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Abstract: This paper studies identifiability and convergence behaviors for parameters
of multiple types, including matrix-variate ones, that arise in finite mixtures, and the
effects of model fitting with extra mixing components. We consider several notions
of strong identifiability in a matrix-variate setting, and use them to establish sharp
inequalities relating the distance of mixture densities to the Wasserstein distances of
the corresponding mixing measures. Characterization of identifiability is given for a
broad range of mixture models commonly employed in practice, including location-
covariance mixtures and location-covariance-shape mixtures, for mixtures of symmet-
ric densities, as well as some asymmetric ones. Minimax lower bounds and rates of
convergence for the maximum likelihood estimates are established for such classes,
which are also confirmed by simulation studies.
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1. Introduction

Mixture models are a popular modeling tool for making inference about heterogeneous
data [15, 18]. Under mixture modeling, data are viewed as samples from a collection
of unobserved or latent subpopulations, each positing its own distribution and associ-
ated parameters. Learning about subpopulation-specific parameters is essential to the
understanding of the underlying heterogeneity. Theoretical issues related to parame-
ter estimation in mixture models, however, remain poorly understood — as noted in
a recent textbook [5] (pg. 571), “mixture models are riddled with difficulties such as
nonidentifiability”.

Research about parameter identifiability for mixture models goes back to the early
work of [22, 23, 26] and others, and continues to attract much interest [11, 10, 7, 1].
To address parameter estimation rates, a natural approach is to study the behavior of
mixing distributions that arise in the mixture models. This approach is well-developed
in the context of nonparametric deconvolution [3, 28, 8], but these results are confined
to only a specific type of model — location mixtures. Beyond location mixtures there
have been far fewer results. In particular, for finite mixture models, a notable contribu-
tion was made by Chen, who proposed a notion of strong identifiability and established
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the convergence of the mixing distribution for a class of over-fitted finite mixtures with
scalar parameters [4]. Over-fitted finite mixtures, as opposed to exact-fitted ones, are
mixtures that allow extra mixing components in their model specification, when the
actual number of mixing components is bounded by a known constant. More recently,
Nguyen showed that the convergence of the mixing distribution is naturally under-
stood in terms of Wasserstein distance metric [19]. He established rates of convergence
of mixing distributions for a number of finite and infinite mixture models with multi-
dimensional parameters — the case of finite mixtures can be viewed as a generalization
of Chen’s results. Rousseau and Mengersen studied over-fitted mixtures in a Bayesian
estimation setting [21]. They did not study the convergence of all mixing parameters,
focusing only on the mixing probabilities associated with extra mixing components.
Finally, we mention a related literature in computer science, which focuses almost ex-
clusively on the analysis of computationally efficient procedures for clustering with
exact-fitted Gaussian mixtures (e.g., [6, 2, 13]).

Setting The goal of this paper is to establish rates of convergence for parameters
of multiple types, including matrix-variate parameters, that arise in a variety of finite
mixture models. Assume that each subpopulation is distributed according to a density
function (with respect to Lebesgue measure on an Euclidean space ') that belongs to
a known density class { f(z|0,%),0 € © CR" X e QC S; %,z € X}. Here, dy >
1,dy > 0, S;j is the set of all do x ds symmetric positive definite matrices. A finite
mixture density with £ mixing components can be defined in terms of f and a discrete
mixing measure G = Zle Pid(g,,x,) With k support points as follows

k
pole) = [ Flalf, £)G0.2) = Y pif(alt. )
=1

Examples for f studied in this paper include the location-covariance family (when
dy; = dy > 1) under Gaussian or some elliptical families of distributions, the location-
covariance-shape family (when d; > ds) under the generalized multivariate Gaussian,
skew-Gaussian or the exponentially modified Student’s t-distribution, and the location-
rate-shape family (when d; = 3, dy = 0) under Gamma or other distributions.

As shown by [19], the convergence of mixture model parameters can be measured in
terms of a Wassertein distance on the space of mixing measures G. Let G = Zle Pid(9,,5,)
and Gy = Zfil p?é(gg’z?) be two discrete probability measures on © x €2, which is
equipped with metric p. Recall the Wasserstein distance of order r, for a given r» > 1
(cf. [25])

1/r
WG, Go) = | inf D> Jaiip" (0, %4), (67,59) |
4,J
where the infimum is taken over all joint probability distributions g on [1,..., k] x
[1,..., ko] such that, when expressing q as a k x ko matrix, the marginal constraints

hold: qu = P; and ZQU = p?
J %
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To see how convergence of mixing measure (,, in Wasserstein distances is trans-
lated to convergence of GG,,’s atoms and probability masses, suppose that a sequence of
mixing measures G,, — G under W, metric at a rate w,, = o(1). If all G,, have the
same number of atoms & = kq as that of G, then the set of atoms of GG,, converge to
the kg atoms of Gy at the same rate w;, under p metric. If G,, have varying k,, € [ko, k]
number of atoms, where k is a fixed upper bound, then a subsequence of G,, can be
constructed so that each atom of G is a limit point of a certain subset of atoms of
G, — the convergence to each such limit also happens at rate w,,. Some atoms of G,,
may have limit points that are not among G’s atoms — the mass associated with those
atoms of G,, must vanish at the generally faster rate w;, (since r > 1).

In order to establish the rates of convergence for the mixing measure (G, our strategy
is to derive sharp bounds which relate the Wasserstein distance of mixing measures
G, G’ and a distance between corresponding mixture densities pg, pgs, such as the
variational distance V (pg, pgr). It is relatively simple to obtain upper bounds for the
variational distance of mixing densities (V' for short) in terms of the Wasserstein dis-
tances W,.(G,G’) (shorthanded by W,.). Establishing (sharp) lower bounds for V" in
terms of W, is the main challenge. Such bounds may not hold, due to a possible lack

of identifiability of the mixing measures: one may have pg = pg/, so clearly V = 0
but G # G’, so that W,. # 0.

General theory of strong identifiability The classical identifiability condition re-
quires that po¢ = pgr entail G = G’. This amounts to the linear independence of
elements f in the density class [23]. In order to establish quantitative lower bounds
on a distance of mixture densities, we employ several notions of strong identifiability,
extending from the definitions employed in [4] and [19] to handle multiple parameter
types, including matrix-variate parameters. There are two kinds of strong identifiability.
One such notion involves taking the first-order derivatives of function f with respect to
all parameters in the model, and insisting that these quantities be linearly independent
in a sense to be precisely defined. This criterion will be called “strong identifiability in
the first order”, or simply first-order identifiability. When the second-order derivatives
are also involved, we obtain the second-order identifiability criterion. It is worth noting
that prior studies on parameter estimation rates tend to center primarily on the second-
order identifiability condition or something even stronger [4, 16, 21, 19]. We show that
for exact-fitted mixtures, the first-order identifiability condition (along with additional
and mild regularity conditions) suffices for obtaining that

V(pa,ra,) 2 Wi(G,Go), (H

when W1 (G, Gy) is sufficiently small. Moreover, for a broad range of density classes,
we also have V' < W4, for which we actually obtain V (pg,pa,) < Wi(G,Gop). A
consequence of this fact is that for any estimation procedure that admits the n—'/2
convergence rate for the mixture density under V' distance, the mixture model parame-
ters also converge at the same rate under Euclidean metric.

Turning to the over-fitted setting, second-order identifiability along with mild regu-
larity conditions would be sufficient for establishing that for any G that has at most k
support points where k > kg + 1 and k is fixed,

V(vapGo) Z WZZ(Ga GO) (2)
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when Wa(G, Gy) is sufficiently small. The lower bound W2 (G, Gy) is sharp, i.e., we
cannot improve the lower bound to W] for any » < 2 (notably, Wy > W1). A conse-
quence of this result is, take any standard estimation method (such as the MLE) which
yields the n~'/2 convergence rate for p¢, the induced rate of convergence for the mix-
ing measure G is /4 under W5. This means the mixing probability mass converge at
n~1/2 rate (which recovers the result of [21]), in addition to having that the component
parameters converge at n~1/% rate.

We also show that there is a range of mixture models with varying parameters of
multiple types that satisfies the developed strong identifiability criteria. All such mod-
els exhibit the same kinds of rate for parameter estimation. In particular, the second-
order identifiability criterion (thus the first-order identifiability) is satisfied by many
density families f including the multivariate Student’s t-distribution, the exponentially
modified multivariate Student’s t-distribution. Second-order identifiability also holds
for several mixture models with multiple types of (scalar) parameters. These results
are presented in Section 3.2.

Convergence of MLE estimators and minimax lower bounds ~Assuming that n-iid
sample X1, ..., X, are generated according to pc, and let GG, be the MLE estimate
of the mixing distribution G ranging among all discrete probability distributions with
at most k support points in © x 2 under the over-fitted setting or among all discrete
probability distributions with exactly kg support points in © x 2 under the exact-fitted
setting. The inequalities (1) and (2), along with the fact that these bounds are sharp
enable us to easily establish the convergence rates of the mixing measures, and ob-
tain minimax lower bounds. Such results are stated in Theorem 4.2, Theorem 4.3, and
Theorem 4.4. In particular, we obtain the minimax lower bound n~1/% under W, dis-
tance for the exact-fitted setting for any positive < 2. Under the over-fitted setting,
the minimax lower bound is 7~ /% under W, distance for any positive § < 4. The
MLE method can be shown to achieve both these rates, i.e., n~1/2 and n—1/4 up to a
logarithm term, under exact-fitted and over-fitted setting, respectively. Note, however,
that these are pointwise convergence rates, i.e., the constants C in Theorem 4.2 and
Theorem 4.3 depend on GY. For a fixed G, we think that the MLE upper bound n~'/4
for the over-fitted setting is tight, but we do not have a proof.
Summarizing, the technical contributions of this paper include the following:

(1) Convergence of parameters of multiple types, including matrix-variate parame-
ters, for finite mixtures, under strong identifiability conditions.

(i) A minimax lower bound, in the sense of Wasserstein distance W5, for estimating
mixing measures in an over-fitted setting. The maximum likelihood estimation
method is shown to achieve this lower bound, up to a logarithmic term, although
the convergence is pointwise.

(iii) Characterization results showing the applicability of our theory and the conver-
gence rates to a fairly broad range of mixture models with parameters of multiple
types, including matrix-variate ones.

(iv) Another noteworthy aspect of this work is that the settings of exact-fitted and
over-fitted mixtures are treated separately: the first-order identifiability criterion
is sufficient in the former setting, which attains convergence in W;; while the
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second-order identifiability criterion is sufficient in the latter, which achieves
convergence in Wy metric.

Finally, we note in passing that both the first and second-order identifiability are in
some sense necessary in deriving the MLE convergence rate n~ /2 and n~1/4 as de-
scribed above. Models such as location-scale Gaussian mixtures, shape-scale Gamma
mixtures and location-scale-shape skew-Gaussian mixtures do not satisfy either or both
strong identifiability conditions — we call such models “weakly identifiable”. It can be
shown that such weakly identifiable models exhibit a much slower convergence behav-
ior than the standard rates established in this paper. Such a theory is fundamentally
different from the strong identifiability theory, and will be reported elsewhere.

Paper organization The rest of the paper is organized as follows. Section 2 provides
some preliminary backgrounds and facts. Section 3 presents a general theory of strong
identifiability, by addressing the exact-fitted and over-fitted settings separately before
providing a characterization of density classes for which the general theories are appli-
cable. Section 4.1 contains consequences of the theory developed earlier — this includes
minimax lower bounds and convergence rates of maximum likelihood estimation. The
theoretical bounds are illustrated via simulations in Section 4.2. Self-contained proofs
of the key theorems are given in Section 5 while proofs of the remaining results are
presented in the Appendices.

Notation Given two densities p, ¢ (with respect to Lebesgue measure (), the varia-
tional distance is given by V(p,q) = (1/2) [ |p — ¢|du. The Hellinger distance h is
given by h*(p,q) = (1/2) [(p/? — ¢"/*)?dp.

As K, L € N, the first derivative of real function g : REXL _y R of matrix Y is
defined as a K x L matrix whose (i, j) element is dg/0%;;. The second derivative

82
9 is a K2 x L? matrix made of KL blocks of K x L matrix,

of g, denoted by o2 i

o (0
whose (4, j)-block is given by ol ( 829 ) Additionally, as N € N, for function
ij
go : RN x REXL 5 R defined on (6,Y), the joint derivative between the vector
0? 02
component and matrix component 3 6[?;3 = 829829 i; a (I(; N) x L matrix of KL
blocks for N-columns, whose (%, j)-block is given by 20 < agi > .

Throughout the paper, for any symmetric matrix ¥ € RZX4, \;(X) and \g(%)
respectively denote its smallest and largest eigenvalue. Additionally, the expression
2> will be used to denote the inequality up to a constant multiple where the value of
the constant is fixed within our setting. We write a,, < b,, if both a,, 2 b,, and a,, < b,
hold.

2. Preliminaries

First of all, we need to define our notion of distances on the space of mixing measures.
In this paper, we restrict ourselves to the space of discrete mixing measures with exactly
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ko distinct support points on © X €, denoted by &, (© x 2), and the space of discrete

mixing measures with at most & distinct support points on © x 2, denoted by O (© x
k

€2). Consider a mixing measure G' = ) p;d(s,,x,), Where p = (p1,p2, . . ., px) denotes
i=1

1=

the proportion vector. Likewise, let G = Zf;l p;5(9£722). A coupling between p and

p’ is a joint distribution g on [1...,k] X [1,..., k'], which is expressed as a matrix
, k
q = (¢ij)1<i<k1 <j<k € [0,1]*** and admits marginal constraints Y q;; = P and
i=1
k/

> qij=piforanyi=1,2,...,kandj=1,2,...,k". We call g a coupling of p and
j=1
p’, and use Q(p, p’) to denote the space of all such couplings.

As in [19], our tool for analyzing the identifiability and convergence of parameters
in a mixture model is by adopting Wasserstein distances, which can be defined as the
optimal cost of moving masses from one probability measure to another [25]. For any
r > 1, the r-th order Wasserstein distance between G and G’ is given by

1/r
WG, &) — ( in Zqz»xnei—e;u+|zi—z;||>") -

’
q€Q(p,p’) g

In both occurrences in the above display,
in R? or the entrywise [, norm for matrices.

The central theme of the paper is the relationship between the Wasserstein distances
of mixing measures G, G’ and the distances of the corresponding mixture densities
pa,pe:. Clearly, if G = G’ then pg = pg. Intuitively, if Wi (G, G’) or Wa(G,G)
is small, so is a distance between pg and pg-. This can be quantified by establishing
an upper bound for the distance of pg and pg- in terms of W1 (G, G’) or Wa(G, G").
There is a simple and general way to do this, by accounting for the Lipschitz property
of the density class and then appealing to Jensen’s inequality. We will not go into such
details and refer the readers to [19] (Section 2). The followings are examples of mixture
models that carry multiple types of parameter including the matrix-variate ones, along
with the aforementioned upper bounds. The proofs for such bounds can be found in
Appendix II.

- || denotes either the ls norm for elements

Example 2.1. (Multivariate generalized Gaussian distribution [29])

Let f(z|0,m,X) = 7rd/2I‘(TZ;((2dn/12)))E|1/2 exp(—[(z — O)TS L (x — 0)]™), where

0 cRYm>0,and X € S;"'. If©1 is a bounded subset of RY, ©5 = {m € Rt : 1 <
m<m <m}, and Q = {Z € S;lHr A< \/)\1(2) < \/)\d(Z) X} where A\, A >

<Ap
0, then for any mixing measures G1, Ga, we obtain h?(pg,,pc,) < W2(G1, Ge) and
V(pGl 7p02) 5 Wl(Gl, G2)

Example 2.2. (Multivariate Student’s t-distribution [20])
Let f(2]0,5) = < (v + (- 0TS (x — 0)) T2

- |E\1/2
T((v 4 d)/2)v"/?
T(v/2)mi/?

, where v is a fixed pos-

itive degree of freedom and C,, = . If © is a bounded subset of
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R? and Q = {E c Sj"' 0< A< \/)\1(2) < \/)\d(E) < X}, then for any mix-

ing measures G1,Ga, we obtain h*(pa,,pc,) < W2(G1,G2) and V(pa,,pa,) <
W1 (Gy, Ga).

Example 2.3. (Exponentially modified multivariate Student’s t-distribution)

Let f(x|0, A\, X) be the density of X =Y + Z, where Y follows the multivariate t-
distribution with location parameter 0, covariance matrix Y, fixed positive degree of
freedom v, and Z is distributed by the product of d independent exponential distribu-
tions with combined shape parameter X = (\1,...,\q). If © is a bounded subset of

R% x Ri, and Q) = {Z c S;'+ 0< A< \/)\1(2) < \/)\d(Z) SX}, then for any

mixing measures G, G, we have h*(pa,,pa,) S W3(G1,G2) and V (pa,,pa,) S
Wi(Gq,G9).

Example 2.4. (Modified Gaussian-Gamma distribution)

Let f(z|0,«, B, %) be the density function of X =Y + Z, where Y is distributed by
the multivariate Gaussian distribution with mean 0, covariance matrix ¥, and Z is
distributed by the product of independent Gamma distributions with combined shape
vector o = (a, . .., aq) and combined rate vector 8 = (f1, ..., Ba). If © is a bounded

subset of R4 x RY xR, () = {2 €SI 0<A< VMDD < V) < X}, then
for any mixing measures G, G, we have h*(pa, , pa,) <V (pa,,pa,) < Wi(G1, Ga).

3. General theory of strong identifiability

The objective of this section is to develop a general theory according to which a small
distance between mixture densities pg; and pgr entails a small Wasserstein distance
between mixing measures G and G'. The classical identifiability criteria require that
pg = pgr entail G = G’, which is essentially equivalent to a linear independence re-
quirement for the class of density family { f(z|0,X)|0 € ©,% € Q}. To obtain quan-
titative bounds, we shall need stronger notions of identifiability, ones which involve
higher order derivatives of the density function f, taken with respect to the mixture
model parameters. The strength of this theory is that it holds generally for a fairly
broad range of mixture models, which allows for the same bounds on the Wasserstein
distances. This in turn leads to “standard” rates of convergence for mixing measures.

3.1. Definitions and general identifiability bounds

Definition 3.1. The family { f(x|0,X),0 € ©,% € Q} isidentifiable in the first-order
if f(x|0,X) is differentiable in (0, %) and the following holds
Al. For any finite k different pairs (01,%1), ..., (0r, Xr) € © X Q, if we have «; €

R, B; € R™ and symmetric matrices ~; € R%=*% (forall i = 1,... k) such
that for almost all x

: 9 9
> uf w165, + 67 g (el 20+ 1n ( GLial60 50T ) =0,

i=1
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then, a; = 0,8; =0 € RM y; =0 € R2*% fori=1,... k.

Remark The condition that v; is symmetric in Definition 3.1 is crucial, without
which the identifiability condition would fail for many classes of density. Indeed, as-

0
sume that —f(x|0i, ;) are symmetric matrices for all i, which clearly holds for ellip-

tical distributions such as multivariate Gaussian, Student’s t-distribution, and logistics
distribution. Now, if we choose ~; to be anti-symmetric matrices with zero diagonal
elements, o; = 0, 5; = 0, then the equation in (A1) holds even when ~y; # 0 for all 4.

Additionally, we say the family of densities f is uniformly Lipschitz up to the
first order if the following holds: there are positive constants d1, do such that for any
Rl,Rg,Rg > 0, Y1 € Rdl, Yo € RdQXd2, R < \//\1(2) < \/)\dz(Z) < Ro,
10]] < Rs, 61,02 € ©,%1, 35 € Q, there are positive constants C(R1, Ry) and C(R3)
such that forall z € X

0 0
o (Grei0.2) = 56160, 3) )| < ORI 0l

of of !
tr ((az(xﬂ, ) — az(rw,zz)) ’)’2)

First-order identifiability is sufficient for deriving a lower bound of V (pg, pg,) in
terms of W1 (G, Gy), under the exact-fitted setting: This is the setting where G has
exactly ko support points lying in the interior of © x £2:

< C(R3)|IZ1 — Z2/1%2yell. @)

Theorem 3.1. (Exact-fitted setting) Suppose that the density family f is identifiable
in the first order and admits a uniform Lipschitz property up to the first order. Then
there are positive constants e¢g and Cy, both depending on Gy, such that as long as
G € &k, (O xQ), the set of mixing measures with exact order ko, and W1(G, Gy) < €,
we have

Vi(pa,pa,) = CoWi(G, Go).

Although no boundedness condition on © or 2 is required, this lower bound is of
a local nature, in the sense that it holds only for those G sufficiently close to G by a
Wassertein distance at most €y, which again varies with Gy. It is possible to extend this
type of bound to hold globally over a compact subset of the space of mixing measures,
under a mild regularity condition, as the following corollary asserts:

Corollary 3.1. Suppose that all assumptions of Theorem 3.1 hold. Furthermore, there
is a positive constant o > 0 such that for any G1,Gy € &, (© x Q), we have
V(pa,,vc,) S W (G1,Ga). Then, for a fixed compact subset G of E, (0 x Q),
there is a positive constant Cy = Co(Gy) such that

V(pa,pa,) = CoW1(G,Gy) for all G € G.

We shall verify in the sequel that the classes of densities f described in Examples
2.1,2.2, and 2.3 are all identifiable in the first order. Combining with the upper bounds
for V, we arrive at a remarkable fact for these density classes, that

V(pa,pa,) < W1i(G, Gy).
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Moving to the over-fitted setting, where GG has exactly ko support points lying in
the interior of © x €, but kg is unknown and only an upper bound for kg is given, a
stronger identifiability condition is required. This condition generalizes that of [4]:

Definition 3.2. The family {f(x|0,X),0 € ©,% € Q} is identifiable in the second-
order if f(x|0,%) is twice differentiable in (0,%) and the following assumption holds

A2. For any finite k different pairs (01,%1), ..., (0r, Xr) € © X Q, if we have «; €
R, Bi, v; € R%, ~;,n; symmetric matrices in R%2*% as i = 1,... k such that
for almost all x

. of 0 f
z{aiﬂxwi,z)w?@g( 01, 50) + 0F S (el B+

i=1

e{afenr) ot [ (o (Fonr)
! (aaz (tr (gé( |9i’zi>Tﬁi))Tm>}

then, o; = 0,8 =1v; =0 € RU 4, =n; =0 € R2X%2 fori=1,... k.

_|_

Il
o

In addition, we say the family of densities f is uniformly Lipschitz up to the sec-
ond order if the following holds: there are positive constants ds, 4 such that for any

Ry, Rs,Rg > 0,71 € RY, yp € REX2 Ry < \/N(D) < VA, (Z) < Rs,
10l < Rg, 01,02 € ©, X1,%2 € Q, there are positive constants C; depending on

(R4, Rs) and C5 depending on Rg such that for all x € X

0% f 0% f
T (S (2101, 2) = 2l Sl < Cilloy — a3 3

([ o)) e )| )

Co|| 1 — Sal3* 23

Let k£ > 2 and ko > 1 be fixed positive integers where k > ko + 1. G € &, while
G varies in Oy. Then, we can establish the following results

Theorem 3.2. (Over-fitted setting)

(a) Assume the density family f is identifiable in the second order and admits a
uniform Lipschitz property up to the second order. Moreover, © is a bounded
subset of R and Q is a subset of S;j such that the largest eigenvalues of
elements of Q) are bounded above. Additionally, assume that for each 6 € ©, for
each x € X except a finite number of values in X, we have \ }g)n . f(z]0,%) =

1 —

0. Then there are positive constants €y and Cy depending on G such that as
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long as G € Ok (O x Q), the set of mixing measures with their orders bounded
above by k, and W5 (G, Gy) < €g, we have

V(paspc,) = CoW3 (G, Go).

(b) (Optimality of bound for variational distance) Assume that f is second-order
differentiable with respect to 0,3 and all of its second derivatives are integrable
uniformly for all 0,%. Then, for any 1 < r < 2:

li inf \%4 W (G,Gy) : W1 (G,Gp) <ep =0.

sg%ceof%@xﬂ){ (pcspGo) /W1 (G, Go) : Wi(G,Go) < 6}

(c) (Optimality of bound for Hellinger distance) Assume that f is second-order dif-
ferentiable with respect to 6, 3. and for some sufficiently small cy > 0,

0? 2 o
sup / (80041(’{20‘2(3:'0’20 /f(x|0,% )dr < oo

l0—6"[I+] Z—%'][<co
zeX

where oy € N4 oy € N%2X9% jn the partial derivative of f take any combina-
tion such that |a1 | + |ag| = 2. Then, for any 1 <r < 2:

li inf H : <ep=0.
tig _int Lhlve.ra,) W (G, Go) s W(G.Go) < cf =0

Here and elsewhere, ratio V//W,. is set to be oo if W,.(G, Go) = 0. Some remarks:

(i) A version of part (a) for finite mixtures with multivariate parameters was first
given in [19] (Proposition 1 and Theorem 1). The original statement of Nguyen’s
Theorem 1 contains a mistake, as it claims something unnecessarily stronger:
V(pac,,pa,)/W4(G1,G2) is bounded away from 0 as both G and G are suf-
ficiently close to G in the sense of W5. This is not true, unless both GG; and G2
have the same number of support points as Gg. ! This error can be corrected in
the overfitted setting, by fixing G2 to Gy, and allowing only G; = G to vary
near Gy. This is precisely our current statement of part (a) stated for the more
general matrix-variate mixture models.

(ii) The condition N %1211;1 . f(z]0, %) = 0 is important for the matrix-variate param-

1 —

eter >.. In particular, it is useful for addressing the scenario when the smallest
eigenvalue of matrix parameter X is not bounded away from 0. It is simple to see
that this condition is satisfied for the examples discussed in the previous section.
For instance, for the multivariate generalized Gaussian distribution, it holds for
each § € ©, and = # 6. Note also that this condition can be removed if we addi-
tionally impose that all 3 € () are positive definite matrices whose eigenvalues
are bounded away from 0.

' A counterexample was pointed out to the second author by Elisabeth Gassiat, who attributed it to Jonas
Kahn. A similar error is also present in Lemma 2 of [4], which admits the same correction described above.
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(iii) Part (b) demonstrates the sharpness of the bound in part (a). In particular, we
cannot improve the lower bound in part (a) to any quantity W7 (G, G) for any
r < 2. For any estimation method that yields n~'/2? convergence rate under the
Hellinger distance for p¢, part (a) induces n1/4 convergence rate under W5 for
G. A consequence of part (c) is a minimax lower bound n~'/4 for estimating the
mixing measure GG. See Section 4.1 for formal statements of such results.

(iv) Itis also worth mentioning that the boundedness of O, as well as the boundedness
from above of the eigenvalues of elements of {2 are both necessary conditions
for the conclusion of part (a) to hold. Indeed, it is possible to show that if one
of these two conditions is not met, we are not able to obtain the lower bound of
V(pa,pa,) as established, because the distance & > V' can vanish much faster
than the distance W,.(G, Gy), as can be seen by:

Proposition 3.1. Let © be a subset of R™ and ) = S:lj. Then for any r > 1 and
B > 0 we have

1
li inf —|n W, (G, Go) < ey =0.
Py GeOlichG)XQ) {EXP (Wf(G, G0)> (6. 6,) - Wr(G, Go) 6} 0

Finally, as in the exact-fitted setting, to establish the bound V' > W2 in a global
manner, we simply add a compactness condition on the subset within which G varies:

Corollary 3.2. Suppose that all assumptions of Theorem 3.2 (part (a)) hold. Further-
more, there is a positive constant o < 2 such that for any G1,G3 € O(© x Q), we
have V (pa,, pa,) S WG, Ga). Then, for a fixed compact subset O of O(O x )
there is a positive constant Cy = Co(Gy) such that

V(pg,pa,) > CoW3(G,Gy) forall G € O.

A consequence of this result is, take any standard estimation method such as the
MLE, which yields the n~1/2 convergence rate for pg, the induced rate of conver-
gence for the mixing measure G is n~/* under W5. This also entails that the mixing
probability masses converge at the n~'/2 rate (which recovers the result of [21]), in
addition to having that the component parameters converge at the n~/* rate.

3.2. Characterization of strong identifiability

In this subsection we identify a fairly broad range of density classes for which the
strong identifiability conditions developed previously hold either in the first or the sec-
ond order. Then we also present general results which show how strong identifiablity
conditions continue to be preserved under certain transformations with respect to the
parameter space. First, we consider univariate density functions with parameters of
multiple types:

Theorem 3.3. (Densities with multiple scalar parameters)
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1
(a) Generalized univariate logistic densities: Let f(x|0,0) = —f((x —0)/0),
1%

F(p+q)  exp(pz)

where f(x) = ,
T = D)) T+ exp(apre

Sfamily {f(x]0,0),0 € R,o € Ry} is identifiable in the second order.

1
(b) Generalized Gumbel densities: Let f(x|0,0,)\) := —f((x — 6)/a,\), where
o
)\A
flz,\) = T exp(—M(z+exp(—x))) as A > 0. Then the family { f (z|0, o, A),
0 € R,0 € Ry, \ € Ry} is identifiable in the second order.

v—1 v
(¢) Weibull densities: Let f(x|v, ) = % (%) exp (— (%) ),forac > 0, where
v, A > 0 are shape and scale parameters, respectively. Then the family { f (z|v, \),

v € Ry, A € Ry} is identifiable in the second order.
(d) Von Mises densities [12, 14, 17]: Let f(x|u,r) =

and p, q are fixed in Ny. Then the

27 To () exp(k cos(z —

1)) 1izeio,2m)}, where p € [0,27),5 > 0, and Io(k) is the modified Bessel
Sunction of order 0. Then the family { f(x|p, k), u € [0,27),k € Ry} is identi-
fiable in the second order.

Next, we turn to the density function classes with matrix-variate parameter spaces,
as introduced in Section 2:

Theorem 3.4. (Densities with matrix-variate parameters)

(a) The family {f(z|97 ¥,m),0 e RLY € S;"', m > 1} of multivariate general-
ized Gaussian distribution is identifiable in the first order.

(b) The family {f(;v|9, ¥),0 e R Y € S(}LJF} of multivariate t-distribution with
fixed odd degree of freedom is identifiable in the second order:

(c) The family { f(x]0,%,)),0 € R%, S € S7%, X € R%} of exponentially modified
multivariate t-distribution with fixed odd degree of freedom is identifiable in the
second order.

(d) The family {f(ac\ﬂ, ¥,a,b),0 e RY Y € Sj+,a € R‘i,b € Ri} of modified
Gaussian-Gamma distribution is not identifiable in the first order.

These theorems are the matrix-variate or multiple parameter-type counterparts of
results proven for density classes with a single scalar parameter [4]. As the proofs of
these results are technically involved, we present only the proof of Theorem 3.4 in the
Appendix. A useful insight one can draw from these proofs is that the strong identi-
fiability of these density classes are established by exploiting how the corresponding
characteristic functions and moment generating functions behave at infinity. Thus it
can be concluded that the common feature in establishing strong identifiability hinges
on the smoothness of the density f in question.

Some additional details: regarding part (a), as the class of multivariate Gaussian
distribution (m = 1) is not identifiable in the second order, the conclusion of this
part only holds for the first-order identifiability. However, if we impose the constraint
m > 1, the class of multivariate generalized Gaussian distributions is identifiable in
the second order. The condition odd degree of freedom in part (b) and (c) of Theorem
3.4 is mainly due to our proof technique. We believe both (b) and (c) hold for any fixed
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positive degree of freedom, but do not have a proof. Finally, the conclusion of part (d)
is due to the fact that family of Gamma distribution is not identifiable in the first order.

The results of Theorem 3.4 shed light on which classes of distribution satisfy the
inequality being established in Theorem 3.1 and Theorem 3.2. A consequence is the
following: take any standard estimation method (such that the MLE) which yields the
n~1/2 convergence rate for pg, the induced rate of convergence for the mixing measure
G is n=1/2 under W; for the exact-fitted setting or n~1/4 under Wy for the over-
fitted setting. From the definition of Wasserstein distances, under the MLE, the mixing
probabilities’ estimate converge at the n~'/2 rate; while the component parameters
converge at the rate n~'/2 for the exact-fitted setting, and n~'/4 for the over-fitted
setting.

Before ending this section, we state a result in response to a question posed by
Xuming He on strong identifiability in transformed parameter spaces. The following
theorem asserts that the first-order identifiability with respect to a transformed parame-
ter space is preserved under some regularity conditions of the transformation operator.
Let T" be a bijective mapping from ©* x (2* to © x 2 such that

T(nv A) = (Tl (777 A)7 TQ(”7 A)) = (9’ E)

for all (n, A) € ©* x Q*, where ©* C R™, Q* C S} . Define the class of density
functions {g(z|n, A),n € ©*, A € Q*} by

g(xln, A) := f(z[T(n, A)).

Additionally, for any (1, A) € ©* x Q*, let J(n, A) € R(d1+d2)x(d1+d3) pe the modi-
fied Jacobian matrix of T'(7, A), i.e. the usual Jacobian matrix when (7, A) is taken as
a dy + d3 vector.

Theorem 3.5. Assume that {f(x]0,%),0 € ©,% € Q} is identifiable in the first order.
Then the class of density functions {g(z|n,\),n € ©*, A € Q*} is identifiable in the
first order if and only if the modified Jacobian matrix J(n, A) is non-singular for all
(n,A) € ©* x Q*.

The conclusion of Theorem 3.5 still holds if we replace the first-order identifiability
by the second-order identifiability. This type of results allows us to construct more
examples of strongly identifiable density classes.

As we have seen previously, strong identifiablity (either in the first or second order)
yields sharp lower bounds of V' (pg, pe, ) in terms of Wasserstein distances W,.(G, Gy).
It is useful to know that in the transformed parameter space, one may still enjoy the

()
same inequality. Specifically, for any discrete probability measure @ = > pid(y,,a,) €
i=1
Ery (0% x OF), denote

ko
Vo) = [ alaln ) A) = > pigCal. Ao

Let Qo to be a fixed discrete probability measure on &, (©* x *), while probability
measure @ varies in &, (0* x Q*).
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Corollary 3.3. Assume that the conditions of Theorem 3.5 hold. Further, suppose that
the first derivative of f in terms of 0,% and the first derivative of T in terms of 1, A
are a-Holder continuous and bounded where o« > 0. Then there are positive constants
€0 = €0(Qo) and Cy := Co(Qo) such that as long as Q € &, (O0* x Q*) and
W1(Q, Qo) < €, we have

V(pg:Po,) = CoW1(Q, Qo).

Remark. If © and () are bounded sets, the condition on the boundedness of the first
derivative of f in terms of 6, Y. and the first derivative of g in terms of 7, A can be left
out. Additionally, the restriction that these derivatives be a-Holder continuous can be
relaxed to only that the first derivative of f and the first derivative of g are a;-Holder
continuous and ao-Holder continuous where a1, as > 0 can be different. Finally, the
conclusion of Corollary 3.3 still holds for the lower bound W2 (Q, Qo) if we impose the
second-order identifiability on the kernel density f as well as the additional structures
on the second derivative of 7.

4. Minimax lower bounds, MLE rates and illustrations
4.1. Minimax lower bounds and MLE rates of convergence

Given n-iid sample X1, Xa, ..., X,, distributed according to the mixture density pg,,
where G is an unknown true mixing distribution with exactly kg support points, and
the class of densities { f(z]0,X),6 € ©,% € Q} is assumed known. Given k € N such
that k& > ko + 1. The support points of G lie in © x €. In this section we shall assume

that © is a compact subset of R%* and Q) = {E € Sj;’ A< VAE) < VA (2) <

A}, where 0 < A, X are known and dy > 1,d> > 0. We denote ©* = © x . The
maximum likelihood estimator for G in the over-fitted mixture setting is given by

n

G, = argmax Zlog(pg(Xi)).
Ge0L(OxQ)

For the exact-fitted mixture setting, Oy, is replaced by &k, .

The inequalities established by Theorem 3.1 and Theorem 3.2 allow us to translate
existing results on convergence rates (under Hellinger distance) of maximum likelihood
density estimation to that of the mixing measure (under Wasserstein distance metrics).
Under standard assumptions, the convergence rate for density estimation using finite
mixture densities is (logn/n)/2. Then it follows that the convergence rate for the
mixing measure under 1, distance in the exact-fitted setting is also (logn/n)'/2. For
the over-fitted setting, the rate is (logn/n)/* under W, distance.

To state such results formally, we need to introduce several standard notions, which
will allow us to appeal to a general convergence theorem for the MLE (e.g., [24]). For
any positive integer number k1, define several classes of mixture densities Py, (0*) =

(pe : G € O, (0%}, Py, (0%) = {pcgco .G e okl(@*)}, and
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—1/2
P,

with a Hellinger ball centered at pg, via

1/2
(O%) = {(pc+c0) :G e Okl(@*)}- For any 6 > 0, define the intersection
2

12 _
'Pllc?(@*,(s) = {(pGJ;GO) S 'P}lc{2 : (pG+G0 7pGo) < 5} .

The size of this set is captured by the entropy integral:
s
—1/2 /2
a0 P 0 = [ HY PO ) wdu v
52/213
where Hp denotes the bracketing entropy of fi?(@*) under Lo distance (cf. [24] for
a definition of the bracket entropy).

Before arriving at the main results in this section, we state the result of Theorem 7.4
of [24] with the adaption of notations as those in our paper

Theorem 4.1. Take ¥ (5) > Jp(4, 731/2(@*7 §), u) in such a way that V(8)/6% is a
non-increasing function of §. Then, for a universal constant c and for

VnéZ > c¥(s,),
we have for all § > 6,

N2
P(h(pa,,pa,) > 0) < cexp {02] )

Now, we are ready to state a general result on the MLE under the exact-fitted mixture
setting:

Theorem 4.2. (Exact-fitted mixtures) Assume that f satisfies the conditions of The-
W6
orem 3.1. Take W(8) > Jgp(9, P1/2(@*,5)7u0) in such a way that (2)

increasing function of 0. Then for a universal constant ¢, constant C; = C1(0%), a
non-negative sequence {0, } such that

Vndh > c¥(3,),

is a non-

0
and for all § > ———, we have
VCi
Wy (G nC%5?
PWy(G,n,Go) >0) < cexp (_ (;12 )

Proof. By Theorem 3.1,

CL(OWE(G,Go) < V3(pa, pa,) < 2h%(pg, pa,) for all G € &, (0%), 3)
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where C1(©*) is a positive constant depending only on ©* and Gy. Now, invoking
Theorem 4.1, as 6 > J,,, there is a universal constant ¢ > 0 such that

nd?
P(h(pg :pc,) > 0) < cexp - 6)
Combining (5) and (6), we readily achieve the conclusion of our theorem. O

Using the same argument we arrive at a general convergence rate result of the MLE
under the over-fitted setting:

Theorem 4.3. (Over-fitted mixtures) Assume that f satisfies the conditions in part

_ V(s
(a) of Theorem 3.2. Take ¥ (§) > Jg(0, ’P,lﬁ/z(@*, d), o) in such a way that (2 )

non-increasing function of 8. Then for a universal constant ¢, constant C; = C1(0%),
{6n} is a non-negative sequence such that

Vg > c¥(s,),

isa

On
and for all 6 > ———, we have

ven

~ nC24?

P(Wa(G,Go) > 61/2) < coxp (— 1)
c

To derive the concrete rates d,,, one simply need to verify the conditions on the

bracket entropy integral 7 for a given model class. As a concrete example, the follow-

ing results are concerned with the finite mixtures of multivariate generalized Gaussian

distributions.

Corollary 4.1. (Mixtures of multivariate generalized Gaussian distributions) Given
O = [~an, a,]? x [m, M| where a,, < L(log(n))” as L is some positive constant, y >
0, and 1 < m < T are two known positive numbers. Let { f (z|0, m, X)|(0,m) € ©,%
€ O} to be the class of multivariate generalized Gaussian distributions.

(a) (Exact-fitted case) There holds P(W1(Gr, Go) > 6,) < exp(—clog(n)), where
S, is a sufficiently large multiple of (log(n)/n)/? and c is positive constant
depending only on L,~, m,mm, \, \. R

(b) (Over-fitted case) There holds P(W2(G,,,Go) > 6.,) < exp(—clog(n)), where
8! is a sufficiently large multiple of (log(n)/n)*/* and c is positive constant
depending only on L,~, m,m, A, \.

Remark (i) The condition m > 1 can be relaxed to m > 1 under the exact-fitted
setting; however, it is crucial under the over-fitted setting that m > 1. In fact, the
location-covariance Gaussian mixtures (which correspond to m = 1) have to be ex-
cluded from the class of generalized Gaussian mixtures for the above results to hold.
This is a consequence of the fact that the (sub)class of location-covariance multivari-
ate Gaussian distributions is not identifiable in the second order. In fact, the failure to
satisfy the second-order identifiability leads to very slow convergence rate of the MLE
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under the over-fitted location-scale Gaussian mixture setting, as we noted briefly in
the introduction. (ii) The conclusions of this corollary also hold for mixtures of multi-
variate Student’s t-distribution as well as all the classes of distributions considered in
Theorem 3.3 with suitable boundedness conditions on the parameter spaces.

Finally, we shall show that the convergence rates n~ /2 and n~'/* for the exact-
fitted and over-fitted finite mixtures, respectively, are in fact minimax lower bounds.
Under the exact-fitted finite mixture setting, it is simple to establish the standard n—1/2
minimax lower bound:

. -1/2,
_inf  sup Eyg, Wi (Gn,Go) = n Y
Gn€Eky GoEEy

where the infimum is taken over all possible sequences of estimate @n based on n-
samples. Perhaps more interesting is the following minimax lower bound result for the
over-fitted mixture setting.

Theorem 4.4. (Minimax lower bound for over-fitted mixtures) If the class of den-
sities [ satisfies condition (c) of Theorem 3.2, then for any positive r < 4 and any
n>1,

inf sup Epe, Wl(Gn, Go) 2 nlr,
G [ Gonk\Oko 1

Proof. The proof is almost immediate following a standard argument for establishing
minimax lower bounds. Fix a Gy € &, and r € [1,2). Let Cy > 0 be any fixed
constant. According to Theorem 3.2, part (c), for any sufficiently small € > 0, there
exists G € Oy, such that W1 (Go, Gyy) = 2¢ and h(pg,,pc;,) < Coe”. Applying

Lemma 1 from [27], for any sequence of estimates @n ranging in Oy, we obtain that

Sup By Wi(Gh,G) = ¢ (1= V(ps,o0))
Ge{Go,G}

where p¢; denotes the density of the n-iid sample X1, ..., X,,. Now,
V(PG Pe) < h(pe,. p)

V10— 12e,.pe))"

\/1 — (1 - Cgex)"™.

IN

As a consequence, we obtain

sup Wl(Gn,G (1—\/1— (1—C2e2ry )

Ge{GO,Gg}

By choosing €2 , the right hand side of the above inequality is bounded below

C2
by Cie < n~ /2" for any r < 2 where C| is some positive constant. We achieve the
conclusion of our theorem. Noting that G, G{, € Oy \ Oy, —1, this concludes the proof
of our theorem. O
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Fig 1: Mixture of Student’s t-distributions. Left: Exact-fitted setting. Right: Over-fitted setting.
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Fi g 2: Mixture of multivariate generalized Gaussian distributions. Left: Exact-fitted setting. Right:
Over-fitted setting.

4.2. Hllustrations

For the remainder of this section, we shall illustrate via simulations the strong identifi-
ability bounds established in Section 3 for several classes of distributions with matrix-
variate parameter space for which strong identifiability conditions in both the first and
second order hold. In addition, we also present some simulations for the well-known
location-scale Gaussian finite mixtures, which satisfy the first-order identifiability but
not the second-order identifiability.

Strong identifiability bounds The inequalities V' 2> W; for exact-fitted mixtures
and V' > W3 for over-fitted mixtures are illustrated for the class of Student’s t-
distributions and the class of multivariate generalized Gaussian distributions, both of
which satisfy first and second-order identifiability. See Figure 1 and Figure 2. Here we
plot h against Wy and W, but note the relation b > V' > h2. The upper bounds of V/
and A in terms of W7 were given in Section 2.

For details, we choose © = [—10,10]? for Student’s t-distribution (Gaussian dis-
tribution) or © = [—10,10]? x [1.5, 5] for multivariate generalized Gaussian distri-

bution, ) = {Z €St vV2<VME) < VM) < 2}. Note that closed inter-

val [1.5,5] is chosen for m to exclude Gaussian distributions, which corresponds to
m = 1. Now, the true mixing probability measure Gy has exactly ky = 2 support
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points with locations 69 = (—2,2), §9 = (—4,4), covariances ©{ = <$19; ;1 113//56)’
n) = <g§§ %g), m{ = 2, m§ = 3 (for the setting of multivariate generalized

Gaussian distribution), and p? = 1/3,pJ = 2/3. 10000 random samples of discrete
mixing measures G € &(O© x ), 10000 samples of G € O3(O© x Q) were gener-
ated to construct these plots. Note that, since we focus on obtaining the lower bound of
Hellinger distance in terms of small Wasserstein distances, we generate G by making
small perturbations of Gy (that is, adding small random noise € to the mixing coeffi-
cients and support points of Gy).

It can be observed that both lower bounds and upper bounds match exactly that of
our theorems for strongly identifiable classes of distributions such as the t-distribution
and the generalized Gaussian distribution. Turning to mixtures of location-covariance
Gaussian distributions (Figure 3), the bounds v/W; = h > W continue to hold under
the exact-fitted setting, but under the over-fitted setting it can be observed that the lower
bound h > W3 no longer holds. In fact, if the Gaussian mixture is over-fitted by one
extra component, it can be shown that h > Wf > W24 (see illustrations in the middle
and right panels), and that this bound is sharp. This has a drastic consequence on the
convergence rate of the mixing measure, which we discuss next.

Convergence rates of MLE First, we generate n-iid samples from a bivariate location-
covariance Gaussian mixture with three components with an arbitrarily fixed choice of
G). The true parameters for the mixing measure G are: 69 = (0,3),609 = (1, —4), 03 =
4.2824 1.7324 175 —1.25 1 0

(5,2), % = (1.7324 0.81759)’ % = (—1.25 1.75 > ¥ = (0 4)’ and
p) = 0.3,p) = 0.4,p) = 0.3. The parameter spaces O, (2 are identical to those of
multivariate Student’s t-distribution setting. MLE @n is obtained by the EM algorithm
as we assume that the data come from a mixture of & GAaussians where k > kg = 3.
See Figure 4 where the Wasserstein distances between G,, and G are plotted against
increasing sample size n (n < 30000). The error bars were obtained by running the
experiment 7 times for each n. The simulation results under the exact-fitted case match
quite well with the standard n—'/2 rate. If we fit the data to a mixture of k = ko+1 = 4
Gausiian distributions, however, we observe empirically that the convergence rate of
W4(Gp, Go) (thus Wy distance) is almost n~1/% up to a logarithmic term. This result
is much slower than the “standard” convergence rate n~/4 under Ws, should second-
identifiability condition holds. A rigorous theory for weakly identifiable mixture mod-
els such as location-covariance Gaussian mixtures will be reported elsewhere.

5. Proofs of key theorems

In this section, we present self-contained proofs for two key theorems: Theorem 3.1 for
strongly identifiable mixtures in the exact-fitted setting and Theorem 3.2 for strongly
identifiable mixtures in the over-fitted setting. These moderately long proofs carry use-
ful insights underlying the theory — they are organized in a sequence of steps to help
the reader. The proofs of the remaining results are deferred to the Appendices.
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Fig 3: Mixture of location-scale Gaussian distributions, which satisfy first-order identifiablity but not
second-order identifiability condition. Left panel: Exact-fitted setting. Middle and right panels are for
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over-fitted setting by one extra component. Right panel shows that h 2 W22 no longer holds as h — 0.
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Fig 4: MLE rates for location-covariance mixtures of Gaussians. Left: Exact-fitted — W7 =< n=1/2,
Right: Over-fitted by one — Wy =< n~1/8,
5.1. Strong identifiability in exact-fitted mixtures
PROOF OF THEOREM 3.1 It suffices to show that
iy nf {V (o p,)/ W (G, Go) WA (G Gi) < e >0 (

where the infimum is taken over all G € &, (0 x Q).

Step 1 Suppose that (7) does not hold, which implies that we have a sequence

G, = Z Pion sry € Eko(© x Q) converging to Gy in the Wy distance such that

V(pa, ,pgo)/Wl(Gn, Go) — 0asn — co. As W1 (G, Go) — 0, the support points
of GG,, must converge to that of Gy. By permutation of the labels ¢, it suffices to assume

of

that for each i = 1,..., ko, (0", X7) — (67,%9). For each pair (G, Go), let {¢}}
denote the corresponding probabilities of the optimal coupling for the pair (G,,, Go),
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SO we can write:

Wi(Ga,Go) = D a6 — 6% + [1=F — S

1<i,j<ko

Since (07, X%) — (09,%) and G,, and G have the same number of support points,
it is an easy observation that for sufficiently large n, ¢* = min(p},p?). And so,
doini iy = Zfil |p?* — p?|. Adopting the notations that AG? := 67 — 69, AX? :=
¥ — %9 and Ap? = p? — p? forall 1 < i < kg, we have

Wi(Gr, Go)

qu 1867 + 1AST) + > (167 — 051 + (17 = £91)
1#]

ko
S Do PR(IAGE] + [AZT) + |Ap;| =: d(Ga, Go).
i=1

The inequality in the above display is due to ¢7* < p!, and the observation that ||67" —
0911, |27 — X9]| are bounded for all 1 < i, < ko for sufficiently large n. Thus, we
have V (pg,,, pa,)/d(Gn, Go) — 0.

Step 2 Now, consider the following important identity:

PG, (@) = pa,(z ZApz 69, %7) +Zpl 0, 57 — f(x]6,£9)).

For each z, applying Taylor expansion to function f to the first order to obtain
ko

Zpl (07, 57) — (]9, 52) = Zp?{ma"ﬁaf (2]62,52) +

=1

tr <gf( 169, EO)TAZ”>} + Ry (2),

ko
where R, () = O ( Y p?(||Ao7 ||+ + ||AE?||1+52)>, where the appearance of
=1

01 and §y are due the assumed Lipschitz conditions, and the big-O constant does not
depend on z. It is clear that sup,, | Ry, (z)/d(Gy, Go)| — 0 asn — oo.

Denote 4,(s) = 3° [(Aen 77 (e, EO)—Ftr(af (02, z%%znﬂ and

k
By (z) = Y Aplf(x|6?,%9). Then, we can rewrite
i=1

(Pc, (%) = pay (2))/d(Gn, Go) = (An(2) + Bn () + Ru(2))/d(Gn, Go).
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Step 3 We see that A, (x)/d(G,,Gyo) and B, (z)/d(G,,Gp) are linear combina-

tions of the scalar elements of f(x]6,%), g—g(xw, Y) and %(Iw’ %) such that the

coefficients do not depend on x. We shall argue that not all such coefficients in the
linear combination converge to 0 as n — oo. Indeed, if the opposite is true, then the
summation of the absolute values of these coefficients must also tend to 0:

ko
{Z A7 + P2 (1802 + ||Azz'||1>}/d<Gn,G> ~0
=1

Since the entrywise ¢; and 5 norms are equivalent, the above entails { Zfil |Ap? |+

pr(||AGT] + ||AE?||)}/d(Gn,GO) — 0, which contradicts with the definition of

d(Gy,Gp). As a consequence, we can find at least one coefficient of the elements of
A, (2)/d(Gy, Go) or By(z)/d(Gy, Go) that does not vanish as n — co.

Step 4 Let m,, be the maximum of the absolute value of the scalar coefficients of
A (z)/d(Gp, Go), Bn(x)/d(Gr, Go) and d,, = 1/m,,, then d,, is uniformly bounded
from above for all n. Thus, as n — oo,

An(@)/d(Goy Go) _Z 579 (alet. z°>+tr<3 (x]69, 50)7 )
dpBp(2)/d(Gp, Go) Zal f(x]62,%9),

such that not all scalar elements of «;, 8; and ~y; vanish. Moreover, ; are symmetric
matrices because X} are symmetric matrices for all n, . Note that

dnV (PG, Pay)/d(Gn; Go) = /dnlpcn(l’)*pGo(x)l/d(GmGo)

= /dn|An(x) + Bo(2) + Ra(2)|/d(Gp, Go) dz — 0.

By Fatou’s lemma, the integrand in the above display vanishes for almost all «. Thus,
for almost all =

Zalf ()69, %) + B 80 (x|90 YY) + tr ((‘3 ()69, xH7T ) =0.

By the first-order identifiability criteria of f, we have a; = 0,3; = 0 € R and
vi =0 € R%%% forall i = 1,2, ..., k, which is a contradiction. Hence, (7) is proved.

5.2. Strong identifiability in over-fitted mixtures

PROOF OF THEOREM 3.2 (a) We only need to establish that

lim inf {Sup|p(;() pGO(x)|/W22(G,G0):Wg(G,Go)Se}>O. (8)
e=0Ge0,(0) | zex
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The conclusion of the theorem follows from an application of Fatou’s lemma in the
same manner as Step 4 in the proof of Theorem 3.1.

Step 1  Suppose that (8) does not hold, then we can find a sequence G,, € Oy (O)

tending to G in Wy, distance and sup |pg,, (z) — pg, (2)|/W5(Gpn,Go) — 0 asn —
TEX
oo. Since k is finite, there is some k* € [ko, k] such that there exists a subsequence of

G, having exactly k£* support points. We cannot have k* = kg, due to Theorem 3.1
and the fact that W2 (Gn,Go) SW1(Gp, Go) for all n. Thus, kg + 1 < k* < k.

Write G, Z pior sy and Go = Z s (69,20 Since Wa(Gn, Go) —
i=1 '

there exists a subsequence of GG, such that each support point (69, 229) of G is the limit
of a subset of s; > 1 support points of z,,. There may also a subset of support points of
G, whose limits are not among the support points of Gy — we assume there are m > 0
such limit points. To avoid notational cluttering, we replace the subsequence of G, by
the whole sequence {G,, }. By re-labeling the support points, G,, can be expressed by

ko+m s; ko+m
0
G, = E § P30 ”7271)—>G0— E Pi0(p0 50y
=1 j5=1 =1

where (075, %7) — (07,%7) foreach i = 1,..., ko +m, j = 1,...,s;, p) = 0 for

i < ko, and we have that p}' := ijl Py — p? for all i. Moreover, the constraint
ko+1< ij{m s; < k must hold.

We note that if matrix X is (strictly) positive definite whose maximum eigenvalue
is bounded (from above) by constant M, then ¥ is also bounded under the entrywise
{5 norm. However if X is only positive semidefinite, it can be singular and its £5 norm
potentially unbounded. In our context, for ¢ > kg + 1 it is possible that the limiting
matrices %! can be singular. It comes from the fact that the some eigenvalues of 27, can
go to 0 as n — oo, which implies det(%};) — 0 and hence det(X)) = 0. By re- labehng
the support points, we may assume without loss of generality that %9 Kot1s - - 220 Ty
are (strictly) positive definite matrices and X9 kotmyt1s - - , X9 kotm Are smgular and
positive semidefinite matrices for some m; € [0, m]. For those singular matrices, we
shall make use of the assumption that for each # € O, except a finite number of values
of x € X, we have R %izlglﬁof(a:w,E) = 0 and the fact that 07 as ko +m1 + 1 <

1

1 < ko + m will converge to at most m — m; < k — kg limit points: accordingly,
for all = except a finite number of values in X, f(z[0};, ¥;) — 0asn — oo for all
ko+mi+1<i<ky+m,1<j<s;. Here, wedenote f(z|69,%9) = 0 for all
ko+mi+1<i<kyg+m.

Step 2 Using shorthand notations A9} := 607 — 60, AY .= X7 — ¥ for i =

wko+miandj=1,..., s;,itis simple to see that
ko+mi1 s ko+m
(Gn7 GO) N d(Gnv GO Z sz] ||A9 ||2 + ||AZ Z |pz p’L

=1 j=1
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because W2 (G, Go) is the optimal transport cost with respect to £3, while d(G,, Go)
corresponds to a multiple of the cost of a possibly non-optimal transport plan, which
is achieved by coupling the atoms (67, %7;) for j = 1,...,s; with (67, %?) by mass
min(p?, p?), while the remaining masses are coupled arbitrarily. From the assumption,

sup |pa, (z) — pa, (z)| /W3 (G, Go) vanishes in the limit, it also implies that
TEX

sup Ipc.,. (x) — pay (2)]/d(Gr, Go) — 0.
fAS

For each =, we make use of the key identity:

ko+my1 s

SN (f(alen, S5 — f(a]6?,59))

PG, () — pa, ()

=1 j=1
ko+m1 ko+m S

D DR AV ICI D R WD W F A CLERY
i=1 i=ko+mi1+1j=1

= An(x) + Bp(z) + Cp(x). )

Step 3 By means of Taylor expansion up to the second order:

ko+mi s; ko+my
= > D (6, =) — f(«167,57) Z ZAM 0 (09, 57)
=1 j=1

+ R (),

where @ = (a1, a2) such that a1 + a2 € {1, 2}. Specifically,

AT (09,50) = Zp” 205)" 9 i, 22,
Ap,(09,59) = Zp tr (2 (zj00, SHTASE ),
0,1\Y2» “4 iJ oy

( 109, 59 AbL:

25

n 0 0 _
Az,o(eiazi) - *Z zj 392

T
Apo(67,59) = prU tr <862 (tr (82( 169, ZO)TAZ")) AZZ),
of
A7 (69,59) = Z (aor)T { (t (az( 169, EO)TAE”)H

In addition, R, (z) = O(Zkﬁm1 Soiiy o (|AGE ]P0 + |axy ||2+5)) due to the

second-order Lipschitz condition. It is clear that sup, |R,(x)|/d(Gn,Go) — 0 as
n — oQ.
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Step 4 Write D,, := d(G,,Gy) for short. Note that (pg, () — pg,(x))/Dy is a
linear combination of the scalar elements of f(x|f, %) and its derivatives taken with
respect to 6 and X up to the second order, and evaluated at the distinct pairs (6, X9) for

i=1,...,ko+m.(To be specific, the elements of f(x|6, %), 8f (x|9 %), of —=(z0,%),

0% f 0 f o0 f O*f . o
892( z|6, %), 502 ( 0,%), 752 ( |0,%), and OGGZ(zw’Z))' In addition, the coeffi-

cients associated with these elements do not depend on z. As in the proof of Theo-

rem 3.1, we shall argue that nor all such coefficients vanish as n — oo. Indeed, if this

is not true, then by taking the summation of all the absolute value of the coefficients
2 2

0
associated with the elements of 89? asl <1l <d;and —— N

uv

for1 < u,v < ds, we

obtain

ko+mi1 s;

Z ZPU IA01* + [[AZ5][*)/ Dn — 0.

ko+m
Therefore, > |p@' —p9|/D, — 1asn — oo. It implies that we should have at
i=1
least one coefficient associated with an element of f(z|6, ) (appearing in B,,(x)/ D,
Cn(z)/Dy,) not converging to 0 as n — oo, which is a contradiction. As a conse-

quence, not all the coefficients vanish to 0.

Step 5 Let m,, be the maximum of the absolute value of the aforementioned coeffi-
cients. and set d,, = 1/m,,. Then, d,, is uniformly bounded above when n is sufficiently
large. Therefore, as n — oo, we obtain

ko+my
dpBn(x)/Dn  — Z ;i f(x]69,59),

ko+my k0+m1 f
0 U T 0 0
dZA (6°,%°)/D,, 425189“02)

=1

k0+m1 ko+m1 8f
dy Z A (09,5)/Dn = > tr(a (2169, 5T )

i=1
ko-l-’rn] ko+m1 s; a f
0 +O0 T 0 y0
dn, Z Ay 0(0:,%7)/ Dy — Z ZV”@HQ (x16;, 25 )vij,
i=1 j=1
ko+m1 ko+mi s; af T
h Y ALOEID. 5 3 Y ( (10 (L etop 0705 )) mj>,
i=1 j=1
ko+mq ko+mi1 s;
0 +0
dn, Z AT1(0;,%7)/Dn — ; ZVU [89 (tr<az(z|9 % 771]>>]
where a; € R, G, vi1,...,Vis;, € R, YisMils - - -, Nis; are symmetric matrices in

R%=*d2 for all 1 < 4 < ko +my,1 < j < s;. Additionally, d,,C,(z)/D,, =
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D! Z Z dnpi; f ([0, 27;) — 0 due to the fact that for almost all =,
i=ko+mi1+1j=

(95|¢9”7 Z) — Ofor all kg +m1 +1 < i < kg+m,1 < j < s; and the fact
that dnp”/Dn <lforallkg+m;+1<i<ky+m,1<j<s;. Asaconsequence,
we obtain for almost all x that

ko+m1

0 50 0 0 0 0

> {azf(xw %0 + 62 5 x|9 %9) +Z v 892 x|9 SO +

i=1

tr(af( 1609, T >+22 v [aa( (af(xwo >N 7Ty ))] +

Zt< ( (‘”meo )T %))ij)} = 0.(10)

Now, in this paragraph we will argue that not all coefficients in (10) go to 0 as
n — oo. There are two scenarios. Case 1: If m,,, the maximum of all the coefficients
considered in Step 4, does not lie in the set {pZ/Dn} askog+mi+1 <i<kyg+m,1<
j < s; for infinitely many n. Then, it indicates that at least one coefficient in (10)
should be 1. Our observation is proved. Case 2: Otherwise, m,, lies in the set { Dij / Dn}
as ko +mi+1 < i < kg+m,1 < j < s; for infinitely many n. This means
that we can find two indices i* € [ko + m1 + 1,ko + m],j* € [1,s;+] such that
pl* «/D,,. Assume now that all of the coefficents in (10) vanish to O. Therefore

d |pz =PI/ D = [P} —pY /D j» — Oforall 1 < i < ko+m;. Since we have pi. ;.
ko+m S ko+m1

DOREED DF D DI e

' 0 ko+my 0
leads to [p}' — pil/ > |p? —pil = 0

i=ko+mi+1j=1 i=1 i=1
forall 1 < i < kg + my as n — oo, which is a contradiction. Our observation is
proved.

Therefore, at least one coefficient in (10) is different from 0. However, from the
second-order identifiability of {f(x]0,%),0 € ©,% € Q}, we obtain o; = 0,5; =
Vit = ... = Vs, = 0 € Rd17’72‘ =1n1 = ... =N, = 0 € Ré2%d2 for al]
1 < ¢ < kg + mq, which is a contradiction. This concludes the proof of Eq. (8) and
that of the theorem. A

(b) Recall Gy = XO: p?d(g?ygg). Construct a sequence of probability measures G,

i=1

ko+1
having exactly ko + 1 support points as follows: G,, = > pid(er sn), where 07 =

1 1 1 1
00— 21, 07 — 00+ ~1, X = 30— 17, and X7 = X0 + I, . Here, I
1= a0 1+nd1 1 1= o ddy and 2 1+nd2 ere, 1q,

denotes the identity matrix in R%*?2 and 1,, a vector with all elements being equal to
1. Tn addition, (07,57, ) = (69,%9) forall i = 2,...,ko. Also, p? = p} = %
and pl' , = p? forall i = 2,..., k. It is simple to verify that E,, := W{ (G, Go) =

(pl) 97) 90 on 90 Z”—ZO E”—ZO ro__ (p(lj)r d d Ti
(I I+1103 = G2l + 1127 — X1 +][23 -20l)" = == (Vdi+vda)"—
1

nr’

i=1

X
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By means of Taylor’s expansion up to the first order, we get that as n — oo

Vie. ) = [ Z S (A6 (A el 5 + Ba()| d
i=1 aq,a2
= [ Im@) e,
reX
where oy € N4 ay € N%*% jn the sum such that |oq| + |aa| = 1, Ry(x) is

Taylor expansion’s remainder. The second equality in the above equation is due to
2
> (Af7)* (AXT;)** = 0 for each oy, vy such that |on| + |az| = 1. Since f is

i=1

second-order differentiable with respect to 6, ¥, R;(x) takes the form

Z Z (AG)(AXT,)*2 x

i=1 |a=2 @

1
0 n 0 n
x/ aemaza ——— (2|60 + tAG7,, 20 + tAST,)dt,
0

where o = (a1, a). Note that, Z |AT |41 |AST |2 = O(n~?). Additionally, from

2f
001 9y 2
lows that [ |Ry(z)] dx = O(n’Q). Soforany r < 2,V (pa,,pa,) = o(W{ (Gy, Go)).

This concludes the proof.
(c) Continuing with the same sequence GG, constructed in part (b), we have

(Pc., () — PG, (
h (pGLapGo) =50 / 1’|9(1),28 / f $|9?a20

where first inequality is due to \/pc,, (2) +v/Pc, () > /P, () > /P f (2|69, %7)
and the second inequality is because of Taylor expansion taken to the first order. The
proof proceeds in the same manner as that of part (b).

the hypothesis, sup / ’ (z]0) + A0, B9 + AT |dr < oo. It fol-

te(o, 1]
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APPENDIX I

In this appendix, we give proofs of the following results: Theorem 3.4 regarding the
characterization of strong identifiability in mixture models with matrix-variate parame-
ters and most of the remained propositions and corollaries. For the transparency of our
argument, the proofs for Theorem 3.4 are restricted to only first-order identifiability.
The proof techniques are similar for the second-order identifiability.

6. Proofs of other results
6.1. Extension to the whole domain in exact-fitted mixtures

PROOF OF COROLLARY 3.1 By Theorem 3.1, there are positive constants € =
G(Go) and Cy = CQ(G()) such that V(pg,pGO) > CoWl(G, GO) when W; (G, Go) <

e. It remains to show that inf Vv , W1i(G, Gg) > 0. Assume the
GeG:W1(G,Go)>e (pc pGo)/ 1( 0)

contrary, then we can find a sequence of G,, € G and W1(G,,Go) > € such that
V(pa,,pac,)
Wl (Gn7 GO)
W1 (G, Gp) > e such that G,, — G’ under Wy metric. It implies that W (G,,, Go) —
Wi (G, Gp) asn — oo. As G' # Gg, we have nlingo W1(Gr,Gp) > 0. As a conse-
quence, V (pa,,,pc,) — 0asn — oc.

From the hypothesis, V(pg,,, per) < C(0, QW (G, G'), so V(pg, ,pa') — 0
as W1 (G, G') — 0. Thus, V(pgr, pe,) = 0 or equivalently pe, = pg almost surely.
From the first-order identifiability of { f(z|0,X),0 € ©,% € Q}, it implies that G’ =
G, which is a contradiction. This completes the proof.

— 0 asm — oo. Since G is a compact set, we can find G’ € G and

6.2. The importance of boundedness conditions in the over-fitted setting

ko+1
PROOF OF PROPOSITION 3.1 We choose G,, = UZ pion sy € Or(0 x Q)
i=1

such that (67,%7) = (09,%9) for i = 1,...,ko, 0 .1 = 69, 3¢ 1 = X9+
1
XRIT) | here o = 5 Additionally, pf = p — exp(—n), i = p{ for all
nOt
2 <i < ko, and py ;= exp(—n). With this construction, we can check that
WB(G, Go) = d3'? //n. Now, as h2(pc., , pay) < V(pa, , pa, ). we have

2y/n
) h?(pa.pc,) S exp (—n+ d;£> X

2

ex _—
p(Wf(Gn,Gw
/ P60, 50 1) — F(]62, 59)|da,

zeX

which converges to 0 as n — co. The conclusion of our proposition is proved.
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6.3. Characterization of strong identifiability

PROOF OF THEOREM 3.4 We only present the proof for part (a) and part (b). The
proofs for part (c) and (d) are somewhat similar and deferred to the Appendix III.

(a) Assume that for given k£ > 1 and k different tuples (61, %1, m1), ..., (0k, Xk, my),
we can find a; € R, B; € RY, symmetric matrices 7; € R%*9, and n; € R, for
j=1,..., k such that:

- 7 Of of .
Zajf(ﬂf\ej,zj,mj)Jrﬂj %(x|9ja2jamj)+tr 872( |05, %5,m;)" v

0
+ﬁja%(ﬂf|9j’zj,mj) =0,

Jj=1

Substituting the first derivatives of f to get

k

Z{O‘3+((3})T(9€ —0;) + (x = 0;) V(@ —0;) | x

)
o075 ej>]Mj_1 Soflonlle — 0,75 (e~ 0]} x

o (~[@-0)rsr e -0)] )
where

2a;m;T(d/2) — myT(d/2) tr(S5 ;) + 2n;T(d/2) (1 - Q:%@b <d>)

/

“ = 27021 (d] (2m;))|%; /2 ’
g 2m?21(d/2) 518, 1 — m3T(d/2) 51y 51 and
I R () (2my ) |52 70 T AR (d ) (2my) )5, 2 T

’ —mjnjl“(d/Z)

= FART (A (2my)) [,

Without loss of generality, assume m; < mo < ... < my. Leti € [1,k] be the
maximum index such that m; = m;. As the tuples (6;, X,, m;) are distinct, so are the
pairs (61,%1), ..., (6;,Z;). In what follows, we represent « by x = x12’ where z; is
scalar and z’ € R¢. Define

a; = (&)’ b= [(B)T —20]v]] 2, e = 0] ~i6: — (B))"6;,

di = (.’b/)TZ;l(E/, €, = —2(£E/)TE;191', fz = 9?2;192
Borrowing a technique from [26], since (61, 31), . . ., (67, X;) are distinct, we have two

possibilities:

Possibility 1 If ¥; are the same forall 1 < j < i, then 0,. .., 0 are distinct. For
any i < j, denote A;; = 60; — ;. Note thatif o' ¢ | ] {ueR?:u"A;; =0},

1<i<j<i



N. Ho and X. Nguyen/Convergence rates of parameter estimation 32

which is a finite union of hyperplanes, then (z/)761, ..., (2')T 0; are distinct. Hence, if
we choose 2/ € R outside this union of hyperplanes, we have ((z')70y, (z)TX12"),
oy ()05, ()T S22 are distinct.

Possibility 2 If X; are not the same for all 1 < j < 4, then we assume without loss
of generality that ¥1,...,3,, are the only distinct matrices from Xy, ..., X7, where
m < . Denote §;; = ¥; —¥;a51 < i < j < m, then as z’ does not belong to

U {ueR?:u’§;u =0}, we have (2/)T%2/,..., (2/)T'S,,2" are distinct.
1<i<j<m

Therefore, if 2’ does notbelongto ~ |J  {u € R?: u”§;;u = 0}, which is a finite
1<i<j<m

union of conics, then we have ((2/)70y, (2/)TS12"),...,(2") O, (2)TE,,2") are
distinct. Additionally, for any §; where m +1 < j < 4 that shares the same ¥; where
1 < i < m, using the argument in the first case, we can choose x’ outside a finite
hyperplane such that these (z)76; are again distinct. Hence, for z’ outside a finite
union of conics and hyperplanes, ((z)70y, (z/)T312"), ..., ((2/)T 0, (/)T S:2') are
all different.

Combining these two cases, we can find a set D, which is a finite union of conics
and hyperplanes, such that for 2’ ¢ D, ((/)7 6, (/)T S12), ... ((2")7 65, (2/)T'S52")

are distinct. Thus, (d;, e;) are different as 1 < ¢ < 4.

Choose d;;, = min_{d;}. Denote J = {1 <i <i:d; =d; }.Choose 1 < iy <
1<i<i

such that e;, = max {e;}. Now, we define for all 1 <4 < k that
1€

Al(ml) = 042 + (aﬂ?% + b1 + Ci)(di:L‘% +e;xy + f,‘)mi’_l + 7’]1/- IOg(dZ‘.’JS% +e;xry + fz)
Multiplying both sides of (11) with exp —(d;, 2% + e;,x1 + fi,) ™2, we get
Aiy (1) + Z Aj(z1) exp |:(di2x% +ei,x1+ fi,)"2 —
J#i2
(djai +ejar + f;)™ ] = 0. (12)
Note that if j € J\{Zg}, dj = diz, mj = My,, and €5 > €j,. So,
(diy? + €1 + fin)™2 — (dja} + ejz1 + ;)™ < —ay as x7 is large enough.
This implies that when 21 — oo,
Bi(z1) := Z Aj(x1) exp {(dhx% +ei,r1 + fi,)™2 —
i#I\{i2}

(djz +ejar + f)™ | — 0.

On the other hand, if j ¢ Jand 1 < j < 4, then d; > d;, and m;, = m,;. So,

(diy + €1 + fin) ™2 — (djaf + ejz1 + £;)™ < —xfm” as x1 is large enough.
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This implies that when z; — oo,

Bs(x1) := Z Aj(fl)eXP[(diﬂ%-i-eile+fi2)mi2 _
igd,
1<5<s

(djzf +ejar + f;)™ | — 0.

Otherwise, ifzj > i, thenm; > my,. So, (di,x3 + e x1 + fi,)™2 — (d;a? + ejaq +
fi)mi < —xi™ . As aresult,

Bs(1) =) Aj(a1) eXp[(dizxf +epnpx1 + fi,)™

J>i
(dj$§+€j$1+fj)m’} - 0.

Now, by letting 1 — oo,

> Aj(x)exp {(diﬂ% + et + fiy)™2 — (djat + ejan + fj)mj] B
JFi2

Combining (12) and (13), we obtain that as 1 — oo, A;,(x1) — 0. The only possi-
bility for this result to happen is a;, = b;, = 1/, = 0. Or, equivalently, (z/)7~] 2’ =
[(B)T —20L~] ] 2" = 0.If v}, # 0, we can choose the element 2’ ¢ D lying outside
the hyperplane {u € R? : u”'y] u = 0}. It means that (z')”~] 2’ # 0, which is a con-
tradiction. Therefore, 7/, = 0. It implies that (3],)"2’ = 0.If 3, # 0, we can choose
a’ ¢ D such that (8],)"x’ # 0. Hence, 3], = 0. With these results, o, = 0. Overall,
we obtain o, = B =~ =n) = 0.Repeating the same argument to the remaining
ters o, B, A1 we get o, = B = ' — it = 0 for 1 < j < k. Itis al
parameters a7, 5,7, 15, we get o = 8 = 7 =y = 0 for 1 < j < k. Itis also
equivalent that oi; = 8; = y; = n; = 0 forall 1 < j < k. This concludes the proof of
part (a) of our theorem.

(b) Consider that for given k¥ > 1 and k different pairs (01,31), ..., (0, Xk ), where
0; e R, %, € S;'J’ forall 1 < j < k, we can find a; € R, 8; € R%, and symmetric
matrices v; € R?*? such that:

- of of
Zajf(ij, Zj) + ﬂf%(l‘wj, Zj) + tr(@i(mwﬁ Zj)T'yj) =0. (14)
j=1

Multiplying both sides with exp(it” z) and taking the integral in R, after direct calcu-
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lations, the above equation can be rewritten as

: [/(a exp(i(Z;*1)"x)  exp(i(S}*1) ) (8)

p (v + ||z]2) /2 W + [z 2) 22 +
1/2 T
exp(i(X;""t) Tw)a My L
Wt lap)era )de| ettty = 0,13
o7
where o = a;j— u %)’5/ (V;d)z_l/Qﬂj,ande: V—;dZ{me{l/Q.

To simplify the left hand side of equation (15), it is sufficient to calculate the fol-

exp(itT x) de. B — exp(itTx)(8) > d
S el el

lowing quantities A = / (

exp(it’z) TMx , d s dxd
and C = / o+ (V+d+2)/2dm, where 5’ € R® and M = (M;;) € R**<.

In fact, by using an orthogonal transformation 2 = O.z, where O € R?*9 and its

t t
first column to be (— . .... —“)T. we can verify that exp(itTz) = exp(i||t]|z1),
el el g

|lz||* = ||2]|%, and dz = | det(O)|dz = dz and then we obtain the following results:

expl(i[t]|z1)

a= Wt peran®
R

. 1
/exp(thHzl)/.../ (,/_|_HZ||2>(u+d)/2dzddzd_l"'dzl
R R

R
CrA([[t]]),

1 , exp(i|t'|2) ,
where C7 = H/H_Z)Wdzand/h (" / 0t 22) (VH)/deforanyt S

R
R. Hence, for all 1 <j<k
1/2
expli(S}/1) ) e
[ o et = G (153 ), 16
d

Turning to B and C, by the same line of calculations we obtain

- d
Z exp(ittz1)z
Onf; /1/+||z|| i = Z;Ojlﬂé C2 Ax(1t]])
R4 Jj=

Ca(B) Tt Ax(J[¢])
[l '
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1 exp(ilt’'|z)z
where CQ H / 1+ Z2)(V+2+j)/2 dz and AQ( ) / Wdz for any

J=2p R
t' e R.
d
C = GO M)Al + Z 710j101) (C2 A3 ([|t]]) — C3Ax([|t]]))
j=1
d
1
= O30 M) a1 + g (3 Mt (o (1) — Cor(141).
j=1 il
22 b 1
where we can define C3 = / Wdz 1_[3 = dz and
R J=

exp(ilt’|z)z? .
As(t') = /W)('Wri%)ﬂdz for any ¢’ € R. Thus, forall1 < j <d

dx = . a7

/exp< i) ) (B e CaB)TE A (11254
(v + l2l|2) 422 ]

/2 T
exp(i(X; ) x)a Mjx 1 P rel/2 1/2
dx = M? S8
/ v + ||z[[2) @+ 2 z ||E]1'/2t||2(; a2 tu[X ) %
d .
x (CoAs(|2 %)) — Cs AL ([23%81)) + C5 (37 M) AL(I=%H),  (18)
=1

where M7, indicates the element at u-th row and v-th column of M; and [Zl/ 2 t]w

simply means the u-th component of X j/ ’t.
As a consequence, by combining (16),(17), and (18), we can rewrite (15) as:

a 1/2 ( =0T 1/2 S 1/2
Z[aA (120 + o2 A5l + a3 DA} ) +
=%
125 4ul=; %40 12 12 .
o ) (CAsIZ )~ a5 [ ey = o

Define t = t,t, where t; € R and ¢’ € R?. By using the same argument as in the
case of the multivariate generalized Gaussian distribution, we can find D to be the finite
union of conics and hyperplanes such thatast’ ¢ D, ((t)T 01, (t)TSqt'), ...((#") T 0y, ()T Sit")
are pairwise distinct. By denoting 05 = ()76, o; = (t')7'S;t', we can rewrite the
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above equation as:

k t (El/2t/)T / d
> {a§A1(0j|t1| )+ C2 e 2 As (o)) + Ca(Y_ M) Ai(oylta]) +
j=1 =1
[21/275]”[2;/%']” »
(Z . )(02A3(0j|t1|) —CgA1(0j|t1|)] exp(ifjty) = 0.
J
Since Az (o;|t1]) = (i|t1])A1(o;|t1]), the above equation can be rewritten as:
k d 1/2,1m 1w1/2,
Pab t]u[Z t'To
> [(a;-—l—C’g(ZM” CS(Z 5 j >)| X
J=1 =1 u,v J
LB,
x Ay (a]t1]) +C2(Z o )AS(thll) +
u,v J
(Zl/2t’)T /
Cg(itl)jajAl(O']|t1|):| exp(i@é-tl) = 0. (19)
J

As v is an odd number, we assume v = 2] — 1. By using a classical result in complex
analysis, we obtain for any m € N that

+/°°exp(i|t1|z> g, Zmep(-|h|va - 1) i <2m —1 —j) (2[t:|v20 - 1)77!
(2+v)m " (2y20—1)2mt m—j (j -1

e j=1

-1
It means that we can write A (t1) = Cypexp(—|t1|v20 — 1) > ay|ti|*, where Cy =
o (2 —u—2\ (2V2A - 1)"
v -z " T \l—u—-1 w

Simultaneously, as As(t1) = A1 (t1) — u/ : exp(ilt1|2)

—————/ 2z, We can write
v+ 22)(v+3)/2

l
A3(t1) = 04 exp(—|t1|\/ 2] — 1) Z bultllu,
u=0

where b, = {(21—u—2)i(21—u)] w as 0 < u <1[—1, and
u!

l—u—1 l—u

5 1(2v20 - 1)
= Ve T

1 I . It is not hard to notice that ag, a;_1,b; # 0.

Now, for all ¢; € R, equation (19) can be rewritten as:
k -1 1
> (% +6; (z‘tl)) PR buay|t1|U] X
j=1 u=0 u=0
exp (it@; - qMHﬂ) = 0,
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, a B, (BT
where a; = o +C3(3 M) —C5(>. M} 3 . B; —C,—d 2
=1 u, gj 9j
B A [21_/2t/]u[21_/2t/]v
and v, = Ca(Y M J 5 J ). The above equation yields that for all
w,v 03
t1 >0

k -1

j=1

u=0

exp (itﬁ; —oV20 — 1t1> = 0.

(a +[3 (itq )Zaua Y +’yj Zb gutu]

u=0

X

(20)

Using the Laplace transformation on both sides of (20) and denoting ¢; = 0;v/2l — 1—

1'9;- as 1 < j < k, we obtain that as Re(s

wla, 10“
(s +cj)utt

u l
j . "
(s + cj)utt +i6; )

u=1

" u'b oY
u-g
Y. - - J
! 1;) (S Cj)u+1

Without loss of generality, we assume that 07 < 09 < ...

that

u. By multiplying both sides of (21) with (s + ¢1)*1, as Re(s) >

) > Joax, {-o;v20-1}

1

+

= 0. 1)

< oy. It demonstrates

—01V20—-1= max {—O'j\/Zl — 1}. Denote a/, = ayoj and bl = byoy for all
<j<

—01 \/ 2l — 1 and

s — —c1, we obtain |if3] la} | + " bll'bl | = 0 or equivalently 3, =, = 0 since
a}_;,b # 0. Likewise, multiply both sides of (21) with (s + ¢;)' and using the same

"

argument, as s — —cj, we obtain al = O Overall, we obtain al = 51 =~ =0.

Continue in this fashion until we get a
equivalently a; =

= ﬁj/ = % =0foralll < j < kor
Bi = —Oforalllgjgk
As a consequence, for all 1 < j < k, we have

d /24 1/2 /2T g
BT (7)) 8]
o a3 ) - oS g B o B o
=1 J J
PO /2 2 12y /2
and 3~ M}, ———"~ = 0.Since Y M, [Z} ¢, [2)?Y), = ()T P Mz Pt =
i u,v
(t")T~;t, it is equivalent that
d
o + C3( ZM T21/2B =0, and ()Tt = 0.
=1
By the same argument as that of part (a), we readily obtain that oz} =0, ,8;» =

0 € RY, and v =0¢€ R?*d_ From the formation of a;., B3, it follows that aj =0,
Bj =0¢€ R?, and v =0¢ R?*4 for all 1 < j < k. We achieve the conclusion of

part (b) of our theorem.
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APPENDIX II

For completeness in this appendix we verify the statements made in Examples 2.1, 2.2,
2.3, and 2.4. The proofs are long but elementary. We start with the following definition:

Definition 6.1. We call density function f : R — R* to be a type I density function
with parameter oy > 1 if for any bounded subset © € R%, we can find a positive
constant C(©) such that h?(f(x —61), f(z—02)) < C(O)]|01 — 02||** forall 61,05 €
O.

Lemma 6.1. (a) If f(z) = Cqexp(—|z||?**) for all x € R, where o > 1 and
c al'(d/2)
/2T (d/(2a))’

(b) If f(x) = C, (v + ||z||>)~“*9)/2 for all x € R, where C,, =

then f is a type I density function with parameter ay = 2.

T((v+d)/2)v"/?
L(v/2)md/2
d>1,v >0, then f is a type I density function with parameter o;; = 2.

Proof. (a) Denote § = 6 — 0. We can find M = M(O) such that |0z < M.
We need to show that h%(f(z + ), f(z)) < C||]|* for all § < M, where C and
o are some positive constants. Let D = {z € R?: ||z + || > ||z||}. We can write

R2(f(lle + 611%), £(llz]]*)) as

)
2 - 2 - X
W@+ 0), (@) = Ca | Sy eenialze) Y

:L.+92a x2a 2
MR G ))

Rd

—c. [ < 2
aD exp ||x+9||2“)exp(llx||2°“)

_|_0 2 2 2
(e ™55 el
+C/ de.  (22)

exp([|lz + 0]]2) exp([lz[[>*)

dx +

$+9 2a 2a 2
(e — e 215
Denote A = / dx and

exp([|z + 0]]>*) exp([lz][>*)

2a 2a 2
(eXp(||x+29|) exp(”!))
B =
/ exp([|x + 0]**) exp(|z[|**)

dx. We obtain

exp([|]**) exp([]|**)

e (o3 2
<1exp(x”2 — |z +6)? )) o
1 9 [ «
a- | 2 PR ICES s o s
D D



N. Ho and X. Nguyen/Convergence rates of parameter estimation 39

where the last inequality is due to 1 — exp(—z) < x as > 0. By the mean value
theorem, by denoting g(x) = ||z/|2®, which is differentiable in R, we can find ¢, €
(0,1) such that

dg
%(cm(m +0)+ (1 - cz)x)TG

20|60l co (2 +0) + (1 — co)af|**
20|01l ([l] + 161>
2022720 ([f=[**= + [|0]** 7).

[l + 017 — [|=]|**|

INIACIA

Combining the above inequality with (23), we obtain

20—1 20—1\2
(el + log1)?

|2a

A S a224a—4||9||2/

&4
2« )

exp(

For each non-negative real number a, by means of spherical coordinates in R%, we can
verify that

21 T T 00
l|z[|* // //
/exp ||x||2a exp(R2>) dV) < oo.
Rd 0

where d(V) = R !sin(¢1)? 2 sin(po)?3... sin(pg_2)dRde...dpg_1.
(2" + o)1)

[}

As a consequence, since ||0|| < M, we have / S dx < M, for
S ep(lalP)
some positive constant M. This implies that
A< o224 |10)17 = O(16)1%). (24)
By the same argument,
B =0(||0]*). (25)

Combining (22), (24), and (25), we achieve the conclusion of part (a) with oy = 2.
(b) Using the same argument as that of part (a), we can write h?(f(z + ), f(z)) as

(v + o+ 0]2)0+D/A — (4 |l2]2)+D/1)
[(v + [l + 6]12) (v + [J]2)) ¥+

B2(f(z +6), f(z)) = C, /

D

9|12y (v+d)/ 23 (v+d)/4) 2
o, [ Ll s 0PI [P0 o

De (v + ||z +0]2)(v + ||xH2)](u+d)/2

dz and

Denote A’ = / (v + lz + 02 H /4 — (v + 2] )@ +/4)?

2 (v + [l + 0]J2) (v + ||]|2)] TP/
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dz. Then,

#= | (7l + OP) % — o+ o) 0%)°

L e+ 01w+ [l )t

A’=/(<v+ |z + 60]2)"+ — (v + |l2]2)*+)* /E da,
D
where = (v + [l + 0]) /2 + (v + [[2]2)¢+0/2)* (v + [l + 0]]2) 4/
+ (v + |22 D2 [ + [z + 0]2) (v + al|2)] P2, Note that E > (v+ |z +

02)2¢ D (v + [l[|*)¥*+9/2, and so

/ (v + o +0]2)+ — (v + ||z %) +4)
(v + [|o + 0]]2)20+d) (v + [|z|2) (v+d)/2

2
1— <’/+”x2>y+d
v+ |[lz+ 6]
dx

N / (v + [|[|?) )72
D

A da?

Asz € D, wehave v+ ||z||> < v+ ||z +6||*. Additionally, since v +d > 1, by means
of Bernoulli’s inequality,

2 v+d 2 2\ v+d 2 2
(el Y™ (BB LY e o

v+ |z +0|? v+ |z +0|? = v+ |z + 0]
Hence,
2
PPy R 3 S—
D (v + [lz + 0122 (v + [|z]|2) /2
Notice that
d o d 2
097» + 20;x; 2 97- + 0;2;
o 02 — el _ ol + 207 _ 25 . Gt
v+ lz+ 0|2 v+ |z + 02 d - d
| | | [ VS (4 0:)2 VS (s 4 6))?
i=1 i=1

ZM
-V + (z; + 91‘)2'

2|67 + iz 0il|wi + 0; 0; 0> — |||
Since 105 + x|2§| i + |:‘ |,ityieldsthatw_
A R v 0]
19l _
||0]|- Hence,
f f
d(v + d)?

’ 1
4= /(V+||gc|| 2w+ zdz | 0] = O(||o]*). 27

14
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By a similar argument, we also have

2
z|? — [l= +6]]%)
B/<V+d2/ (H dl‘
= ) 2 (v +||z]|2)2(v + ||z + 0]|2) v +d/2
2 _ 2 _opT
PO e it e . ] 4 N I P
v+ |z v+ =2 T 2yl VY
+d)? 1
B/ < (V / d ) 2 _ o(llo 2 ) 28
< e et | 1917 =000P). @8
Combining (26), (27), and (28) concludes the proof of part (b) with a; = 2. O

Definition 6.1 concerns with location parameters. The following definition helps to
deal with the covariance matrices:

Definition 6.2. We call function f : R? x S;'+ — R to be a type II density function
with parameter oy > 1 zf/f(a:, Y)dx =1 for any ¥ € S;"" and for any set ) =

R4
{E ESIT A< VME) < VA < X}, where A\, X > 0, we obtain

W2 (f(2,21), f(z,2)) < C(Q)||D1 — D™ forall 1, %5 € Q,
where C () is a positive constant depending only on .

Remark By defintion, the elements X of 2 are bounded in entrywise /2 norm as well
as in the determinant.

Lemma 6.2. (a) If f(z,X) = ;fl(xTE_la:), where fi(xz) = Cqexp (—z%),

‘E|1/2
al'(d/2)

>1 = —
@ = b Co = i (d/ 2a)

, then f is a type Il density function with parameter

o] = 2.

(b) If f(2,%) = m;lmfz(ﬂxflx), where fo(x) = C, (v + x)~¥+D/2 and C, =

T((v 4+ d)/2)v"/?
['(v/2)md/2

Proof. (a) We can write h? = h?(f(z,%1), f(x,32)) as

, then f is a type Il density function with parameter cv; = 2.

2
h2 = C/ (|22‘1/4g<x’22) _ |El|1/4g<.’1,‘721))

29
9%(z,%1)g%(z, X2) “ 29)

Rd

(.IZTE_ll‘)a
2

C

where g(z, ) = exp ( PP

) and C = By Cauchy-Schwarz
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inequality,
2
(1=, 22) = 21V g(@, 20)) < 2 [ﬂzz“‘* — 21426 @, )

212 (g, B2) — g(x,Zl))z].

Hence,
2 1
h2<C 21/4_2 1/4 /761
B “' 2 =] ) PRI R
Rd
722)—9({13,21))2
4 1/2/(9(:” d|. 30
2 e e ) 0
So,

(22| — [%4]]
< M(Q)||Xa] — |24]]-
DA ATAISATZEN AT Rl e ]

a7 =) = ¢

Denote [(3) = |3| for all ¥ € R4*4, By a Taylor expansion to the first order, we have

ol
el - 5l = Tr (507 (52— 50) ) + Fa(2 - 20,

where R; (X2 — ¥1) denotes the remainder of the Taylor expansion. Note that

ol
T (@)= 20)| = [ T - )|
< Sl se -
= 0(5s ).

Similarly, we also obtain |R; (32 — X1)| = O(]|22 — 31]|). As a consequence,

1Z2] = 1Z1]] < S| Te(E7H (B2 — £0))| + [R1(S2 — 1))
O(|IX2 — X4). (1)

Additionally, by denoting D = {x € R?: xTEz_lx > xTEl_lx}, we have

(9(z,%2) —g(z,%1))* [ (g9(z,22) — g(z,%1))?
/ 92($721)92($722) dx_/ g2($,21)g2(1‘,22) I

(g(l’, 22) — g(l’, El))Z

T +

Rd
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Note that, by using the inequality 1 — exp(—x) < x as « > 0, we obtain

@TSre)e (2785 ) > ) 2
d

/(1_6Xp< R

/(9(%‘,22) —g(x,El))de

P S D) ) (2. 51) )
1 [ (2725 2)> — (mTZflx)“)Z
= 1/ g% (x, %1) - &)
D

Asx € D,ie xTEz_lx > xTEl_lx, we have
(x5 ) — (T2 2)Y < al2"S5 e — 2787 | (T2 te) L

By Cauchy-Schwarz inequalit. [+ %5 'a—a 77 a| < [la]S5 -7 7S5 a] <
llz||? H22_1 ||I. Therefore,

(2785 2)" = (@" 57 2)*] < ol SIS = BTl (34

For each pair (7, ), where 1 < 4,5 < d, we denote u(X) = [£7'];;. By a Taylor
expansion,

B =277 = Ju(E) - u(S2)|
ou

Tr (az(zz)T(z1 — 22)> + Ry(; — o)

ou
< X - ZQHH(?E(X:Q)H + |Ra (31 — X2)].

Note that Ou

(2) = —(25 1) (X5 1)k, forall pairs (1, k). It implies that ||(%(22)”1
lk

= O(1). Therefore, |31 — 22””%(22)” = O(||21 — 22]|). Similarly, we also have
|[R5(21 = 32)| = O(|| 21 = Xa)). Thus, [[S7" = 25735 = O(||1 — »]) and s

IB2" =27 = O(I[S1 — ) (35)
By combining (33),(34), and (35) we have

JEEASETEEN
92(1.7 El)gz(mv 22)

4o
< oz -nP) [ I g,

gz(xa El)
D
= 0|22 — =%, (36)

where the last equality is due to the argument in part (a) of Lemma 6.1.
Using the same argument, we also get

(9(z,%2) — g(a,%1))> e
/ 2, 2192 (z, 5a) dr = O(|| 22 — Z41|%). 37)

Dc
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Combining (30), (32), (36), and (37) completes the proof of part (a) with a; = 2.
(b) Using the same argument as that of part (a), we have the following inequality

2 1
h? < D e e /711
<o (- [ ot

Rd

12 [ (91(z, %) — gi(x, %)) }
i / PHERATE R | 9

where g (z,%) = (v+2T %7 1x)#+d/4 We still keep the same notation of D and use
the same argument as that of part (b) of Lemma 6.1 to obtain

_ _ 2
/ (g1(2,%2) — 1 (37721))2dJU < / (v 42785 )+ D) — (v + 278 ) F )

dz

gt (¢, 21)g7 (, 32) (v + 2755 L)2+d) (1 4 2Ty L) (vtd)/2

< / (T2 e — 278 r)? d

x
B (v+ 2785 2)2 (v + 278 L) (v +d)/2
2
< Z_l _ 2—1 2 Hx”
< 1% Ll (V+xTZl_1x)(V+d+4)/2dx’
Rd

where the second inequality is due to Bernoulli’s inequality and the last inequality is
due to Cauchy-Schwarz inequality, D C R%, and 2735 ty > a:TEl_lx.

From part (a), we have already known that |25 — X7 = O(||Z2 — £1]|?). Now,
[Ells

(v 4 2T8]  g)(rtd+d)/

we will demonstrate that /

Rd

5 dz is finite. In fact, by changing

variable x = Ei/ 2y, the orginal integral will become

] 1 e
v+ aTo ) AR Y T2 s ey era et
R Rd

2
It suffices to show that / Iz dz is finite. Using the spherical coor-

(v + ||z||2)rrd+D/2
d
dinate and argue the same way as that of part (a) of Lemma 6.1, we only need to verify
+oo

Rd+1
that / o RZ)(u+d+4)/2 dR is finite. In fact

oo Ri+1 . 1 e Ri+1
/ (V+R2)(u+d+4)/2dR /(V+R2)(u+d+4)/2dR+ / (V+R2)(u+d+4)/2dR
0 01 1 7 1
/(V+R2)(u+d+4)/2dR+ / WdR’
0

1



N. Ho and X. Nguyen/Convergence rates of parameter estimation 45

1
(v + R2)(v+d+4)
as the multivariate Cauchy density with dimension d + 4 (without a normalizing con-

1 “+o00
1 Rd+1

stant). So, / (v £ RO ari /2 dR is finite and so is / (V+R2)("+d+4)/2dR'
0 0

Therefore,

+oo
1
Itis noticeable that / WdR < o0. Additionally, we can think of
1

(91(2,22) — g1 (z,%1))% | e
/ @ g 5y 0= OlF2 == ).

We conclude the proof of part (b) with a; = 2. O
1
Lemma 6.3. Ler f(z,X) = Wfl(xTZ_lx) to be a type II density function

with parameter oy such that f(x,13) is a type I density function with parameter oo,
where 1 denotes the identity matrix. Then for a bounded set © C R? and Q =

{E S SjJr A< \/)\1(2) < \/)\d(E) < X}, we have

W2 (f(z —01,%1), f(x = 02,52)) < C(0,Q)(|[01 — baf|* + |1 — Ea2f|*),
SJorall 01,05 € ©, 1,35 € , where @« = min{ay,as} and C(0,) is a positive
constant depending only on ©, ).

Proof. By the triangle inequality and Cauchy-Schwarz inequality,
R (f(x =01, %1), f(z = 02,%0)) < 2(h*(f(z — 01, %1), f(z — 62, %1))
+h2(f(z = 02,%0), f(z = 02, 5))).
Since f is a type II density function with parameter «, it indicates that

h,z(f(l'792,21)7.]"(1’792722)) = h2(f($721),f(1’,22))
C1(Q)[[Z1 — S| ™. (39)

IN

In addition, by changes of variables §; = 21/2 1,02 = Z}/Z%,
W2 (f(z —01,%0), fx = 02,51)) = h*(fi(lle — 6111%), fr([la — 63]%)).
Since 0] = %726y, it is clear that |0} < ||[S72]]161]] < M2(©, Q). Addition-

o7s "o
ally, the smallest eigenvalue of ¥ satisfies M{(Q) < Apin(271) < 19T7191 <
1 V1
1=1 %0 s LA (O e 0 e .
e Hence, |0} > M{(Q)M; (©), i.e., 01 lies in a bounded set. Similarly,
1

0 lies in the same bounded set as that of 0} . Therefore, as f is a type I density function
with parameter o, we obtain

R2(fi(lle = 0117 fillle — 65]%) < Ca(©)]16; — 05|
Co(©) =72 [[21]|61 — 6o
C2(0,90)]|6; — 02| (40)

N

IAIA
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Combining (39) and (40) concludes the proof. O
Now, by combining Lemma 1 of [19] and Lemma 6.3, we arrive at
1
Corollary 6.1. Let g(z,X) = ng (27X 1x) be a type 1l density function with

parameter oy such that g(x, 1) is a type I density function with parameter as, where I
denotes the identity matrix. Let the family of density functions { f (z|0,%),6 € ©,% € Q}
such that f(x)|0,X) = g(x —0,%) forall € ©,% € Q. Then for any G1, Ga, we have

h2(pG1 (:C),pc2 (l‘)) < C(@, Q)WS(GM G2)7

where « = min {1, as} and C(0,Q) is a positive constant depending only on © and
Q.

From Corollary 6.1, we have an upper bound for the Hellinger distance between two
mixtures of elliptical distributions based on the a-order Wasserstein distance between
two mixing measures. Therefore, using the result from part (b) of Lemma 6.1 and
Lemma 6.2, we obtain the conclusion stated in Example 2.2.

We also wish to extend this result to density classes other than the class of elliptical
distributions, such as those discussed in Example 2.1, 2.3 and 2.4.

Lemma 6.4. (Multivariate generalized Gaussian distribution) Let f(x|0,%,m) =
1 Tyt mI(d/2)
|Z|1/2f((x -0z - 0)), where f(x,m) = Wexp(—x

x € Rand m > 1. Assume that © is a bounded subset of R%, ©4 = {meRT:1<

m <m <m}, and Q = {Z € S;ZH A VME), V) < X}. Then for any
Gl,G2,

™) as

R (pc, (), pc, () < C(O1,04, 2)W3(G1, Ga),
where C (01,02, ) is a positive constant.

Proof. From Lemma 6.1, Lemma 6.2, and Lemma 6.3, in order to get the conclusion
of our lemma, it suffices to prove that for any 6 € ©1,% € Q, m1, ma € O9

hZ(f(z|9,E,m1),f(x|9,E,mg)) < 0(62)|m1 - m2|27

where C'(©3) is a positive constant. WLOG, we assume that m; < ms (The case
mj = Mg is clearly true). Applying the Cauchy-Schwarz inequality to obtain

h?(pe, (2), pa, () < 2(v/C(mi) = V/C(m2))® / exp(—[|[[>™)da

R4
2mq 2mo 2
+2C’(m2)/ (exp <_|x||2 ) — exp <_||9c||2 )) dz, 41)
Rd
I'(d/2
where C'(m) = 7#1/277;(511/(2)771)) asm > 1.

By the mean value theorem, we can find m’ € (my, mo) such that

|C(m1) — C(m2)| = [m1 — ma|

T/ - vt/ @
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As m < my, mg <, we can find a positive constant C'(m,7z) such that

r(d/(2m') — 2d

m/

b(d/(2m'))] < C(m,m).

Therefore, as mq, mo € O4

(VC(m1) = /C(m2))*  (C(ma) = C(mz))* = O(ma — ma)?. (43)

Additionally, by the mean value theorem, for each x € R4, we can find m,, € (my, mo)
such that

T 2m1 T 2’!77,2 m
o <‘”2) - (‘”2)‘ = |1 — my | gz || [2]| " x

. (nxn?mﬂf)
XPp 2 .

Note that
1 M — < mi .
og(lalp el exp (<14 <8 A
From the argument of Lemma 6.2,
w1 g (2™
Jal ™ exp (55— )do = O(1). (44)
[lz]|>1
Thus,
T 2mq T 2mo 2

[ (o) e () ot

Rd
ombinin s , an , we conclude the proof of the lemma.
Combining (41), (42), and (45) lude the proof of the 1 O

Lemma 6.5. (Exponentially modified t-distribution) Let f(x|0,\,X) be the density
function of X =Y + Z, where Y follows a multivariate t-distribution with location
0, covariance matrix %, fixed degree of freedom v, and Z is distributed by the product
of d independent exponential distributions with the combined shape A = (A1, ..., \q).

Assume that © is a bounded subset of R x R and Q) = {Z eSIT A< VME) <
Aa(X) < X}. Then for any G1, G,

h?(pe, (2), pe, (x)) < C(0,Q)W3(G1, Ga),

where C(0, ) is a positive constant.
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Proof. 1t suffices to verify that

B2 (f (2|61, M, S1), f(2]62, A2, 52)) < C(O,5)([|61 — b2 + [|Ar — Xo|* +
+[151 — Zo|?).

for any (61, A1, 21).(62, A2, X2) € © x £ and for some positive constant C' (9, 2). By
Cauchy-Schwartz inequality,

SR (F (el M B, f (0l Do B2)) < 12 (F (2l B0, ), F(al6, 51, 00)) +
W2 (f (2|61, 51, Aa), f(]62, Ba, Xa)).

Denoting h3 = h2(f(z|01, 21, M), f(z|01, 21, A2)) and h3 = h2(f(x]01, X1, \2),
f(z|02, X2, A2)), we have

2

o= 5 ny@wl,zl)fzuyundyJ/Mywl,zl)fz(xym)dy dr
Rd Rd

Rd

IN

% // (\/fy(ylel, 20 fz2(x —ylh) = Vv ()01, 51) fz(z — y|A2))2dydx

R4 R4

= %/fy(zlel,zl)dx/ (\/fz(:c|)\1) - \/fZ(x\)\Q))Qd;c
Ra

R4
= W (fz(z[M), fz(x|A2)).

The second inequality in the above display is due to Holder’s inequality. Similarly, we
also obtain

h3 < K2 (fy (2|01, %1), fy (z]02, 32)).

As aresult,

1
Sh2(f(]01, M1, 51), f(2|02, X2, 2)) < h2(fy (2|01, %1), fy (2|02, 2)
2
+R*(fz(x|\), fz(z|X2)).  (46)
From Lemma 6.3, as f(z,%) = C,(v + 27S712)~+49/2 where we have C, =
T((v +d)/2)v"/?

['(v/2)md/2
is a type I density function with parameter ay = 2, we have

, is a type II density function with parameter oy = 2 and f(x, I)

W2 (fy (2101, 21), fy (2102, %2)) < CL(O, Q)([[01 — a2 + |21 = Za?). 47

Additionally, by denoting fz, (7;|\") = N exp(—\'z;). 142,50y as A > 0 for all z; €
d

R, we obtain fz(z|A*) = [] fz,(x:|A]), where \* = (A}, ..., A}). By the triangle
i=1
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inequality,
d
R (fz(@|M), f2(2|A2)) <2970 B2 (f2,(wil o), 2, (@il Aa,)),

i=1

where A1 = (A1,1, .., A1,d), A2 = (A2.1, ..., A2,q). By a direct calculation, we obtain

_ (A1 — A2q)? < Co(O) (A — )\271_)2'
(VAL + v/ A2,0)2(Ais + A2i)

h?(fz, (zil A1), [z, (il Aayi))

Therefore, we get
P2 (fz(z|M1), fz(x[A2)) = O(| A1 = Aa?). (48)
Combining (46),(47), and (48) leads to the conclusion of the proof. O

Lemma 6.6. (Modified Gaussian-Gamma distribution) Let f(x|0, \, 8, %) be the den-
sity function of X =Y +Z, where Y follows a multivariate Gaussian distribution with
mean 6 and covariance matrix ¥ and Z is distributed by the product of independent
Gamma distributions with the combined shape A\ = (A1, ..., A\q), and the combined rate
B = (B, ..., Bq). Assume that © is a bounded subset of R¢ x R‘i X R‘i and Q is a
bounded subset of Sd++ with its elements having all eigenvalues bounded away from 0.
Then for any G1, Go,

W*(pa, (2), pas (@) < C(8, Z)Wi(Gr, Ga), (49)
where C(0©, Q) is a positive constant.

Proof. Using the same argument as that of Lemma 6.5, we obtain

SHA Tl M, 1, 1), Sl Ao, B2, 52) < h2(fy (2161, B0), fy (02, 22)
+02(fz (x| A1, 1), fz(x[ A2, B2))-

AP
By denoting fz, (z;|N, 5) = () DA exp(—f'w;).1{;,>0y and the triangle in-
equality,

d
h2(fz($|)\1751)» fz(z[A2, B2)) < 241 Z hQ(fZi (il A1 Bri)s fz, (2l A2, Bayi)-

i=1
By denoting h? := h2(fz, (zi| A4, B1.4), [z, (Ti|Nais B2.i)), we obtain

A i 2 HA i 2
Y ¥ e Y A N (VRPN V)

(Bl,i + BQ’i)(A1,¢+>\2,¢)/2 F(Al,i)l/zr()\zi)l/2
2

< C(@)(‘(ﬂ“ JFﬂZ,i)(,\lyi+)\27i)/2 /2 el

2 1,2 2,1
ALi + A2
\IP(AL)T(A2,i) — F(%) )-

= C(©)A+B. (50)

_|_
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By the triangle inequality and a Taylor expansion to the first order,

) N\ Ai/2
A < Cl(@)‘ (”8“252”> — By +
. . )\2,7;/2
i 02(9)‘<ﬂ1,z';52,1> B 2,\72;,1~/2
= O(|51,z‘*52,i|)a (5D

where C1(©) and C5(0O) are two positive constants.
Similarly, by the triangle inequality,

B < CyO)T (W)Q C ()T (Ae)
< y(0) ‘r (A“ . AQ”’) C (M) ’r (A“ . A”) ST +
+ 03(@)‘ (r (M;A?) - F(Al,i)) I'(Ao,) +
+ <r (W) - r(@-)) T(M)|. (52)
By a Taylor expansion to the first order, we readily obtain
C3(0) ’F (Al’i _; /\271) —T(A10) ’F (Al’i ;— Am) —T'(X2)| =
O(|A1i — Aail?). (53)

Additionally, by a Taylor expansion up to the second order

AL+ Ao A2,i — M Aot = M)
r (1+22) —T(M\s) = %F’()\M) + %F (A1,0)

+R1(A2i — A1i)-

)\1)\1 )\17)\1 )\i*)\izﬂ
F<1, ; = ) ~T() = () + Qi = A2a) < 201 (0,

+Ro (M1, — A2y).

where R, Ry are two remainder terms from the Taylor expansion. It is simple to check
that |R1(>\2,i - )\17¢)| = |R2()\171‘ - A27i)| = O(|A171 — >\2,i|2)~ In addition,

‘)\M ; A (A1) T (A2yi) + Mi — A2 ; /\Q’ir/()\li)r(/\l,i) = Pai = dul ; )\l’i|r(>\17i) X

xT(A2,0) [ (M,i) — ¥(X2,4)l-

By a Taylor expansion to the first order, it is noted that

[¥(A1i) =¥ (A2)| = O(| A1, — Azsal)- (54)
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Therefore,

A2 — A1
2

AL — Mg

(AT (M) + = 5 T2 )T(Ai)| = O( A1 — Xail?). (55)

As a consequence,

‘ (F (W) - F(Al,ﬂ) T(A2;) +

AL+ Aoy
+ (F (122) - FO‘Z,@’)) T(Ari)| = O(A1i — Azl (56)
Combining (52), (5§3), and (56), we obtain
AL+ A2
’\/F(/\l,i)F(/\z,i) - F(%) = O(|A1s — Aail?). (57)

Combining (50),(51), and (57), we get

R (fz,(zil A0y Bri)s Fz,(xil A2y Bai)) = O(| A1 — Aail®) + O(|B1i — Aasi)-

As a result,

W2 (fz(x[A1, B), Fz(@lA2, B2)) = O(||A1 = Xa|?) + O(]|B1 — Bl

This concludes our proof. O
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APPENDIX III

In this appendix, we give proofs of remained results in the paper. It includes the proof
of Theorem 3.3, which concerns the characterization of strong identifiability in multi-
ple scalar parameters. For simplicity, the proofs for Theorem 3.4 are restricted to only
first-order identifiability. The proof techniques are similar for the second-order iden-
tifiability. Additionally, the proof of Theorem 3.5, which follows from an application
of chain rule, and the proof of Corollary 3.3 follows from the triangle inequality are
included in this appendix. Proof of Corollary 4.1 relies on calculations of the bracket
entropy integral, which is a straightforward extension of the argument of [9] to the
multivariate setting.

PROOF OF THEOREM 3.5. The proof is a straightforward application of the chain
rule.

“If” direction: Let k& > 1 and let (n], A7), (95, A%) ..., (5, Af) € ©F x Q* be k
different pairs. Suppose there are a; € R, 3; € R%, and symmetric matrices 7; €
R?%dz guch that for almost all x

0
Zazg ol A7) + 67 G el A7) +tr (G5 el D)) =0 (59

Let (0;,%;) := T(nf,Af)fori =1,..., k. Since T is bijective, (61, X1), (02, X2), .. .,
(0k, X)) are distinct. By the chain rule,

0 0 00 0 12)3
22 (alm,A) o, %) 5 I (i, ) 2
77’! l: 77 1<u U<d uv ]'L
d
~ of ATy (n, V)], of O[Tz(n, M)
()0, D) "L+ > (216, 2)——F—*
= 891 8m 1<u,0<ds 821“] 87}2
and similarly,
d
Jg ~ of T (n, N)], of I[Tx(n,A)],,
6A” (zn, A) = ; 87&(%|9’2)Tij + 1<§<d G (xIH,E)TU

where 7 = (m1,...,7q4,) and ¥ = [¥;;] where 1 < ¢,j < do. Equation (58) can be
rewritten accordingly as follows that for almost all x

k
Zaif(l‘\@i,ﬂi) + (8 i)Taf
i=1

(el6, 55) + tr (gguwi,zi)%;) 0. (9

where ﬂ’ = (B - (BM), vi = [l mi = () -+ () ™), A = [A]™,
Bi = (B7,. ..,ﬁdl) i = [vi]™, andforalll <j<d

d Tl 77sz )]

J_Zﬂh

O[T (7, A7)

1<u,v<d>
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and forall 1 < 5,1 < ds

d o Q[T( 7A1 OlTa(nr, A)),
Zﬂh zm )]z_|_ g [T2(n7, A9

1<u,v<d>

Given that { f(z|0,X),0 € ©,% € Q} is identifiable in the first order, Eq. (59) en-
tails that ; = 0, 8/ = 0 € R%, and v} = 0 € R92*42, From the definition of modified
Jacobian matrix J, the equations B = 0 and «} = 0 are equivalent to system of equa-

1d 2d da1
thHSJ(nz,A*)Tl—O where 77 = (Bi, v, v o2

’nydQ) € R+ Since [J(nf, Af)| # 0, the above system of equations has unique
solution 7, = 0 for all 1 < ¢ < k. These results imply that 5; = 0 € R4 and

v = 0 € R%*% Thus, g is also identifiable in the first order.

“Only if”” direction. Assume by contrary that the modified Jacobian matrix J (7, A)
is not non-singular for all (n, A) € ©* x Q*. Then, we can find (19, Ag) € O* x Q*
such that J(no, Ag) is singular matrix. Choose ¥ = 1 and assume that we can find
a; € R, 31 € R4, and symmetric matrix v; € R%*? such that:

0
a19(x|no, Ao) + BlTa—i(xmo,Ao) +tr < (|n0, Ao) Ty ) =0 for almost all x.

oA
The first-order identifiability of class {g(z|n, A),n € ©*, A € Q*} implies that oy =
0,1 =0 € R%, and v; = 0 € R¥*9 are the only possibility for the above equation
to hold. However, by the same argument as in the first part of the proof, we may rewrite
the above equation as

r0f

a1 (2160, Zo) + (3)) <|oo,zo>+tr<a (260, 20)” 1>—0fora1mostaux,

where T'(n9, Ag) = (00, X0), and 3, 1 have the same formula as given above. The
first-order identifiability of {f(z]0,%),0 € ©,% € Q} implies that 3] = 0 € R% and
74 = 0 € R%X42 The last equation leads to the system of equations .J (19, Ag)T = 0,
where
T = <B1>7%17 e 77%d277121> e 77%d27 e 7’71d217 cee 7’7](_12d2> .

However, the non-singularity of matrix J (79, Ag) leads to non-uniquesness of the solu-
tion 7 of this system of equations. This contradicts with the uniqueness of the solution
a; =0, =0¢c R, and y; = 0 € R%*4_The proof is complete.

PROOF OF COROLLARY 3.3 From Theorem 3.5, the class {g(x|n, A),n € ©F,
A € Q*} is identifiable in the first order. From the proof of Theorem 3.1, in order
to achieve the conclusion of our theorem, it remains to verify that g(x|n, A) satisfies
conditions (3) and (4). As the first derivative of f in terms of 6 and X is a-Holder
continuous, f(z|0, X) satisfies conditions (3) and (4) with §; = J3 = a.
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Now, for any n',n? € ©*, A € Q*, we have T(n',A) = (01,%) and T(n*,A) =
(6%,%). Forany 1 < i < dj, we obtain

0 1 1 8[T1(7717A)]l
o lalln’ ) = g(als?. A Z%l oo, ) S

of O[T (1, A)] of [T(n', M),
Z%(x|92,z)Tl+ Z azm(m|9172>a—m_

DAl LU k) Py

1<u,0<ds azuv 8771
Notice that,
3f L 8[ LA 2 [Tl(n2’A)]l
B
(’)f 0Ty
9] 1 2 L
||619 (2167, %) = 75 (@l6%, B) x |5~ ( A
0Ty 8T1

Ji
HI G5 e DIZ 0" 8) = F Lo, )
< L6 1+ Ll — P

where L, Ly are two positive constants from the a-Holder continuity and the bound-
edness of the first derivative of f(z|f,X) and T'(n, A). Moreover, since T is Lipschitz
continuous, it implies that ||§* — 62| < ||n* — n?||. Therefore, the above inequality can
be rewritten as

Z g, 710"

With the similar argument, we get

8 ATy (n?, A) .
[ Z a6, (x[0?,% ham]l S it =n?)le.

of 1 OT0N )], Of o T M), _
Dt e D A i e

1<u,v<ds 1<u,v<ds

" — .
Thus, forany 1 <+ < dj,

a «
- talab ) = sl AD)| < It =P

As a consequence, for any y; € R%,

dg dg dg dg
T Y 1 _Zd 2 < 122 1 _d 2 <
" (8n($|n ,2) a77(:v|77 7Z)>’ S IIan(w\n ;%) 3n(w|77 D)l S

' = 2 1* Iyl
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which means that condition (3) is satisfied by g(z|n, A). Likewise, we also can demon-
strate that condition (4) is satisfied by g(x|, A). Therefore, the conclusion of our corol-
lary is achieved.

PROOF OF THEOREM 3.3 (a) Assume that we have o, 8;,7; € Ras1 < j <k,
k > 1 such that:

k

af of
> aif(zl0;,05) + Bi g (@165, 05) + i 5 (2105, 05) = 0.
j=1

Multiply both sides of the above equation with exp(itz) and take the integral in R,
we obtain the following result:

k
> [(e + Bj(it)p(ost) + vjib(ost)] explith;) =0, (60)

Jj=1

i Vi .
where o; = a; — 0—;,5; = Bj,7; = —0—;, o(t) = /exp(zt:r)f(x)dx, and
R

P(t) = [ explitz)zf (z)dw.
/

I'(p +it)I'(qg — it)
_ L'(p)L'(q) -
property of Gamma function and Euler’s reflection formula, as p, ¢ are two positive
integers, we have

By direct calculation, we obtain ¢(t) = . Additionally, from the

p—1 q—1 7t ¢ 5
it it . N
jzl(p j+i )jl;[l(q j—i )rnh(m)’ if p,qg >
p—1 Tt
H(P*jJrit)ﬁ, ifp>2,qg=1
P(p+it)l(g — it) = { =} sinh(rt) .61
— Tt
— i) —— ifp=1,¢q>2
Fl(q J )sinh(ﬂ't)’ ifp=1,9>
it
.f = = 1
sinh(rt)’ tp=a
From now, we only consider the case p,q > 2 as other cases can be argued in
p—1 q—1 ptq—2
the same way. Denote [[(p—j +it) [[(g—4j —it) = > aut™. Itis clear that
j=1 j=1 u=0
-1 g—1
ap =1 (p—j) I (a—j)and apiq—2 = (—1)9"1LiPT772 £ 0.
j=1 j=1

From (61), the characteristic function ¢(t) can be rewritten as
ptg—2
2rexp(mt)( Y] a,t'th)

_ u=0
) = @) exp(t) — 1) (62
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Additionally, since = f'(x) and f’(z) are integrable functions,

Y(t) = /exp(itx)xf’(:c)dz = fi% /exp(itx)f'(z)da: fi% (ito(t))

R R
= o(t) +t'(t).
By direct computation, we obtain
p+q—2 ptq—2
21( Y0 ay(u+2)t¥ Y exp(nt) 272 Y aut“T?)(exp(27t) + 1) exp(nt)
P(t) = —=2 - u=0 . . (63)
I'(p)I'(q)(exp(2mt) — 1) L'(p)I'(q)(exp(wt) — 1)
Combining (62) and (63), we can rewrite (60) as
p+q—2
k (> auo; utlputly exp((ma; + 0;)t)
o 4 B3(it)) u=0 +
; (exp(2moj;t) — 1)
p+q—2
(Y au(u+2)a ) exp((no; + i;)t)
u=0

(exp(2mojt) — 1)

P12
v ( Z a o“+2t“+2)(exp(27m] )+ 1) exp((mo; + i6,)t)
= 0.
I'(p)l'(q)(exp(n0;t) — 1)
0; o B;' o) — U i (9) _ (U + 2) i
Denote t' = 7t, 0 = P B; = — i W b T and
u+2
. Ay, O ;
cgf) = ‘12 foralll < j <k,0 < u < p+ q— 2 and multiply both sides of the
7T-'U.
k
above equation with H (exp(20;t) — 1)?, we can rewrite it as
j=1
k pre—2
Yo+ B G alf @y +
7j=1 u=0
p+q 2

Z b (') ) exp((oj + i0)') (exp(20;t') — 1) H (exp(209t') — 1) —

I#]

p+q—2 '
(Y D)) exp((o +i0)t) (exp(205t') + 1) [ [ (exp(20ut’) = 1)> = 0. (64)
u=0 l#7

Without loss of generality, we assume that o7 < 02 < ... < 0. Note that, we can

view exp(t'c;)(exp(20;t’) — 1) [] (exp(20yt’) — 1)? as i d? exp(t’e?)) where
1#j u=1
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egj) < e;j) <. < e,(qj@) are just the combinations of o1, 02, ..., 01 and m; > 1 for all

1<j<k. Slmllarly, we can write exp(t'o;)(exp(20;t') + 1) T (exp(20yt’) — 1)?
1£

as gfl kgj) exp(t’hgf)), where hgj) <. < h%jj) andn; > 1foralll < j <k.

Direct calculation yields e%_)j = hgf_;.) = 412‘ o + 30, and e%_)j = hgj) = 1 for all
1 < j < k. From the assumption, it is straigh?orward that es,lli > e% > .. > e(k)
Additionally, by denoting (a/;+8; (it')) (p+f2 o) (¢'y+1) 1 (“zqu b0 (t/)qul) _

ract () () ()
Z 19 ()“Jrl,weobtainfO = afjay +7b andfp+q L =if; a¥ for all

Jj “pt+q—2
1<j<k

By applying the Laplace transformation in both sides of equation (64), we get:

k ptg-1 p+q—2 u u—|—2
Z Z 1 Z u+2 Z WJWCU) Z  Ohers yut3 =0. (5
j=1 u=0 ur= 1 ur= 1

as Res(s) > e') where 2 =it + e as1 <uy < m; and wd) = it + h) as
1 <u <njy.

Multiplying both sides of equation (65) with (s— 2 ))p+q+1 and letting s — z,(nf, as

eq(fl) < eﬁii for all (ug,j) # (my,1) and h&l) < hﬁ}} = 65,3 for all (uy, 5) ;é (nl, 1),

we obtain \f(+q 1d$,2 -y cz(izq 2k:,(111)| 0. Since dﬁ,&} = kz(l) =1, f+q L=

1
i8a) M o (1) Gprg_207 71T

10pfq-2: Cpiq—2 = —Opig-2 anda, o= a1 # 0, it implies that
|zB1 — ~4o1| = 0 or equivalently Bll = v4 = 0. Likewise, multiplying both sides of

(65) with (s — z,(ﬁf)pﬂ and let s — z,(nz, as 1 = 0, we obtain f prq—2 = 0. Continue
this fashion until we multiply both sides of (65) with (s - zr(nz) and let s — z&f to
q—1

get fél) = 0 or equivalently o/la(() ) = 0. As a( ) =y H (p—17) H (g—34)/m#0,

j=1 J=1
it implies that f = 0. Overall, we achieve of = 61 = 71 = 0. Repeat the same
argument until we achieve a;- = B; = *y;- = 0 forall 1 < j < k or equivalently
OLJ = Bj = ")/j =0.

(b) Assume that we can find o5, 3;,7;.17; € R such that
: of of
> aif(@l05,05, ) + Biag @105, 05, ) + 1557 (@105, 05, Ag)+

j=1

0
ma—ﬁ(xlej, aj,A;) =0. (66)
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Applying the moment generating function to both sides of equation (66), we obtain

k
D (d + Bit+ At (N — oit) + njw(X; — ojt)) exp(05t)T(N; — ojt) =0, (67)
j=1

: Aj — ;% (N)) Bj +7;log(X;) "‘77]0])‘
h = - l =

ast<1gljlgk{aj}w ere o] I‘()\j) B = T0y) o
—ng\j) ;= F(n)j\ % and 0 = 0; + log(\;)o; as 1 is di-gamma function.

Without loss of generality, we assume that 01 < 09 < ... < 0. We choose ito
be minimum index such that o0; = 0. Denote i, € [i, k] as the index such that 0 =

min {6}. Denote I = {i € [i,k] : ¢, = 0] }.From the formation of ¢/, it implies that
i<i<k

A; are pairwise different as ¢ € I. Choose i3 € I such that \;, = malx Ais1.e Ay, > A
i€

for all i € I. Divide both sides of equation (67) by tI'(1 — oy, t)y (1 — 0y,t) exp(0;, 1),
we get that as ¢ < L
ok
/ / I
2 + L2 +7;, + ﬂ +
“/’( — Oiy ) ¢(>"i2 - Uizt) /y :
s T'(Nj — ojt) exp(05t)
Z tT'(Niy — 0y t)10(Niy — 04yt) exp(0]t) *
J#i2 2
BiT(Aj — a;t) exp(6jt) N
].—‘()\12 — Ji2t)’l/J()\i2 — O'izt) exp(GQQt)
v exp(05)T(A; — at)p(N; — ot) N
eXp(Q’- ) ()‘ - Ulzt),(/)(/\ - Oizt)
exp(0.t)T V(A —
77] xp/( OL (A — o) (A — ojt) - o (68)
texp(gzz T (Niy — 00 t)P(Niy — 0iyt)

Note that t—lgr—noow()\ﬂ - O'jt)/’(/l()\i2

when j € Tand j # i9,as \; < \;,, we see that T'(\;
0:,)(t)) = 1.1timplies that exp(6;t)I'(\; —o;t)/ exp(0;, 1)1 (i, —
—o;,t) > +ooast — —oo, if welett — —oo,

—oo and exp((0;—
0i,t) — 0ast — —oo. Since (A,
we obtain

—o;,t) = 1forall 1 < j < k. Additionally,

_th)/F(Azé

—oi,t) > 0ast —

Z S T(Nj — ojt) exp(05t)
- o 7
v tr(Niy, — 0iy 1) (Niy — 0iyt) exp(0] t)
BiT(Aj — o t) exp(0}t) v exp(05)T(N; — at)p(Nj — ojt)
L'\, — o, t)( N, — 0iyt) exp(9g2t) exp(ﬁ’ O (A, — 0 t) (i, — 04,yt)
n; exp(0t)L(A; — o;t)(N; — o;1)
texp(0;,t)T(Ni, — aiyt)h(Ni, — 0iyt)

0. (69)
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Additionally, as j > i and j ¢ I, we have 0; = 0y, and 03» > 0;,. Therefore, we obtain
exp((0; — 0;,))T'(\j — a;t)/T'(Ni, — 0i,t) — 0ast — —oo. As a consequence, if
we let t — —o0, then

S T'(Nj — ojt) exp(05t)

> +
(N, — o, )b (N, — ot 0t
o 0N, — )0, — o1t) exp(#, )
Bil'(Aj — a;t) exp(0t) 7; exp(05)L(; — a;t)p (A — ojt)
F(/\m - O—izt)w<>‘i2 - Ji2t) exp(e’/iQt) exp( )F(Alz Oiy W(/\ - Uizt)
77] exp(ﬁzt)r()\] —oit)p(N; — ojst) 0. (70)
texp(0;,t)T(Aiy — diyt)h(Ni, — 0iyt)
Now, as j < i, we have 0; < o0y,. Therefore, as T'(\; — o;t)/T(\;, — 04,t) ~
(—t)(72=93)t when t < 0, we get exp((0; — 0;,))T'(\; — 0 )/ (Niy — 0iyt) = O as
t — —oo. As a consequence, if we let £ — —oo, then
Z T(N; — o4t) exp(0t) N
— lfF()\z2 — UiQt)d)(AiQ — O'z'Qt) exp(egzt)
1<t
BiL(A; — o;t) exp(8;t) N 75 exp(05)1(\; — ot)h(N; — o;t)
F(/\lz - Oizt)w()‘iz - Uizt) exp(9£2t) eXp(QQQt)F()‘ZQ iy )'(/J(/\ - OiQt)
MO0y o0y — o) o
texp(%t)r(/\u oit)Y(Niy — 0iyt) .

Combining (69), (70), and (71), by letting ¢ — —oo in (68), we get 7{2 = 0. With
this result, we divide both sides of (68) by ¢ exp(6;,t)I'(A\s, — 03,1), we obtain that as
t— —o0

19 iz = 0u) 4 DX — o;t) exp(¢5t)

/
Q-
t” +Bi, +

i 22 (%, — 00, exp(0, 1) *
BiT(Aj — o) exp(05t) v exp(05t)T'(N; — o;t)p (N — 0;t) N
L(Ai, — 04,1) exp(6;,1) exp(6;, 1) ( —0i,t)

o, (@ HT Oy — 0,0 — 1)
texp(0;, t)F()\ — gj,t)

Using the same argument with the notice that exp((¢; — 0; )t)Y(\; — o;t)['(\; —

o;t)/T'(Ni, — 0i,t) = 0ast — —oo forall j # i1 and ¥(A;, — 04,t)/t — 0 as

t — —o0, we obtain B’ iy = 0. Continue in this fashion, we divide both sides of (68)

by ¥(Ai, — 0i,t) exp(0;,t)T (s, — 04,t) and exp(0;, 1) (\i, — 03,1) respectively and

by letting t — —o0, we get aj, = n;, = 0. Applying this argument to the remained

indices 4, we achieve o, = B; = i = n; = 0for 1 < j < k or equivalently
o = B = fnjf()forl gggk.
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(c) Assume that we can find o5, 55, ; € R such that

Ofx Ofx

k
> ajfx (v, A i) + B (@lvy, A) + 7555 (@lvs; Ag) = 0.
=1

It implies that by the transformation Y = log(X), we still have:

k
D sl (s o) + By Ayl M)+l ) =0, (72

where fy (y) is the density function of Y.

Applying the moment generating function to both sides of (72), we obtain as ¢ >

— 12’11111 {v;} that

k t
t Bt |t t gt
E‘ ajxgr(y—j +1) - %F(— Y- +1) + VN, IF(V—j +1)=0. (73)

g Vj j

Without loss of generality, assume that v; < 5 < ... < 1. Denote 7 as the minimum

index such that 15 = v and 4 is index such that /\z1 =, gu<n {Ai}, which implies that
1<ty

i, < \; forall 1 <4 < 4. Using the same argument as that of generalized gumbel
density function case, we firstly divide both sides of (73) by tI'(¢t/v;, + 1) (t/v; + 1)
and let £ — 400, we obtain 3;, = 0. Then, with this result, we divide both sides of
(73) by tI'(t/v; + 1) and let t — 400, we get y;, = 0. Finally, divide both sides of
(73) by I'(t/v; + 1) and let t — 400, we achieve «;, = 0. Repeat the same argument
until we obtain o; = 8; =; =0forall 1 <i < k.

(d) The idea of this proof is based on main theorem of [14]. Assume that we can find
o, B;,7; € R such that

k
f
Zajf x|ﬂj7l€])+ﬁja (ﬂﬂja’%)"‘%a (@[pj, k) = 0.

j=1

We can rewrite the above equation as for all z € [0, 27) that

k
Z oy + B sin(x — ) + 7j cos(z — 1;)] exp(r; cos(z — p;)) = 0. (74)
j=1
1
where C'(k) = orlo()’ o) = C(kj)oy + C'(kj)v;, By = —C(k;)B;, and v} =
C(kj)y;forall 1 <j < k.
Since the functions exp(x;(x — 1;)), cos(x — p;) exp(k;j(x — p;)), and sin(z —
;) exp(k;(z — pj;)) are analytic functions of =, we can extend equation(74) to the
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whole range x € C. Denote x = y + iz, where y, z € R. Direct calculation yields
cos(x — pj) = cos(y — ;) cosh(z) — isin(y — ;) sinh(z), sin(x — p;) = sin(y —
pj) cosh(z) + i cos(y — ;) sinh(z), and
exp(k; cos(x — p;)) = exp(k; [cos(y — ;) cosh(z) — isin(y — p;) sinh(z)]).
Therefore, we can rewrite equation (74) as for all y, z € R

k

So{ {181 costy = )+ sinty )] cosn(z) -
j=1
| sinty = ) — 5 costy )| s |
x exp (k; [cos(y — pj) cosh(z) — isin(y — p;) sinh(z)]) = 0. (75)

As (uj, K:j) are pairwise different as 1 < j < k, we can choose at least one y* €
[0,27) such that m; = k;cos(y* — p;) are pairwise different as 1 < j < k and
cos(y* — p;), sin(y* — ;) are all different from O for all 1 < j < k. Without loss of
generality, we assume that m; < mg < ... < my. Multiply both sides of (75) with
exp(—my, + ik sin(y* — pg) sinh(z)), we obtain

aj, + [By cos(y™ — pk) + g sin(y” — px)] cosh(z) —i(By sin(y” — ) —

k—1

Tk cos(y” — ) sinh(2)] = 3 o + [B cos(y” — 1) + 7 sin(y” — )] cosh(z) —
j=1

i [8 sin(y” — 1;) — 7} cos(y* — ;)] sinh(2)] x exp((m; — my) cosh(2)).

Noted thatas m; < my, forall 1 <j <k -1,

lim cosh(z) exp((m; —my) cosh(z)) = lim sinh(z) exp((m; — my) cosh(z)) = 0.

Z—00 z2—00

Therefore, by letting z — oo in both sides of the above equation, we obtain

|k + [Br cos(y™ — i) + v sin(y™ — )] cosh(z) — i(B sin(y™ — ) —
Vi cos(y* — pg)) sinh(z)| — 0.

It implies that o), = 0, B, cos(y* — pr) + ;. sin(y* — pr) = 0, and 3} sin(y* —
pi) — v cos(y* — pg) = 0. These equations imply o), = ), = 75, = 0. Repeat the
same argument for the remained o, 3,7} as 1 < j < k — 1, we eventually achieve
o =7; =7; = 0forall 1 < j < k orequivalently a; = §; = v; = 0 for all
1<j<k.

PROOF OF THEOREM 3.4 (Continue) Here, we present the proof for part (c) and
part (d).

(c) Assume that we can find o; € R, 3; € R4, n; € R?, and v; € R4*¢ symmetric
matrices such that:

f: of of
= Oélf($|0'u Ez, /\z) + /61 89 (I|015 Eu Az) + tr((az (l‘|97,7 EZ, )\z)) 71)
+77;‘F*af (z|0;, i, X)) = 0. (76)

OA
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where 0, € R4, S, € S++ and )\; GRd.
1

From the formation of f, we have f = fy x fz, where fy (x]6,%) = BEE ——g((z—
0TS (a0))g(0) = Co(+2) +DP2,C, = TS 2 DG, f1(a ) =
12[1 (lf\égzb)b ali Tt exp(—=\jz;).1{z,>0} Where by, ..., b, € Nare fixed number and \" €
_i_

Denote ¢z (t|\) = /exp(ith)fz (x|\)dz. Multiplying (76) with exp(itTz) and take

Rd
the integral in R?, equation (76) can be rewritten as

k
S o (1) 0 / exp(it"x) fy (2]6;,2))dr +
j=1

R4
[exptitt a1 2 1oy, )i+ [ exptit ) (L 5, )+
Rd Rd
/exp(ith)fy(:c\Gj,Ej)dx/exp(itT )an (,;;Z (z|Aj)de = 0.(77)
R4 Rd

Now, we have

/exp(ith)fy(x|9j7 ,)dx = C,Cy exp(itTejA1(||z;/2t\|))

Rd

and

k
> / (sl ) + 87 9 el ) + expli™o) xS 103, 5) ) )

CstTtTyt  iCo(Z) )78
ERAL ARE)

k
xexp(itTz)de =Y C, || o + Cytr(M;) — +
; J ! tT's;t v + 1

) CotTv;t 1/2 .
xexp(thﬂj)—f—[ thj; Ag(HEj/ t]) exp(thOj).
exp(i[t']2) n_ [ exp(ilt|2)z” )
where A1 / v n 2:2 V+1)/2d s A3(t ) = Wdz for any t e
R R
tr(2: ;) v+d v+d _
R, and o; = o — j2 d B = 5 X712p;, and M; = D) Z; 1/2%2]_ v

(D 1

Denote the following quantities fz, (x;|\)) = T x)' " exp(—N21).1{z,>0y and
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bz, (tN) = /exp(it:cl)le (x| \))dx; as N € R, we obtain
R

d I\b;

AL
2(t|\5) H¢lel|x H(Afi)lt)bl
J

=1

where \; = (A],..., \9).
Additionally, by denoting n; = (1, ..., n5)

Mg

et oyt L wiryar -
R4

j H (qu (tul/\;l) x
u#l

9z,
oN,

=1

exp(itxy) (m|)\l )dz

X
R%\

SN | AL AU

=1 uF#l
d _
B Y TC K S CI
= b i) ul (A —itu)"

Multiplying both sides of equation (77) with H H (A —it «)% T, we obtain:

j=lu=1
5[ (g - Gttt BTN oy
; I Tyt v+1
Jj=1
Cyt™ vt / d
2 J 1 2 T .
d
< [T TT O\ = itu)?=+" — iCy exp(it0;) Ar (|55 4]1)
I#j u=1
d
an DT b [T O =it | [T TT O = it)™ ™ = 0, 78)
uF#l uF#l l#j u=1

d
where v} = o/;+C3 (zZ: Mj)). Using the same argument as that of multivariate general-

ized Gaussian distribuzion, we can find set D being the union of finite hyperplanes and
cones such that as t' ¢ D, ()70, #)TS1t’), ..., ()70, (#')TEt') are pairwise
different. Denote t = ¢1¢', where t; € Randt' ¢ D and 0 = t"HTe;, crj2. = (t)Ts,t.
For all t; > 0, using the result from multivariate Student’s t-distribution, we can denote
11—1 Iy
Aj(t1) = Crexp(—t1v/v) Y. autt and Az(t1) = Clexp(—t1/V) Y. byty, where
u=0
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v =2l; —1and ag,a,—1,b,b;, # 0.

We define
li—1 d
<Z aut“> TT b=y =it e) T TT 8 = itita)™ ' = Z it
u=1 I#j u=1
d
wherem; =1 +d—2+ (d+ > b,)(k — 1). Additionally, we define
u=1
mi+1 . I d d
> dity = <Z buff) TT by =it e) T TT 8 — itita)™*
u=0 = u=1 1#j u=1
and
mi+1 I1—1 d
ety = (Z aut%> S ok T bt [T A —itita) | %
u=1 = =1 uF#l uFl
d
X H H ()\}L — it;tl)b'“+1.
I#7 u=1
Equation (78) can be rewritten as
mi1+1 mi1+1
Z a —I—B (it1) Zc”t“—i—fy] Z djt“—zCl Z ejt“
Jj=1 u=0 u=0 u=1
X exp(zﬂ;tl —0;\/v) =0, (79)
" / Cg(t,)T'Y]t, " ( 1/2 )T/BI " CQ(t/)T’Y]t/
where a; = ajJrC’g, tr(M;)— = By = D1 ,andfyj =7

J
Without loss of generality, we assume 01 < 03 < ... < 03. Denote h; = ajf —
iH; and apply Laplace transformation to (79), we obtain that as Re(s) > —o1/v

J

k , m1 m,1+1 j , mi+1 dj u!
Zaj Z ( u+1 7'6 Z u+1 +’YJ Z W
j=1 u=0 u=0 J
& el u!
101; GrhyE = 0. (80)

Using the same argument as that of multivariate Student’s t-distribution, by multiplying
both sides of equation (80) with (s -+ h1)™+2 and let s — —hy, we obtain |if3] ¢, +

1" .
Y1 dpy, 1| = 0. Since

. (d+2 by)(k—1)+ //
cl — (—Z) all 1 H (b +1)(k—1)+1
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and

d _ d
Q= (_Z_)(d+u§=;0bu)(k 1)+dbl1 H ()\;’)bu (t,) et (=141
mi u ’

u=1

the equation \iﬁilc}nl +’yi/d71n1+1| = 0 s equivalent to |i3} a;, _1 + 7, by, | = 0, which
yields that 8} a;, -1 = v, by, = 0. As aj,_1,b;, # 0, we obtain 3, =, = 0.

With this result we multiply two sides of (80) with (s + h1)™*! and let s — —hy,
we obtain |a, ¢;,, —iCye}, | = 0. Then, we multiply both sides of (80) with (s+hq)™*
and let s — hl, we get | cm1 1(mg — 1) = zC’leml 1(my — 1)!| = 0. Repeat
this argument until we obtain | ¢f| = 0 and | ¢! — iCyel| = 0, which implies that

. kod
oy =0asch=ao [[ T] (\¥)>F! #£0and el = 0.
l=1u=1
From the formation of e}, it yields that

d

antl )\l b —1 H )\u by+1 H H ()\;L)bu-‘rl =0.

u#l 1#1 u=1

As ag # 0, it implies that

antb )\l b — 1H )\ub-i-l

u#l

d
Denote 71 (A})2 =1 TT (A4)b«*+1 = 4! forall 1 <[ < d then we have > ¥!t) = 0.
uF#l =1
If there is any ¢! # 0, by choosing #’ to lie outside that hyperplane, we will not get the
d

equality Y 9!t} = 0. Therefore, 1/} = 0 for all 1 < [ < d, which implies that n} =0
=1
forall 1 <[ < dorequivalently n; = 0. Repeating the above argument until we obtain

"

a; = ﬁ; = 'yj,-’ =0€Randn; =0 ¢ R? for all 1 < j < k. From the formation of

1

aj;, ﬁ;/ , 7;/, using the same argument as that of multivariate Student’s t-distribution, by
choosing ' appropriately, we will have a; = 0, 3; = 0 € R%, and ; = 0 € R for
alll <j <k

(d) Assume that we can find ; € R,3; € R%, symmetric matrices v; € R¥4,n; € R,
and 7; € R? such that

k
of
Zajf(x|9ja2j7ajabj)+BJT89(m|0JaE]an7bj) +
j=1
of of
(az(ff\@J»Ea»aaab')T%)+71f8*(x|9j»2j»ajvbj) +

Lr9f

T; ab(x|9J,2J,a]7bj) = 0. (81)
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d
Denote Z = [] Z;, where Z; ~ Gamma(a;, b;). Let ¢z, (t;a;, b;) to be the moment
Jj=1
generating function of Z;, then ¢z, (t;a;, b;) = b3’ /(bj—a;)® as t; < b;. Therefore,

d b
the moment generating function ¢z (¢|a,b) of Z is H !

L (6 — )™

as t; < b; for all
1<j<d
Multiply both sides of (81) with exp(¢Tx) and take the integral in R%,using the

same argument as that of multivariate generalized Gaussian case, we obtain that as
t; < min {b?} foralll <i<k
1<j<k - 7

k
;(a +(El/25 )Tt+tr( +anlog (bl = ) —

d d i a.
l a tl T T (b ) .

1= —t)

d .
Multiply both sides of the above equation with [] ] (b%, — t;)®«*1, we can rewrite
u=1i=1

it as

Tyt
=280 Tt + (M) + Lgt

k T
— 2

J 1

d

DL EE: ajte [T (b5 =)

i=1 =1 uF#l

d d
x exp(tT6; + thzt ) [T @ II:[I(bi——t0“L+1 = 0. (82
=1

u#ji=1

X

d
>
=1

Putt =tt' ast; € Randt' € Ri. We can find set D, which is the finite union of hy-

perplanes and cones such thatas ¢’ ¢ D and t’ € RY, we get that ((¢')76,, (¢')"1t'),

o ()70, () TSt are pairwise different. Therefore as t; < win {bi} for all
<<

1,

1<i<k,wegett; <t*= } Denoteﬂ’ =tT0; ando =I5,

min
1<j<k,1<i<d { t
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as t; < t*, we can rewrite (82) as follows

(t/)T'y]tl

Z o+ (S B0TH + tr(My) + 2 5
j=1

d d
Zﬂj log H *tgtl)*ZT;a%tlH(b}L*tiﬂfl)) X
i=1 = uF#l
o242 d
x exp(@t1 + J V[ @) HH )t = 0. (83)
i=1 uF#j i=1

Without loss of generality, we assume that 0; < 02 < ... < ). By using the same
argument as that of multivariate generalized Gaussian distribution in Theorem (3.4), we

denote 7 to be minimum index such that 07 = oy, and 4, as the index such that agk =
2 42
o;t
min {6} }. Multiply both sides of (80) with exp(—#] t; — %1) and let t; — —oo,
i< J<k
using the convergence argument of generalized Gaussian case, we eventually obtain as

t1 & —o0

t/ T, . t/
(0, + t(EL28)7 + w(ar,) + 65 080y
d
ka log( pa—T t, N[ @ —titr) - Z rhoal ity T[T 0 = tt1))

i=1 uF#l

d
XH 7, alk H H ttl aqul - 0.

i=1 uFiy i=1

d i d X i

Since [T (b )** T TI (b}, —tjt1)*! — 400 as t; — —oo, the above result
i=1 utiy i=1

implies that as ¢; — —oo,

t/ TA,. t/
B(t1) = (o}, +t:1(Z}/%8, )Tt’+tr(Mik)+tf()% +
> ok, h@ﬁ))n L —tit) Z moab i [T (08 —tit1) — 0.(84)
1=1 AL ustl

Note that the highest degree in terms of ¢; in B(¢1) is d + 2 and its corresponding
coefficient is (—1)4 H t’< 2 %"t . As B(t;) — 0ast; — —oo, it implies that
()T, t' =0, Wthh y1elds that ~i, = 0 under appropriate choice of ¢’. Similarly, the
coefficient of t{™" in B(t;)is (—1)¢ H t(3; 1/2 ! )Tt. Therefore, (E}/Q )T =0,

ik

which implies that ng = 0. With these results from (84), we see that

d

d
(Z nt, log (b, — tjty) > T (b —tit1) =0 asty — —cc.
=1

=1
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It follows that nfk = 0 forall 1 <[ < d. Now, the coefficient of ) in B(t;) is

d
o ] bt ; therefore, it implies that o, = 0. Last but not least, the coefficient of ¢;
k- 1 23 23
i=

d

. 11
now1s—lz T RO
—1

d
t) T bY . Thus, we have Y- 7/ al #] ] b = 0. By an appropriate
uF#l =1 uF#l

choice of t/, we obtain Tfk = 0forall 1 <[ < d. Repeat the above argument until we
getal = 0,8, =mn =7 =0 € R% and v; = 0 € R4, which also yields that
a;=0,i=n=1i=0€R% 3, =0 R™forall 1 <i< k.
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