω)

≤ 1/9 < 1/2 and η is sufficiently large. Thus it is left

to provide a bound for the term S3. Using the change of variables V = sign(θu)X/σ and the
consequent fact that V ∼ N (0, 1) we obtain that

S3 = EX∼N (0,σ)[Γ(X)] = E
[

V 2

(e−|θu|V/σ + e|θu|V/σ)2

]
(i)

≤ E
[
V 2

4

]
=

1

4
,

where step (i) follows from the inequality that e−y + ey ≥ 2 for all y ∈ R. Putting the pieces
together yields

E[2(wθ(X)− wθ(X))X] ≤ (1− ω)e−η
2/64 + ω

and we are done.

A.1.3 Proof of Theorem 3

Using the definition (4a) of the M-update and the self consistency M(θ̄) = θ̄, we obtain that
∣∣M(θ)−M(θ̄)

∣∣ = |E [2(wθ(X)− wθ̄(X))X]|︸ ︷︷ ︸
=:A

.
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Note that under the unbalanced mixtures, we have

wθ(X) =
π

π + (1− π)e−2θX/σ2 and
∂

∂θ
(wθ(X)) =

2π(1− π)X/σ2

(πe−θX/σ2 + (1− π)eθX/σ2)2
.

By means of Taylor expansion along the direction θu = θ + u(θ − θ), the following holds

A = 4π(1− π)

∣∣∣∣∣∣

1∫

0

E

[
X2

σ2
(
(1− π) exp

(
− θuXσ2

)
+ π exp

(
θuX
σ2

))2

]
du

∣∣∣∣∣∣
∣∣θ − θ

∣∣

≤ 4π(1− π)
∣∣θ − θ

∣∣ max
u∈[0,1]

E [Γθu(X)] , (20)

where Γθu(X) :=
X2

σ2
(
π exp

(
− θuXσ2

)
+ (1− π) exp

(
θuX
σ2

)) . Let π = 1
2 (1− ε). We claim that

max
u∈[0,1]

E [Γθu(X)] ≤ 1− ε2/2
1− ε2 , (21)

which when plugged in the bound (20) implies that the population EM operator is globally contrac-
tive towards θ, i.e.,

∣∣M(θ)−M(θ)
∣∣ ≤ (1 − ε2/2)

∣∣θ − θ
∣∣. Therefore, it yields the linear rate of

convergence claimed in the theorem.

We now prove the claim (21). Like in proof of Theorem 1, we use R = sign(θu) and V = RX/σ.
Since X ∼ 1

2N (θ∗, σ2− θ∗2) + 1
2N (−θ∗, σ2− θ∗2), it is clear that E [V ] = 0 and E

[
V 2
]

= 1. By
substituting X = σV/R, we have

E [Γθu(X)] = EV
[

V 2

(π exp (− |θu|V/σ) + (1− π) exp (|θu|V/σ))2

]
.

Now, observe that

(πe−y + (1− π)ey) ∈ [
√

(1− ε2), 1], if ey ∈
[
1,

1 + ε

1− ε

]
, and

(πe−y + (1− π)ey) > 1, otherwise.

Let Eθu denote the event such that Eθu =
{
e|θu|V/σ ∈ [1, (1 + ε)/(1− ε)]

}
. Let Ec and I(E) re-

spectively denote the complement and the indicator of any event E . Using the observation above
and the fact that E

[
V 2
]

= 1, we obtain that

E [Γθu(X)] ≤ 1

(1− ε2)
E
[
V 2 I(Eθu)

]
+ E

[
V 2 I(Ecθu)

]

=
1− ε2 + ε2E

[
V 2 I(Eθu)

]

(1− ε2)
. (22)

Note that whenever θu 6= 0, we have that

E
[
V 2 I(Eθu)

]
≤ E

[
V 2 I(V ≥ 0)

]
=

1

2
. (23)

Putting the inequalities (22) and (23) together yields the claim (21).

A.1.4 Proof of uniqueness of
∣∣θ
∣∣

We provide a proof for the uniqueness of projection in its absolute value from P∗ in (6) or in (11)
to the fitted model (7). Due to the similar proof argument between these two cases, we only focus
on the case when P∗ is given by (6) and the fitted model is in (7). First, we note that if θ is the
projection of P∗ to the fitted model (7), then −θ is also the projection. Therefore, the projection
is identifiable in its absolute value. Now, the result of Theorem 1 demonstrates that θ is a unique
projection of P∗ to the fitted model (7) within the ball B(θ,

∣∣θ
∣∣ /4). Based on the inequality (9) and

the condition Cρ ≤ 1/9, for any two projections θ1 and θ2 of P∗ to the fitted model (7), we find that
∣∣∣∣θ1

∣∣−
∣∣θ2

∣∣∣∣ ≤ min
{∣∣θ∗ − θ1

∣∣ ,
∣∣θ∗ + θ1

∣∣}+ min
{∣∣θ∗ − θ2

∣∣ ,
∣∣θ∗ + θ2

∣∣} ≤ 2Cρ |θ∗| ≤ 2 |θ∗| /9.
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Additionally, for any projection θ of P∗ to the fitted model (7), we obtain that
∣∣θ
∣∣ ∈ [(1 −

Cρ) |θ∗| , (1 + Cρ) |θ∗|] ∈ [8 |θ∗| /9, 10 |θ∗| /9]. Therefore, for any two projections θ1 and θ2 such
that θ1θ2 > 0, we have θ2 in B(θ1,

∣∣θ1

∣∣ /4). On the other hand, for any projections θ1 and θ2 such
that θ1θ2 < 0, we find that

∣∣θ1 − θ2

∣∣ =
∣∣θ1

∣∣+
∣∣θ2

∣∣ >
∣∣θ1

∣∣ /4, which proves that θ2 /∈ B(θ1,
∣∣θ1

∣∣ /4).
The previous results imply that the projection of P∗ to fitted model (7) is unique in its absolute value.

A.2 Proofs for computing model biases

In this section, we prove our results on the model bias in different cases, namely Propositions 1,
2 and 3. To facilitate further discussion, we begin with introducing some notations and variational
formulation of the Wasserstein distance.

A.2.1 Notations

Given two distributions P and Q, we use h2(P,Q) and KL(P,Q) to denote the hellinger distance
and Kullback-Leibler divergence, respectively, between the two distributions. Let p and q denote the
corresponding density of these distributions with respect to the Lebesgue measure. Then we have

h2(P,Q) =

∫
(
√
p(x)−

√
q(x))2dx and KL(P,Q) =

∫
p(x) log

p(x)

q(x)
dx. (24a)

We now introduce some notation to define the Wasserstein distance between two discrete measures.
Given any two discrete measures G =

∑k
i=1 πiδθi and G′ =

∑k′

i=1 π
′
iδθ′i , where θi, θ′i ∈ Θ ⊂ R,

and δθ denotes the dirac measure at θ. define the set of couplings Π(G,G′) between the two mea-
sures as follows:

Π(G,G′) =
{
T ∈ Rk×k

′

+ : T1k′ = π, T>1k = π′
}
, (24b)

where π = (π1, . . . , πk)
T , π′ = (π′1, . . . , π

′
k′)

T , and 1k denotes a k-dimensional vector with all
entries equal to 1. Put simply, Π(G,G′) is the set of all joint distributions T on the space [k]× [k′]
such that the marginals of the distribution T are equal to π and π′. Furthermore, for any given r,
define the matrix D ∈ Rk×k′ of distances between the parameters of G and G′ as

Dij =
∣∣θi − θ′j

∣∣r , (i, j) ∈ [k]× [k′]. (24c)

With these notations in place, the Wasserstein distance [14] of order r ≥ 1 between the two measures
G and G′ is given by

W r
r (G,G′) := inf

T∈Π(G,G′)

k∑

i=1

k′∑

j=1

TijDij . (24d)

With this notation in place, we now turn to the proofs of our propositions.

A.2.2 Proof of Proposition 1

In order to prove this proposition, we utilize several bounds between KL divergence, Hellinger dis-
tance, and Wasserstein distance. The road-map of the proof is as follows: First, we relate the KL
divergences between the mixture distributions to the Wasserstein distances between the correspond-
ing discrete mixing measures. Then, using carefully constructed couplings, we derive lower and
upper bounds on the Wasserstein distances in terms of the bias term

∣∣θ − θ∗
∣∣ and other problem

parameters to obtain the claimed result.

For any mixing-measure (discrete mixture measure)G on Θ, let PG denote the Gaussian mixture dis-
tribution induced by G on R whose density is given by pG(x) =

∫
Θ
φ(x; θ, σ)dG, where φ(·; θ, σ)

denotes the density of the Gaussian distribution N (θ, σ2). We introduce the following notation for
the mixing-measures:

G∗ =
1

4
δ−θ∗(1−ρ) +

1

4
δ−θ∗(1+ρ) +

1

2
δθ∗ , and G(θ) =

1

2
δ−θ +

1

2
δθ. (25a)
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Note that in our notation, P∗ = PG∗ , G∗ 6= G(θ∗) and consequently PG∗ 6= PG(θ∗). Define

Ḡ := G(θ) where θ ∈ arg min
θ∈Θ

KL(PG∗ ,PG(θ)). (25b)

Applying Lemma 1 from the paper [10], we obtain the following relationship between the KL diver-
gence between the Gaussian-mixture measures PG∗ and PG(θ) and the Wasserstein distance between
the corresponding mixing measures G and G(θ):

KL(PG∗ , pG(θ)) ≤W 2
2 (G∗, G(θ))/(2σ2) for any θ ∈ Θ.

Consequently, we find that

KL(PG∗ ,PḠ) = min
θ∈Θ

KL(PG∗ ,PG(θ)) ≤ min
θ∈Θ

W 2
2 (G∗, G(θ))/(2σ2). (26)

On the other hand, from the classical bound between KL divergence and Hellinger distance, we have

KL(PG∗ ,PḠ) ≥ 2h2(PG∗ ,PḠ). (27)

Noting that, the univariate location Gaussian distribution is 4-strongly identifiable (cf. Definition
2.2 in [6] for the definition of 4-strongly identifiable condition and Theorem 2.4 in [6] for the result
with univariate location Gaussian), with an application of the result of Theorem 6.3 in [6], we obtain
that

h2(PG∗ ,PḠ) ≥ CW 8
2 (G∗, Ḡ), (28)

where C is a universal constant depending only on Θ. The results from (26), (27), and (28) lead to

2CW 8
2 (G∗, Ḡ) ≤ KL(PG∗ ,PḠ) = min

θ∈Θ
KL(PG∗ ,PG(θ)) ≤

1

2σ2
min
θ∈Θ

W 2
2 (G∗, G(θ)),

which implies that

2σ
√
CW 4

2 (G∗, Ḡ) ≤ min
θ∈Θ

W2(G∗, G(θ)) ≤W2(G∗, G(θ∗)). (29)

(Recall in our notation G(θ∗) 6= G∗.) Now we derive obtain an upper bound for the dis-
tance W2(G∗, Ḡ), by deriving an upper bound for the distance W2(G∗, G(θ∗)) using the varia-
tional formulation (24d) of the Wasserstein distance. In particular, we use a particular coupling to
derive an upper bound for W 2

2 (G∗, G(θ∗)). Recalling the definitions (24b) and (24c) of the cou-
pling Π(G∗, G(θ∗)) and the corresponding distance matrix D for G = G∗, G

′ = G(θ∗), r = 2, we
find that

T =

[
1/4 0
1/4 0
0 1/2

]
∈ Π(G∗, G(θ∗)) and D =



ρ2θ∗2 (2− ρ)2θ∗2

ρ2θ∗2 (2 + ρ)2θ∗2

4θ∗2 0


 .

Now applying the definition (24d), we obtain that

W 2
2 (G∗, G(θ∗)) ≤

3∑

i=1

2∑

j=1

TijDij =
1

4
ρ2θ∗2 +

1

4
ρ2θ∗2 +

1

2
0 = ρ2θ∗2. (30)

Putting the previous inequalities (29) and (30) together, we conclude that

W2(G∗, Ḡ) ≤ c
(
ρ |θ∗|
σ

)1/4

, (31)

where c = 1/(4C)1/8 is a universal positive constant that depends only on the set Θ.

Now we directly obtain a lower bound for W2(G∗, Ḡ) by invoking the definition (24d) for the pair
(G∗, Ḡ). The corresponding distance matrix is given by

D̄ =




(
−θ + θ∗(1− ρ)

)2 (
θ + θ∗(1− ρ)

)2
(
−θ + θ∗(1 + ρ)

)2 (
θ + θ∗(1 + ρ)

)2
(
−θ + θ∗

)2 (
θ + θ∗

)2
.


 .
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Noting that for any coupling T̄ ∈ Π(G∗, Ḡ), we have T̄ij ≥ 0,
∑
i,j T̄ij = 1, we have that

∑

i,j

T̄ijD̄ij ≥ min
i,,j

D̄ij ,

and hence

W2(G∗, Ḡ) ≥ min
i,,j

√
D̄ij = min

{ ∣∣−θ + θ∗(1 + ρ)
∣∣ ,
∣∣−θ + θ∗(1− ρ)

∣∣ ,
∣∣−θ + θ∗

∣∣
∣∣θ + θ∗(1 + ρ)

∣∣ ,
∣∣θ + θ∗(1− ρ)

∣∣ ,
∣∣θ + θ∗

∣∣ }

≥ min
{∣∣θ∗ − θ

∣∣ ,
∣∣θ∗ + θ

∣∣}− ρ |θ∗| , (32)

where the last step follows from the triangle inequality. Putting the inequalities (31) and (32) to-
gether yields that

min
{∣∣θ∗ − θ

∣∣ ,
∣∣θ∗ + θ

∣∣} ≤ ρ |θ∗|+ c

(
ρ |θ∗|
σ

)1/4

,

and the proposition follows.

A.2.3 Proof of Proposition 2

The proof of the proposition is similar to the proof of Proposition 1 except for a few differences
which we point to now. For any mixing-measure (discrete mixture measure) G on Θ, we denote by
PG the corresponding Gaussian mixture distribution with density pG(x) =

∫
Θ
φ(x; θ, σ)dG, where

φ(·; θ, σ) denotes the density of the Gaussian distribution N (θ, σ2). For this proof, we define

G∗ =
(1− ω)

2
δ−θ∗ + ωδ0 +

(1− ω)

2
δθ∗ and G(θ) =

1

2
δ(−θ,σ) +

1

2
δ(θ,σ).

Once again in our notation, we have P∗ = PG∗ , G∗ 6= G(θ∗) and consequently PG∗ 6= PG(θ∗).
Rewriting equation (29), we have

2σ
√
CW 4

2 (G∗, Ḡ) ≤ min
θ∈Θ

W2(G∗, G(θ)) ≤W2(G∗, G(θ∗)),

where C is some universal positive constant only depending on Θ. Once again, we derive an upper
bound for W2(G∗, Ḡ) by deriving an upper bound on W2(G∗, G(θ∗)). We now provide a coupling
T and the matrix D (refer to equations (24b),(24c)) for the pair G∗, G(θ∗):

T =

[
(1− ω)/2 0
ω/2 ω/2

0 (1− ω)/2

]
∈ Π(G∗, G(θ∗)) and D =




0 4θ∗2

θ∗2 θ∗2

4θ∗2 0


 .

Using the definition (24d), we have that
∑
ij TijDij is an upper bound for W 2

2 (G∗, G(θ∗)). Doing
some algebra yields that

W2(G∗, Ḡ) ≤ cW 1/4
2 (G∗, G(θ∗)) ≤ cω

1/8 |θ∗|1/4
σ1/4

(33)

where c = 1/(4C)1/8 is a universal positive constant that only depends on Θ.

Now for the lower bound on W2(G∗, Ḡ), suppose that we are a given coupling T̄ ∈ Π(G∗, Ḡ), and
the distance matrix with elements

D̄ =




(
θ∗ − θ

)2 (
θ∗ + θ

)2

θ
2

θ
2

(
θ∗ + θ

)2 (
θ∗ − θ

)2


 .

Direct computation leads to
∑

ij

T̄ijD̄ij = (T̄11 + T̄32)
(
θ∗ − θ

)2
+ (T̄12 + T̄31)

(
θ∗ + θ

)2
+ (T21 + T22)θ

2

≥ (T̄11 + T̄32 + T̄12 + T̄31) ·min{
(
θ + θ∗

)2
,
(
θ − θ∗

)2}
= (1− ω) min

{(
θ + θ∗

)2
,
(
θ − θ∗

)2}
,
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where the final inequality is due to the constraint T̄11 + T21 = T13 + T23 = (1− ω)/2. As a result,
we have

W 2
2 (G∗, Ḡ) ≥ (1− ω) min

{(
θ + θ∗

)2
,
(
θ − θ∗

)2}
. (34)

Combining the inequalities (33) and (34), we obtain that

min
{∣∣θ − θ∗

∣∣ ,
∣∣θ + θ∗

∣∣} ≤ cω1/8 |θ∗|1/4
σ1/4
√

1− ω ,

thereby yielding the desired result.

A.2.4 Proof of Proposition 3

While the proof of the proposition follows several ideas from the other proofs on controlling the
biases, a key difference for this case is that the two measures do not have same variance, and that
forces us to use a couple new ideas in the proof. Define

G∗ =
1

2
δ(−θ∗,σ2−θ∗2) +

1

2
δ(θ∗,σ2−θ∗2) and G(θ) = πδ(−θ,σ2) + (1− π)

1

2
δ(θ,σ2).

Note that we have G∗ 6= G(θ∗). Unlike the cases considered in Proposition 1 and 2, the key lower
bound h2(PG∗ ,PḠ) ≥ CW 8

2 (G∗, Ḡ) does not apply hear for C some universal constant depending
only on Θ. Such an issue is caused due to the fact that the variance of the components corresponding
to G∗ and Ḡ are different as θ∗ 6= 0. To overcome this issue, we claim the following point-wise
bound:

h(PG∗ ,PḠ) ≥ C(G∗)W2(G∗, Ḡ), (35)
whereC(G∗) is a positive constant depending only onG∗ and Θ. To simplify notation, we substitute
C = C(G∗). Deferring the proof of the claim (35) to the end of this section, we proceed to finishing
the proof.

Note that the relationship (27) between the Hellinger distance and the KL divergence is still valid
but the bound (26) needs to be modified as follows (again applying Lemma 1 from the paper [10]):

KL(PG∗ ,PḠ) = min
θ∈Θ

KL(PG∗ ,PG(θ)) ≤ min
θ∈Θ

C

σ2
W 2

2 (G∗, G(θ)) (36)

for some large constant C. Putting the pieces together yields that

W2(G∗, Ḡ) ≤ C

σ
W2(G∗, G(θ∗)).

We now consider the following coupling and the distance matrix (refer to equations (24b) and (24c)
respectively) for the mixing-measure pair (G∗, G(θ∗)):

T =

[
π 0

(1/2− π) 1/2

]
∈ Π(G∗, G(θ∗)) and D =

[
θ∗4 4θ∗2 + θ∗4

4θ∗2 + θ∗4 θ∗4.

]

Invoking the variational formulation (24d), we find that

W 2
2 (G∗, G(θ∗)) ≤

∑

i,j

TijDij = (2− 4π)θ∗2 + θ∗4.

Therefore, the following inequality holds

W2(G∗, Ḡ) ≤ c(θ∗)

σ

√
(2− 4π)θ∗2 + θ∗4 (37)

where c(θ∗) is a positive constant that only depends on G∗ and Θ. On the other hand, for any
coupling T̄ ∈ Π(G∗, Ḡ), arguing as in the previous proofs, we have that

∑

i,j

T̄ijD̄ij ≥ min
i,j

D̄ij where D̄ =

[(
θ∗ − θ

)2
+ θ∗4

(
θ∗ + θ

)2
+ θ∗4(

θ∗ + θ
)2

+ θ∗4
(
θ∗ − θ

)2
+ θ∗4

]

and consequently we have that

W2(G∗, Ḡ) ≥ min
i,j

√
D̄ij ≥ min

{∣∣θ − θ∗
∣∣ ,
∣∣θ + θ∗

∣∣} . (38)

Combining the inequalities (37) and (38) yields the result.
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Proof of claim (35) In order to prove inequality (35), it suffices to show that

inf
θ∈Θ

h(PG∗ ,PG(θ))/W2(G∗, G(θ)) > 0.

We proceed via proof by contraction: assume that the above bound does not hold. It implies that
we can find a sequence of {θn}n≥1 such that h(PG∗ ,PG(θn))/W2(G∗, G(θn)) → 0 as n → ∞.
Since Θ is a compact subset of R, there must exist a subsequence of θn such that θn → θ′ for some
θ′ ∈ Θ. Without loss of generality, we can replace this subsequence of θn by its whole sequence.
Applying Fatou’s lemma, we obtain that

0 = lim
n→∞

h2(PG∗ ,PG(θn)) =
1

2

∫
lim inf
n→∞

(√
PG∗(x)−

√
PG(θn)(x)

)2

dµ(x)

= h2(PG∗ ,PG(θ′)).

The above result implies that PG∗(x) = PG(θ′)(x) almost surely. Due to the general identifiability
of finite location-scale Gaussian mixtures [11], the previous equations implies that G∗ ≡ G(θ′),
which is a contradiction as π ∈ (0, 1/2) and θ∗ 6= 0. Therefore, we have established the claim (35).

A.3 Proofs for sample-based EM

In this section, we prove the Corollaries 1 and 2. The proof for Corollary 3 is rather similar and is
omitted.

A.3.1 Proof of Corollary 1

To prove this corollary, we use Theorem 2 by Balakrishnan et al. [1] and note that it suffices to
establish the following lemma:

Lemma 1. For any threshold δ ∈ (0, 1), we have

P

[
sup
θ∈Ω
|Mn(θ)−M(θ)| − c2 (1 + Cρ) |θ∗|

(
(1 + ρ2)θ∗2 + σ2

)√ log(1/δ)

n
≥ 0

]
≤ δ,

where Ω := B(θ,
∣∣θ
∣∣ /4) for sample size n ≥ c1 log(1/δ) where c1 and c2 are universal positive

constants.

Proof. The proof of this lemma makes use of standard arguments to derive Rademacher complexity
bounds. We denote

Z = sup
θ∈Ω
|Mn(θ)−M(θ)| .

By means of standard symmetrization argument with empirical processes [12], the following holds

E [exp (λZ)] ≤ E

[
exp

(
sup
θ∈Ω

2λ

n

∣∣∣∣∣
n∑

i=1

εi(2wθ(Xi)− 1)Xi

∣∣∣∣∣

)]
, for any λ > 0.

For any θ and θ′, we have

|2wθ(x)− 2w′θ(x)| ≤ |θ − θ′| |x| ,
for all x ∈ R. Invoking the Ledoux-Talagrand contraction result for Rademacher processes [8]
yields

E

[
exp

(
sup
θ∈Ω

2λ

n

∣∣∣∣∣
n∑

i=1

εi(2wθ(Xi)− 1)Xi

∣∣∣∣∣

)]
≤ E

[
exp

(
sup
θ∈Ω

4λ

n

∣∣∣∣∣
n∑

i=1

εiX
2
i θ

∣∣∣∣∣

)]

= E

[
exp

(
5λ
∣∣θ
∣∣

n

n∑

i=1

εiX
2
i

)]
, (39)
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where ε1, . . . , εn are i.i.d. Rademacher random variables which are independent of Xi’s. Recalling
the distribution of Xi’s, we have

E [exp (λXi)] = exp
(
λ2σ2/2

)(1

4
exp (−λθ∗(1 + ρ)) +

1

4
exp (−λθ∗(1− ρ)) +

1

2
exp(λθ∗)

)

(i)

≤ exp
(
λ2σ2/2

)(1

4
exp (−λθ∗ρ) +

1

4
exp (λθ∗ρ)

)
(exp(−λθ∗) + exp(λθ∗))

(ii)

≤ exp

(
λ2 (1 + ρ2)θ∗2 + σ2

2

)
,

where step (i) and step (ii), respectively, follow from the basic inequalities exp(−y) + exp(y) ≥ 2
and exp(−y) + exp(y) ≤ 2 exp(y2/2) for all y ∈ R. Thus, the random variable Xi is sub-Gaussian
with parameter at most γ = ((1 + ρ2)θ∗2 + σ2)1/2 for any i ∈ [n]. Since any squared sub-Gaussian
random variable is a sub-exponential random variable, the following inequality holds [13]:

E
[
exp

(
tX2

i − tE
[
X2
i

])]
≤ exp

[
16t2γ4

]
for all |t| ≤ 1

4γ2
.

Furthermore, we can bound the second moment of Xi as follows:

E
[
X2
i

]
=

1

4

(
(θ∗(1 + ρ))2 + σ2

)
+

1

4

(
(θ∗(1− ρ))2 + σ2

)
+

1

2

(
θ∗2 + σ2

)

≤ (1 + ρ2)θ∗2 + σ2 = γ2.

Using these MGF and moment bounds, we find that

E
[
exp

(
tεiX

2
i

)]
=

1

2
E
[
exp

(
tX2

i

)]
+

1

2
E
[
exp

(
−tX2

i

)]

≤ exp
(
16t2γ4

) 1

2

(
exp(tγ2) + exp(−tγ2)

)

≤ exp(17t2γ4), (40)

for all |t| ≤ 1
4γ2 . Plugging in t = 5λ

∣∣θ
∣∣ /n in the bound (40) and combining with the bound (39)

yields the following MGF bound

E [exp (λZ)] ≤ exp
(

425λ2θ
2
γ4/n

)
≤ exp

(
425λ2 (1 + Cρ)

2
θ∗2γ4/n

)

for |λ| ≤ n/(20γ2
∣∣θ
∣∣). Here the second inequality in the above display is due to the upper bound∣∣θ

∣∣ ≤ (1 + Cρ) |θ∗| from Proposition 1. By virtue of standard Chernoff’s approach, the above MGF
bound implies that

Z ≤ c2 (1 + Cρ) |θ∗| γ2

√
log(1/δ)

n
= c2 (1 + Cρ) |θ∗|

(
(1 + ρ2)θ∗2 + σ2

)√ log(1/δ)

n
,

with probability at least 1− δ as long as n ≥ c1 log(1/δ) for sufficiently large positive constants c1
and c2. The lemma now follows.

A.3.2 Proof of Corollary 2

Similar to the argument of Corollary 1, to prove this corollary it is sufficient to establish the following
lemma:

Lemma 2. For any threshold δ ∈ (0, 1), we have

P

[
sup
θ∈Ω
|Mn(θ)−M(θ)| − c2 (1 + Cω) |θ∗|

(
θ∗2 + σ2

)√ log(1/δ)

n
≥ 0

]
≤ δ, (41)

where Ω := B(θ,
∣∣θ
∣∣ /4) for sample size n ≥ c1 log(1/δ) where c1 and c2 are universal positive

constants.
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Proof. Following the argument used in the proof of Lemma 1, we obtain that

E [exp (λZ)] ≤ E

[
exp

(
5λ
∣∣θ
∣∣

n

n∑

i=1

εiX
2
i

)]
,

where Z = sup
θ∈Ω
|Mn(θ)−M(θ)| and ε1, . . . , εn are i.i.d. Rademacher random variables indepen-

dent of Xi’s. Recalling the distribution of Xi’s, we have

E [exp (λXi)] = exp
(
λσ2/2

)((1− ω
2

)
(exp (−λθ∗) + exp (λθ∗)) + ω

)

≤ exp
(
λ2σ2/2

)(
(1− ω) exp

(
λ2θ∗2

2

)
+ ω

)

≤ exp
(
λ2(σ2 + θ∗2)/2

)
.

Thus, the random variables Xi are independent sub-Gaussian with parameter at most
γ =

√
θ∗2 + σ2 for all i ∈ [n]. Furthermore, we can bound the second moment of Xi as follows:

E
[
X2
i

]
= (1− ω)(θ∗2 + σ2) + ωσ2 ≤ (θ∗2 + σ2). (42a)

Using these MGF and moment bounds, we have

E
[
exp

(
tεiX

2
i

)]
≤ exp(17t2γ4) for all |t| ≤ 1/4γ2. (42b)

Finally, performing computations similar to those in the proof of Lemma 1 yields the claim.

B Further numerical experiments

Here we provide supplementary material for the numerical experiments presented in Section 5 of
the main text. In particular, we numerically illustrate the scalings of the bias

∣∣θ∗ − θ
∣∣ as a function

of θ∗ in Figure 2. We use population EM (the final iterate) to estimate θ (2) for the different settings.
We simulated two different settings for Case 1 corresponding to the two mixture fit (7) for the
three mixture model (6) and Case 2 corresponding to the two mixture fit (7) for the three mixture
model (11) and report the results in Figure 2. The behavior of the bias |θ∗ − θ| is rather different
in the two cases. We see that for Case 1 the bias decreases with increase in θ∗, while for Case 2, it
increases with increase in θ∗. Such a behavior is not captured in our results stated in Propositions 1
and 2. Thus, the bias analysis presented in this paper should be considered only a first step towards
understanding the under-fitted mixtures. Providing a sharper framework that yields optimal bounds
for such biases remains an interesting future direction.
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Figure 2. Plots of the best two mixture Gaussian fits for the data generated from three Gaussian
mixtures. In (a) & (b), we consider two settings of Case 1 (6) and in panels (c) & (d), two settings of
Case 2 (11). We see that for Case 1 as θ∗ increases, θ → θ∗ and for Case 2 an increase in θ∗ leads to
an increase in the bias |θ∗ − θ|. Indeed as we plot the bias term in panels (e) and (f), we see that for
Case 1, larger θ∗ has a smaller bias and on the contrary for Case 2, the bias increases with increase in
θ∗.
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