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Abstract: This paper studies identifiability and convergence behaviors for parameters
of multiple types, including matrix-variate ones, that arise in finite mixtures, and the
effects of model fitting with extra mixing components. We consider several notions
of strong identifiability in a matrix-variate setting, and use them to establish sharp
inequalities relating the distance of mixture densities to the Wasserstein distances of
the corresponding mixing measures. Characterization of identifiability is given for a
broad range of mixture models commonly employed in practice, including location-
covariance mixtures and location-covariance-shape mixtures, for mixtures of symmet-
ric densities, as well as some asymmetric ones. Minimax lower bounds and rates of
convergence for the maximum likelihood estimates are established for such classes,
which are also confirmed by simulation studies.
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1. Introduction

Mixture models are a popular modeling tool for making inference about heterogeneous
data [15, 18]. Under mixture modeling, data are viewed as samples from a collection
of unobserved or latent subpopulations, each positing its own distribution and associ-
ated parameters. Learning about subpopulation-specific parameters is essential to the
understanding of the underlying heterogeneity. Theoretical issues related to parame-
ter estimation in mixture models, however, remain poorly understood — as noted in
a recent textbook [5] (pg. 571), “mixture models are riddled with difficulties such as
nonidentifiability”.

Research about parameter identifiability for mixture models goes back to the early
work of [22, 23, 26] and others, and continues to attract much interest [11, 10, 7, 1].
To address parameter estimation rates, a natural approach is to study the behavior of
mixing distributions that arise in the mixture models. This approach is well-developed
in the context of nonparametric deconvolution [3, 28, 8], but these results are confined
to only a specific type of model — location mixtures. Beyond location mixtures there
have been far fewer results. In particular, for finite mixture models, a notable contribu-
tion was made by Chen, who proposed a notion of strong identifiability and established
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the convergence of the mixing distribution for a class of over-fitted finite mixtures with
scalar parameters [4]. Over-fitted finite mixtures, as opposed to exact-fitted ones, are
mixtures that allow extra mixing components in their model specification, when the
actual number of mixing components is bounded by a known constant. More recently,
Nguyen showed that the convergence of the mixing distribution is naturally under-
stood in terms of Wasserstein distance metric [19]. He established rates of convergence
of mixing distributions for a number of finite and infinite mixture models with multi-
dimensional parameters — the case of finite mixtures can be viewed as a generalization
of Chen’s results. Rousseau and Mengersen studied over-fitted mixtures in a Bayesian
estimation setting [21]. They did not study the convergence of all mixing parameters,
focusing only on the mixing probabilities associated with extra mixing components.
Finally, we mention a related literature in computer science, which focuses almost ex-
clusively on the analysis of computationally efficient procedures for clustering with
exact-fitted Gaussian mixtures (e.g., [6, 2, 13]).

Setting The goal of this paper is to establish rates of convergence for parameters
of multiple types, including matrix-variate parameters, that arise in a variety of finite
mixture models. Assume that each subpopulation is distributed according to a density
function (with respect to Lebesgue measure on an Euclidean space X ) that belongs to
a known density class

{
f(x|θ,Σ), θ ∈ Θ ⊂ Rd1 ,Σ ∈ Ω ⊂ S++

d2
, x ∈ X

}
. Here, d1 ≥

1, d2 ≥ 0, S++
d2

is the set of all d2 × d2 symmetric positive definite matrices. A finite
mixture density with k mixing components can be defined in terms of f and a discrete
mixing measure G =

∑k
i=1 piδ(θi,Σi) with k support points as follows

pG(x) =

∫
f(x|θ,Σ)dG(θ,Σ) =

k∑
i=1

pif(x|θi,Σi).

Examples for f studied in this paper include the location-covariance family (when
d1 = d2 ≥ 1) under Gaussian or some elliptical families of distributions, the location-
covariance-shape family (when d1 > d2) under the generalized multivariate Gaussian,
skew-Gaussian or the exponentially modified Student’s t-distribution, and the location-
rate-shape family (when d1 = 3, d2 = 0) under Gamma or other distributions.

As shown by [19], the convergence of mixture model parameters can be measured in
terms of a Wassertein distance on the space of mixing measuresG. LetG =

∑k
i=1 piδ(θi,Σi)

and G0 =
∑k0
i=1 p

0
i δ(θ0i ,Σ0

i ) be two discrete probability measures on Θ × Ω, which is
equipped with metric ρ. Recall the Wasserstein distance of order r, for a given r ≥ 1
(cf. [25])

Wr(G,G0) =

inf
q

∑
i,j

qijρ
r((θi,Σi), (θ

0
j ,Σ

0
j ))

1/r

,

where the infimum is taken over all joint probability distributions q on [1, . . . , k] ×
[1, . . . , k0] such that, when expressing q as a k × k0 matrix, the marginal constraints
hold:

∑
j

qij = pi and
∑
i

qij = p0
j .
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To see how convergence of mixing measure Gn in Wasserstein distances is trans-
lated to convergence of Gn’s atoms and probability masses, suppose that a sequence of
mixing measures Gn → G0 under Wr metric at a rate ωn = o(1). If all Gn have the
same number of atoms k = k0 as that of G0, then the set of atoms of Gn converge to
the k0 atoms of G0 at the same rate ωn under ρ metric. If Gn have varying kn ∈ [k0, k]
number of atoms, where k is a fixed upper bound, then a subsequence of Gn can be
constructed so that each atom of G0 is a limit point of a certain subset of atoms of
Gn — the convergence to each such limit also happens at rate ωn. Some atoms of Gn
may have limit points that are not amongG0’s atoms — the mass associated with those
atoms of Gn must vanish at the generally faster rate ωrn (since r ≥ 1).

In order to establish the rates of convergence for the mixing measureG, our strategy
is to derive sharp bounds which relate the Wasserstein distance of mixing measures
G,G′ and a distance between corresponding mixture densities pG, pG′ , such as the
variational distance V (pG, pG′). It is relatively simple to obtain upper bounds for the
variational distance of mixing densities (V for short) in terms of the Wasserstein dis-
tances Wr(G,G

′) (shorthanded by Wr). Establishing (sharp) lower bounds for V in
terms of Wr is the main challenge. Such bounds may not hold, due to a possible lack
of identifiability of the mixing measures: one may have pG = pG′ , so clearly V = 0
but G 6= G′, so that Wr 6= 0.

General theory of strong identifiability The classical identifiability condition re-
quires that pG = pG′ entail G = G′. This amounts to the linear independence of
elements f in the density class [23]. In order to establish quantitative lower bounds
on a distance of mixture densities, we employ several notions of strong identifiability,
extending from the definitions employed in [4] and [19] to handle multiple parameter
types, including matrix-variate parameters. There are two kinds of strong identifiability.
One such notion involves taking the first-order derivatives of function f with respect to
all parameters in the model, and insisting that these quantities be linearly independent
in a sense to be precisely defined. This criterion will be called “strong identifiability in
the first order”, or simply first-order identifiability. When the second-order derivatives
are also involved, we obtain the second-order identifiability criterion. It is worth noting
that prior studies on parameter estimation rates tend to center primarily on the second-
order identifiability condition or something even stronger [4, 16, 21, 19]. We show that
for exact-fitted mixtures, the first-order identifiability condition (along with additional
and mild regularity conditions) suffices for obtaining that

V (pG, pG0
) &W1(G,G0), (1)

when W1(G,G0) is sufficiently small. Moreover, for a broad range of density classes,
we also have V . W1, for which we actually obtain V (pG, pG0

) � W1(G,G0). A
consequence of this fact is that for any estimation procedure that admits the n−1/2

convergence rate for the mixture density under V distance, the mixture model parame-
ters also converge at the same rate under Euclidean metric.

Turning to the over-fitted setting, second-order identifiability along with mild regu-
larity conditions would be sufficient for establishing that for any G that has at most k
support points where k ≥ k0 + 1 and k is fixed,

V (pG, pG0) &W 2
2 (G,G0). (2)
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when W2(G,G0) is sufficiently small. The lower bound W 2
2 (G,G0) is sharp, i.e., we

cannot improve the lower bound to W r
1 for any r < 2 (notably, W2 ≥ W1). A conse-

quence of this result is, take any standard estimation method (such as the MLE) which
yields the n−1/2 convergence rate for pG, the induced rate of convergence for the mix-
ing measureG is n−1/4 underW2. This means the mixing probability mass converge at
n−1/2 rate (which recovers the result of [21]), in addition to having that the component
parameters converge at n−1/4 rate.

We also show that there is a range of mixture models with varying parameters of
multiple types that satisfies the developed strong identifiability criteria. All such mod-
els exhibit the same kinds of rate for parameter estimation. In particular, the second-
order identifiability criterion (thus the first-order identifiability) is satisfied by many
density families f including the multivariate Student’s t-distribution, the exponentially
modified multivariate Student’s t-distribution. Second-order identifiability also holds
for several mixture models with multiple types of (scalar) parameters. These results
are presented in Section 3.2.

Convergence of MLE estimators and minimax lower bounds Assuming that n-iid
sample X1, . . . , Xn are generated according to pG0 and let Ĝn be the MLE estimate
of the mixing distribution G ranging among all discrete probability distributions with
at most k support points in Θ × Ω under the over-fitted setting or among all discrete
probability distributions with exactly k0 support points in Θ×Ω under the exact-fitted
setting. The inequalities (1) and (2), along with the fact that these bounds are sharp
enable us to easily establish the convergence rates of the mixing measures, and ob-
tain minimax lower bounds. Such results are stated in Theorem 4.2, Theorem 4.3, and
Theorem 4.4. In particular, we obtain the minimax lower bound n−1/δ under W1 dis-
tance for the exact-fitted setting for any positive δ < 2. Under the over-fitted setting,
the minimax lower bound is n−1/δ under W2 distance for any positive δ < 4. The
MLE method can be shown to achieve both these rates, i.e., n−1/2 and n−1/4 up to a
logarithm term, under exact-fitted and over-fitted setting, respectively. Note, however,
that these are pointwise convergence rates, i.e., the constants C1 in Theorem 4.2 and
Theorem 4.3 depend on G0. For a fixed G0, we think that the MLE upper bound n−1/4

for the over-fitted setting is tight, but we do not have a proof.
Summarizing, the technical contributions of this paper include the following:

(i) Convergence of parameters of multiple types, including matrix-variate parame-
ters, for finite mixtures, under strong identifiability conditions.

(ii) A minimax lower bound, in the sense of Wasserstein distance W2, for estimating
mixing measures in an over-fitted setting. The maximum likelihood estimation
method is shown to achieve this lower bound, up to a logarithmic term, although
the convergence is pointwise.

(iii) Characterization results showing the applicability of our theory and the conver-
gence rates to a fairly broad range of mixture models with parameters of multiple
types, including matrix-variate ones.

(iv) Another noteworthy aspect of this work is that the settings of exact-fitted and
over-fitted mixtures are treated separately: the first-order identifiability criterion
is sufficient in the former setting, which attains convergence in W1; while the
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second-order identifiability criterion is sufficient in the latter, which achieves
convergence in W2 metric.

Finally, we note in passing that both the first and second-order identifiability are in
some sense necessary in deriving the MLE convergence rate n−1/2 and n−1/4 as de-
scribed above. Models such as location-scale Gaussian mixtures, shape-scale Gamma
mixtures and location-scale-shape skew-Gaussian mixtures do not satisfy either or both
strong identifiability conditions — we call such models “weakly identifiable”. It can be
shown that such weakly identifiable models exhibit a much slower convergence behav-
ior than the standard rates established in this paper. Such a theory is fundamentally
different from the strong identifiability theory, and will be reported elsewhere.

Paper organization The rest of the paper is organized as follows. Section 2 provides
some preliminary backgrounds and facts. Section 3 presents a general theory of strong
identifiability, by addressing the exact-fitted and over-fitted settings separately before
providing a characterization of density classes for which the general theories are appli-
cable. Section 4.1 contains consequences of the theory developed earlier – this includes
minimax lower bounds and convergence rates of maximum likelihood estimation. The
theoretical bounds are illustrated via simulations in Section 4.2. Self-contained proofs
of the key theorems are given in Section 5 while proofs of the remaining results are
presented in the Appendices.

Notation Given two densities p, q (with respect to Lebesgue measure µ), the varia-
tional distance is given by V (p, q) = (1/2)

∫
|p − q|dµ. The Hellinger distance h is

given by h2(p, q) = (1/2)
∫

(p1/2 − q1/2)2dµ.
As K,L ∈ N, the first derivative of real function g : RK×L → R of matrix Σ is

defined as a K × L matrix whose (i, j) element is ∂g/∂Σij . The second derivative

of g, denoted by
∂2g

∂Σ2
is a K2 × L2 matrix made of KL blocks of K × L matrix,

whose (i, j)-block is given by
∂

∂Σ

(
∂g

∂Σij

)
. Additionally, as N ∈ N, for function

g2 : RN × RK×L → R defined on (θ,Σ), the joint derivative between the vector

component and matrix component
∂2g2

∂θ∂Σ
=

∂2g2

∂Σ∂θ
is a (KN) × L matrix of KL

blocks for N -columns, whose (i, j)-block is given by
∂

∂θ

(
∂g2

∂Σij

)
.

Throughout the paper, for any symmetric matrix Σ ∈ Rd×d, λ1(Σ) and λd(Σ)
respectively denote its smallest and largest eigenvalue. Additionally, the expression
”&” will be used to denote the inequality up to a constant multiple where the value of
the constant is fixed within our setting. We write an � bn if both an & bn and an . bn
hold.

2. Preliminaries

First of all, we need to define our notion of distances on the space of mixing measures.
In this paper, we restrict ourselves to the space of discrete mixing measures with exactly
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k0 distinct support points on Θ×Ω, denoted by Ek0(Θ×Ω), and the space of discrete
mixing measures with at most k distinct support points on Θ×Ω, denoted byOk(Θ×
Ω). Consider a mixing measureG =

k∑
i=1

piδ(θi,Σi), where p = (p1, p2, . . . , pk) denotes

the proportion vector. Likewise, let G′ =
∑k′

i=1 p
′
iδ(θ′i,Σ′i). A coupling between p and

p′ is a joint distribution q on [1 . . . , k] × [1, . . . , k′], which is expressed as a matrix

q = (qij)1≤i≤k,1 ≤j≤k′ ∈ [0, 1]k×k
′

and admits marginal constraints
k∑
i=1

qij = p′j and

k′∑
j=1

qij = pi for any i = 1, 2, . . . , k and j = 1, 2, . . . , k′. We call q a coupling of p and

p′, and use Q(p,p′) to denote the space of all such couplings.
As in [19], our tool for analyzing the identifiability and convergence of parameters

in a mixture model is by adopting Wasserstein distances, which can be defined as the
optimal cost of moving masses from one probability measure to another [25]. For any
r ≥ 1, the r-th order Wasserstein distance between G and G′ is given by

Wr(G,G
′) =

(
inf

q∈Q(p,p′)

∑
i,j

qij(‖θi − θ′j‖+ ‖Σi − Σ′j‖)r
)1/r

.

In both occurrences in the above display, ‖ · ‖ denotes either the l2 norm for elements
in Rd or the entrywise l2 norm for matrices.

The central theme of the paper is the relationship between the Wasserstein distances
of mixing measures G,G′ and the distances of the corresponding mixture densities
pG, pG′ . Clearly, if G = G′ then pG = pG′ . Intuitively, if W1(G,G′) or W2(G,G′)
is small, so is a distance between pG and pG′ . This can be quantified by establishing
an upper bound for the distance of pG and pG′ in terms of W1(G,G′) or W2(G,G′).
There is a simple and general way to do this, by accounting for the Lipschitz property
of the density class and then appealing to Jensen’s inequality. We will not go into such
details and refer the readers to [19] (Section 2). The followings are examples of mixture
models that carry multiple types of parameter including the matrix-variate ones, along
with the aforementioned upper bounds. The proofs for such bounds can be found in
Appendix II.

Example 2.1. (Multivariate generalized Gaussian distribution [29])

Let f(x|θ,m,Σ) =
mΓ(d/2)

πd/2Γ(d/(2m))|Σ|1/2 exp(−[(x − θ)TΣ−1(x − θ)]m), where

θ ∈ Rd,m > 0, and Σ ∈ S++
d . If Θ1 is a bounded subset of Rd, Θ2 = {m ∈ R+ : 1 ≤

m ≤ m ≤ m}, and Ω =
{

Σ ∈ S++
d : λ ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, where λ, λ >

0, then for any mixing measures G1, G2, we obtain h2(pG1
, pG2

) . W 2
2 (G1, G2) and

V (pG1
, pG2

) .W1(G1, G2).

Example 2.2. (Multivariate Student’s t-distribution [20])

Let f(x|θ,Σ) =
Cν
|Σ|1/2

(
ν + (x− θ)TΣ−1(x− θ)

)−(ν+d)/2
, where ν is a fixed pos-

itive degree of freedom and Cν =
Γ((ν + d)/2)νν/2

Γ(ν/2)πd/2
. If Θ is a bounded subset of
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Rd and Ω =
{

Σ ∈ S++
d : 0 < λ ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, then for any mix-

ing measures G1, G2, we obtain h2(pG1
, pG2

) . W 2
2 (G1, G2) and V (pG1

, pG2
) .

W1(G1, G2).

Example 2.3. (Exponentially modified multivariate Student’s t-distribution)
Let f(x|θ, λ,Σ) be the density of X = Y + Z, where Y follows the multivariate t-
distribution with location parameter θ, covariance matrix Σ, fixed positive degree of
freedom ν, and Z is distributed by the product of d independent exponential distribu-
tions with combined shape parameter λ = (λ1, . . . , λd). If Θ is a bounded subset of

Rd × Rd+, and Ω =
{

Σ ∈ S++
d : 0 < λ ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, then for any

mixing measures G1, G2, we have h2(pG1 , pG2) . W 2
2 (G1, G2) and V (pG1 , pG2) .

W1(G1, G2).

Example 2.4. (Modified Gaussian-Gamma distribution)
Let f(x|θ, α, β,Σ) be the density function of X = Y + Z, where Y is distributed by
the multivariate Gaussian distribution with mean θ, covariance matrix Σ, and Z is
distributed by the product of independent Gamma distributions with combined shape
vector α = (α1, . . . , αd) and combined rate vector β = (β1, ..., βd). If Θ is a bounded

subset of Rd×Rd+×Rd+, Ω =
{

Σ ∈ S++
d : 0 < λ ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, then

for any mixing measuresG1, G2, we have h2(pG1
, pG2

) . V (pG1
, pG2

) .W1(G1, G2).

3. General theory of strong identifiability

The objective of this section is to develop a general theory according to which a small
distance between mixture densities pG and pG′ entails a small Wasserstein distance
between mixing measures G and G′. The classical identifiability criteria require that
pG = pG′ entail G = G′, which is essentially equivalent to a linear independence re-
quirement for the class of density family {f(x|θ,Σ)|θ ∈ Θ,Σ ∈ Ω}. To obtain quan-
titative bounds, we shall need stronger notions of identifiability, ones which involve
higher order derivatives of the density function f , taken with respect to the mixture
model parameters. The strength of this theory is that it holds generally for a fairly
broad range of mixture models, which allows for the same bounds on the Wasserstein
distances. This in turn leads to “standard” rates of convergence for mixing measures.

3.1. Definitions and general identifiability bounds

Definition 3.1. The family {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is identifiable in the first-order
if f(x|θ,Σ) is differentiable in (θ,Σ) and the following holds

A1. For any finite k different pairs (θ1,Σ1), ..., (θk,Σk) ∈ Θ × Ω, if we have αi ∈
R, βi ∈ Rd1 and symmetric matrices γi ∈ Rd2×d2 (for all i = 1, . . . , k) such
that for almost all x

k∑
i=1

αif(x|θi,Σi) + βTi
∂f

∂θ
(x|θi,Σi) + tr

(
∂f

∂Σ
(x|θi,Σi)T γi

)
= 0,
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then, αi = 0, βi = 0 ∈ Rd1 , γi = 0 ∈ Rd2×d2 for i = 1, . . . , k.

Remark The condition that γi is symmetric in Definition 3.1 is crucial, without
which the identifiability condition would fail for many classes of density. Indeed, as-

sume that
∂f

∂Σ
(x|θi,Σi) are symmetric matrices for all i, which clearly holds for ellip-

tical distributions such as multivariate Gaussian, Student’s t-distribution, and logistics
distribution. Now, if we choose γi to be anti-symmetric matrices with zero diagonal
elements, αi = 0, βi = 0, then the equation in (A1) holds even when γi 6= 0 for all i.

Additionally, we say the family of densities f is uniformly Lipschitz up to the
first order if the following holds: there are positive constants δ1, δ2 such that for any
R1, R2, R3 > 0, γ1 ∈ Rd1 , γ2 ∈ Rd2×d2 , R1 ≤

√
λ1(Σ) ≤

√
λd2(Σ) ≤ R2,

‖θ‖ ≤ R3, θ1, θ2 ∈ Θ, Σ1,Σ2 ∈ Ω, there are positive constants C(R1, R2) and C(R3)
such that for all x ∈ X∣∣∣∣γT1 (∂f∂θ (x|θ1,Σ)− ∂f

∂θ
(x|θ2,Σ)

)∣∣∣∣ ≤ C(R1, R2)‖θ1 − θ2‖δ1‖γ1‖, (3)∣∣∣∣∣tr
((

∂f

∂Σ
(x|θ,Σ1)− ∂f

∂Σ
(x|θ,Σ2)

)T
γ2

)∣∣∣∣∣ ≤ C(R3)‖Σ1 − Σ2‖δ2‖γ2‖. (4)

First-order identifiability is sufficient for deriving a lower bound of V (pG, pG0
) in

terms of W1(G,G0), under the exact-fitted setting: This is the setting where G0 has
exactly k0 support points lying in the interior of Θ× Ω:

Theorem 3.1. (Exact-fitted setting) Suppose that the density family f is identifiable
in the first order and admits a uniform Lipschitz property up to the first order. Then
there are positive constants ε0 and C0, both depending on G0, such that as long as
G ∈ Ek0(Θ×Ω), the set of mixing measures with exact order k0, andW1(G,G0) ≤ ε0,
we have

V (pG, pG0
) ≥ C0W1(G,G0).

Although no boundedness condition on Θ or Ω is required, this lower bound is of
a local nature, in the sense that it holds only for those G sufficiently close to G0 by a
Wassertein distance at most ε0, which again varies with G0. It is possible to extend this
type of bound to hold globally over a compact subset of the space of mixing measures,
under a mild regularity condition, as the following corollary asserts:

Corollary 3.1. Suppose that all assumptions of Theorem 3.1 hold. Furthermore, there
is a positive constant α > 0 such that for any G1, G2 ∈ Ek0(Θ × Ω), we have
V (pG1

, pG2
) . Wα

1 (G1, G2). Then, for a fixed compact subset G of Ek0(Θ × Ω),
there is a positive constant C0 = C0(G0) such that

V (pG, pG0) ≥ C0W1(G,G0) for all G ∈ G.

We shall verify in the sequel that the classes of densities f described in Examples
2.1, 2.2, and 2.3 are all identifiable in the first order. Combining with the upper bounds
for V , we arrive at a remarkable fact for these density classes, that

V (pG, pG0
) �W1(G,G0).
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Moving to the over-fitted setting, where G0 has exactly k0 support points lying in
the interior of Θ × Ω, but k0 is unknown and only an upper bound for k0 is given, a
stronger identifiability condition is required. This condition generalizes that of [4]:

Definition 3.2. The family {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is identifiable in the second-
order if f(x|θ,Σ) is twice differentiable in (θ,Σ) and the following assumption holds

A2. For any finite k different pairs (θ1,Σ1), ..., (θk,Σk) ∈ Θ × Ω, if we have αi ∈
R, βi, νi ∈ Rd1 , γi, ηi symmetric matrices in Rd2×d2 as i = 1, . . . , k such that
for almost all x

k∑
i=1

{
αif(x|θi,Σi) + βTi

∂f

∂θ
(x|θi,Σi) + νTi

∂2f

∂θ2
(x|θi,Σi)νi +

tr

(
∂f

∂Σ
(x|θi,Σi)T γi

)
+ 2νTi

[
∂

∂θ

(
tr

(
∂f

∂Σ
(x|θi,Σi)T ηi

))]
+

tr

(
∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θi,Σi)T ηi

))T
ηi

)}
= 0,

then, αi = 0, βi = νi = 0 ∈ Rd1 , γi = ηi = 0 ∈ Rd2×d2 for i = 1, . . . , k.

In addition, we say the family of densities f is uniformly Lipschitz up to the sec-
ond order if the following holds: there are positive constants δ3, δ4 such that for any
R4, R5, R6 > 0, γ1 ∈ Rd1 , γ2 ∈ Rd2×d2 , R4 ≤

√
λ1(Σ) ≤

√
λd2(Σ) ≤ R5,

‖θ‖ ≤ R6, θ1, θ2 ∈ Θ, Σ1,Σ2 ∈ Ω, there are positive constants C1 depending on
(R4, R5) and C2 depending on R6 such that for all x ∈ X

|γT1 (
∂2f

∂θ2
(x|θ1,Σ)− ∂2f

∂θ2
(x|θ2,Σ))γ1| ≤ C1‖θ1 − θ2‖δ31 ‖γ1‖22,

∣∣∣∣∣tr
([

∂

∂Σ

(
tr
(
∂f

∂Σ
(x|θ,Σ1)T γ2

))
− ∂

∂Σ

(
tr
(
∂f

∂Σ
(x|θ,Σ2)T γ2

))]T
γ2

)∣∣∣∣∣ ≤
C2‖Σ1 − Σ2‖δ42 ‖γ2‖22.

Let k ≥ 2 and k0 ≥ 1 be fixed positive integers where k ≥ k0 + 1. G0 ∈ Ek0 while
G varies in Ok. Then, we can establish the following results

Theorem 3.2. (Over-fitted setting)

(a) Assume the density family f is identifiable in the second order and admits a
uniform Lipschitz property up to the second order. Moreover, Θ is a bounded
subset of Rd1 and Ω is a subset of S++

d2
such that the largest eigenvalues of

elements of Ω are bounded above. Additionally, assume that for each θ ∈ Θ, for
each x ∈ X except a finite number of values in X , we have lim

λ1(Σ)→0
f(x|θ,Σ) =

0. Then there are positive constants ε0 and C0 depending on G0 such that as
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long as G ∈ Ok(Θ × Ω), the set of mixing measures with their orders bounded
above by k, and W2(G,G0) ≤ ε0, we have

V (pG, pG0) ≥ C0W
2
2 (G,G0).

(b) (Optimality of bound for variational distance) Assume that f is second-order
differentiable with respect to θ,Σ and all of its second derivatives are integrable
uniformly for all θ,Σ. Then, for any 1 ≤ r < 2:

lim
ε→0

inf
G∈Ok(Θ×Ω)

{
V (pG, pG0

)/W r
1 (G,G0) : W1(G,G0) ≤ ε

}
= 0.

(c) (Optimality of bound for Hellinger distance) Assume that f is second-order dif-
ferentiable with respect to θ, Σ and for some sufficiently small c0 > 0,

sup
‖θ−θ′‖+‖ Σ−Σ′‖≤c0

∫
x∈X

(
∂2f

∂θα1∂Σα2
(x|θ,Σ)

)2

/f(x|θ′ ,Σ′)dx <∞

where α1 ∈ Nd1 , α2 ∈ Nd2×d2 in the partial derivative of f take any combina-
tion such that |α1|+ |α2| = 2. Then, for any 1 ≤ r < 2:

lim
ε→0

inf
G∈Ok(Θ×Ω)

{
h(pG, pG0)/W r

1 (G,G0) : W1(G,G0) ≤ ε
}

= 0.

Here and elsewhere, ratio V/Wr is set to be∞ if Wr(G,G0) = 0. Some remarks:

(i) A version of part (a) for finite mixtures with multivariate parameters was first
given in [19] (Proposition 1 and Theorem 1). The original statement of Nguyen’s
Theorem 1 contains a mistake, as it claims something unnecessarily stronger:
V (pG1 , pG2)/W 2

2 (G1, G2) is bounded away from 0 as both G1 and G2 are suf-
ficiently close to G0 in the sense of W2. This is not true, unless both G1 and G2

have the same number of support points as G0. 1 This error can be corrected in
the overfitted setting, by fixing G2 to G0, and allowing only G1 ≡ G to vary
near G0. This is precisely our current statement of part (a) stated for the more
general matrix-variate mixture models.

(ii) The condition lim
λ1(Σ)→0

f(x|θ,Σ) = 0 is important for the matrix-variate param-

eter Σ. In particular, it is useful for addressing the scenario when the smallest
eigenvalue of matrix parameter Σ is not bounded away from 0. It is simple to see
that this condition is satisfied for the examples discussed in the previous section.
For instance, for the multivariate generalized Gaussian distribution, it holds for
each θ ∈ Θ, and x 6= θ. Note also that this condition can be removed if we addi-
tionally impose that all Σ ∈ Ω are positive definite matrices whose eigenvalues
are bounded away from 0.

1A counterexample was pointed out to the second author by Elisabeth Gassiat, who attributed it to Jonas
Kahn. A similar error is also present in Lemma 2 of [4], which admits the same correction described above.
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(iii) Part (b) demonstrates the sharpness of the bound in part (a). In particular, we
cannot improve the lower bound in part (a) to any quantity W r

1 (G,G0) for any
r < 2. For any estimation method that yields n−1/2 convergence rate under the
Hellinger distance for pG, part (a) induces n−1/4 convergence rate under W2 for
G. A consequence of part (c) is a minimax lower bound n−1/4 for estimating the
mixing measure G. See Section 4.1 for formal statements of such results.

(iv) It is also worth mentioning that the boundedness of Θ, as well as the boundedness
from above of the eigenvalues of elements of Ω are both necessary conditions
for the conclusion of part (a) to hold. Indeed, it is possible to show that if one
of these two conditions is not met, we are not able to obtain the lower bound of
V (pG, pG0

) as established, because the distance h ≥ V can vanish much faster
than the distance Wr(G,G0), as can be seen by:

Proposition 3.1. Let Θ be a subset of Rd1 and Ω = S++
d2

. Then for any r ≥ 1 and
β > 0 we have

lim
ε→0

inf
G∈Ok(Θ×Ω)

{
exp

(
1

W β
r (G,G0)

)
h(pG, pG0

) : Wr(G,G0) ≤ ε
}

= 0.

Finally, as in the exact-fitted setting, to establish the bound V & W 2
2 in a global

manner, we simply add a compactness condition on the subset within which G varies:

Corollary 3.2. Suppose that all assumptions of Theorem 3.2 (part (a)) hold. Further-
more, there is a positive constant α ≤ 2 such that for any G1, G2 ∈ Ok(Θ × Ω), we
have V (pG1 , pG2) .Wα

2 (G1, G2). Then, for a fixed compact subset O of Ok(Θ×Ω)
there is a positive constant C0 = C0(G0) such that

V (pG, pG0) ≥ C0W
2
2 (G,G0) for all G ∈ O.

A consequence of this result is, take any standard estimation method such as the
MLE, which yields the n−1/2 convergence rate for pG, the induced rate of conver-
gence for the mixing measure G is n−1/4 under W2. This also entails that the mixing
probability masses converge at the n−1/2 rate (which recovers the result of [21]), in
addition to having that the component parameters converge at the n−1/4 rate.

3.2. Characterization of strong identifiability

In this subsection we identify a fairly broad range of density classes for which the
strong identifiability conditions developed previously hold either in the first or the sec-
ond order. Then we also present general results which show how strong identifiablity
conditions continue to be preserved under certain transformations with respect to the
parameter space. First, we consider univariate density functions with parameters of
multiple types:

Theorem 3.3. (Densities with multiple scalar parameters)



N. Ho and X. Nguyen/Convergence rates of parameter estimation 12

(a) Generalized univariate logistic densities: Let f(x|θ, σ) :=
1

σ
f ((x− θ)/σ),

where f(x) =
Γ(p+ q)

Γ(p)Γ(q)

exp(px)

(1 + exp(x))p+q
, and p, q are fixed in N+. Then the

family {f(x|θ, σ), θ ∈ R, σ ∈ R+} is identifiable in the second order.

(b) Generalized Gumbel densities: Let f(x|θ, σ, λ) :=
1

σ
f((x − θ)/σ, λ), where

f(x, λ) =
λλ

Γ(λ)
exp(−λ(x+exp(−x))) as λ > 0. Then the family {f(x|θ, σ, λ),

θ ∈ R, σ ∈ R+, λ ∈ R+} is identifiable in the second order.

(c) Weibull densities: Let f(x|ν, λ) =
ν

λ

(x
λ

)ν−1

exp
(
−
(x
λ

)ν)
, for x ≥ 0, where

ν, λ > 0 are shape and scale parameters, respectively. Then the family {f(x|ν, λ),
ν ∈ R+, λ ∈ R+} is identifiable in the second order.

(d) Von Mises densities [12, 14, 17]: Let f(x|µ, κ) =
1

2πI0(κ)
exp(κ cos(x −

µ)).1{x∈[0,2π)}, where µ ∈ [0, 2π), κ > 0, and I0(κ) is the modified Bessel
function of order 0. Then the family {f(x|µ, κ), µ ∈ [0, 2π), κ ∈ R+} is identi-
fiable in the second order.

Next, we turn to the density function classes with matrix-variate parameter spaces,
as introduced in Section 2:

Theorem 3.4. (Densities with matrix-variate parameters)

(a) The family
{
f(x|θ,Σ,m), θ ∈ Rd,Σ ∈ S++

d ,m ≥ 1
}

of multivariate general-
ized Gaussian distribution is identifiable in the first order.

(b) The family
{
f(x|θ,Σ), θ ∈ Rd,Σ ∈ S++

d

}
of multivariate t-distribution with

fixed odd degree of freedom is identifiable in the second order.
(c) The family

{
f(x|θ,Σ, λ), θ ∈ Rd,Σ ∈ S++

d , λ ∈ Rd+
}

of exponentially modified
multivariate t-distribution with fixed odd degree of freedom is identifiable in the
second order.

(d) The family
{
f(x|θ,Σ, a, b), θ ∈ Rd,Σ ∈ S++

d , a ∈ Rd+, b ∈ Rd+
}

of modified
Gaussian-Gamma distribution is not identifiable in the first order.

These theorems are the matrix-variate or multiple parameter-type counterparts of
results proven for density classes with a single scalar parameter [4]. As the proofs of
these results are technically involved, we present only the proof of Theorem 3.4 in the
Appendix. A useful insight one can draw from these proofs is that the strong identi-
fiability of these density classes are established by exploiting how the corresponding
characteristic functions and moment generating functions behave at infinity. Thus it
can be concluded that the common feature in establishing strong identifiability hinges
on the smoothness of the density f in question.

Some additional details: regarding part (a), as the class of multivariate Gaussian
distribution (m = 1) is not identifiable in the second order, the conclusion of this
part only holds for the first-order identifiability. However, if we impose the constraint
m > 1, the class of multivariate generalized Gaussian distributions is identifiable in
the second order. The condition odd degree of freedom in part (b) and (c) of Theorem
3.4 is mainly due to our proof technique. We believe both (b) and (c) hold for any fixed
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positive degree of freedom, but do not have a proof. Finally, the conclusion of part (d)
is due to the fact that family of Gamma distribution is not identifiable in the first order.

The results of Theorem 3.4 shed light on which classes of distribution satisfy the
inequality being established in Theorem 3.1 and Theorem 3.2. A consequence is the
following: take any standard estimation method (such that the MLE) which yields the
n−1/2 convergence rate for pG, the induced rate of convergence for the mixing measure
G is n−1/2 under W1 for the exact-fitted setting or n−1/4 under W2 for the over-
fitted setting. From the definition of Wasserstein distances, under the MLE, the mixing
probabilities’ estimate converge at the n−1/2 rate; while the component parameters
converge at the rate n−1/2 for the exact-fitted setting, and n−1/4 for the over-fitted
setting.

Before ending this section, we state a result in response to a question posed by
Xuming He on strong identifiability in transformed parameter spaces. The following
theorem asserts that the first-order identifiability with respect to a transformed parame-
ter space is preserved under some regularity conditions of the transformation operator.
Let T be a bijective mapping from Θ∗ × Ω∗ to Θ× Ω such that

T (η,Λ) = (T1(η,Λ), T2(η,Λ)) = (θ,Σ)

for all (η,Λ) ∈ Θ∗ × Ω∗, where Θ∗ ⊂ Rd1 , Ω∗ ⊂ S++
d2

. Define the class of density
functions {g(x|η,Λ), η ∈ Θ∗,Λ ∈ Ω∗} by

g(x|η,Λ) := f(x|T (η,Λ)).

Additionally, for any (η,Λ) ∈ Θ∗ × Ω∗, let J(η,Λ) ∈ R(d1+d22)×(d1+d22) be the modi-
fied Jacobian matrix of T (η,Λ), i.e. the usual Jacobian matrix when (η,Λ) is taken as
a d1 + d2

2 vector.

Theorem 3.5. Assume that {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is identifiable in the first order.
Then the class of density functions {g(x|η,Λ), η ∈ Θ∗,Λ ∈ Ω∗} is identifiable in the
first order if and only if the modified Jacobian matrix J(η,Λ) is non-singular for all
(η,Λ) ∈ Θ∗ × Ω∗.

The conclusion of Theorem 3.5 still holds if we replace the first-order identifiability
by the second-order identifiability. This type of results allows us to construct more
examples of strongly identifiable density classes.

As we have seen previously, strong identifiablity (either in the first or second order)
yields sharp lower bounds of V (pG, pG0

) in terms of Wasserstein distancesWr(G,G0).
It is useful to know that in the transformed parameter space, one may still enjoy the

same inequality. Specifically, for any discrete probability measureQ =
k0∑
i=1

piδ(ηi,Λi) ∈
Ek0(Θ∗ × Ω∗), denote

p′Q(x) =

∫
g(x|η,Λ)dQ(η,Λ) =

k0∑
i=1

pig(x|ηi,Λi).

Let Q0 to be a fixed discrete probability measure on Ek0(Θ∗ × Ω∗), while probability
measure Q varies in Ek0(Θ∗ × Ω∗).
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Corollary 3.3. Assume that the conditions of Theorem 3.5 hold. Further, suppose that
the first derivative of f in terms of θ,Σ and the first derivative of T in terms of η,Λ
are α-Hölder continuous and bounded where α > 0. Then there are positive constants
ε0 := ε0(Q0) and C0 := C0(Q0) such that as long as Q ∈ Ek0(Θ∗ × Ω∗) and
W1(Q,Q0) ≤ ε0, we have

V (p′Q, p
′
Q0

) ≥ C0W1(Q,Q0).

Remark. If Θ and Ω are bounded sets, the condition on the boundedness of the first
derivative of f in terms of θ,Σ and the first derivative of g in terms of η,Λ can be left
out. Additionally, the restriction that these derivatives be α-Hölder continuous can be
relaxed to only that the first derivative of f and the first derivative of g are α1-Hölder
continuous and α2-Hölder continuous where α1, α2 > 0 can be different. Finally, the
conclusion of Corollary 3.3 still holds for the lower boundW 2

2 (Q,Q0) if we impose the
second-order identifiability on the kernel density f as well as the additional structures
on the second derivative of T .

4. Minimax lower bounds, MLE rates and illustrations

4.1. Minimax lower bounds and MLE rates of convergence

Given n-iid sample X1, X2, ..., Xn distributed according to the mixture density pG0
,

where G0 is an unknown true mixing distribution with exactly k0 support points, and
the class of densities {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is assumed known. Given k ∈ N such
that k ≥ k0 + 1. The support points of G0 lie in Θ×Ω. In this section we shall assume
that Θ is a compact subset of Rd1 and Ω =

{
Σ ∈ S++

d2
: λ ≤

√
λ1(Σ) ≤

√
λd2(Σ) ≤

λ
}

, where 0 < λ, λ are known and d1 ≥ 1, d2 ≥ 0. We denote Θ∗ = Θ × Ω. The
maximum likelihood estimator for G0 in the over-fitted mixture setting is given by

Ĝn = arg max
G∈Ok(Θ×Ω)

n∑
i=1

log(pG(Xi)).

For the exact-fitted mixture setting, Ok is replaced by Ek0 .
The inequalities established by Theorem 3.1 and Theorem 3.2 allow us to translate

existing results on convergence rates (under Hellinger distance) of maximum likelihood
density estimation to that of the mixing measure (under Wasserstein distance metrics).
Under standard assumptions, the convergence rate for density estimation using finite
mixture densities is (log n/n)1/2. Then it follows that the convergence rate for the
mixing measure under W1 distance in the exact-fitted setting is also (log n/n)1/2. For
the over-fitted setting, the rate is (log n/n)1/4 under W2 distance.

To state such results formally, we need to introduce several standard notions, which
will allow us to appeal to a general convergence theorem for the MLE (e.g., [24]). For
any positive integer number k1, define several classes of mixture densities Pk1(Θ∗) =

{pG : G ∈ Ok1(Θ∗)}, Pk1(Θ∗) =
{
pG+G0

2
: G ∈ Ok1(Θ∗)

}
, and
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P1/2

k1 (Θ∗) =

{(
pG+G0

2

)1/2

: G ∈ Ok1(Θ∗)

}
. For any δ > 0, define the intersection

with a Hellinger ball centered at pG0
via

P1/2

k1 (Θ∗, δ) =

{(
pG+G0

2

)1/2

∈ P1/2

k1 : h(pG+G0
2

, pG0) ≤ δ
}
.

The size of this set is captured by the entropy integral:

JB(δ,P1/2

k1 (Θ∗, δ), µ) =

δ∫
δ2/213

H
1/2
B (u,P1/2

k1 (Θ∗, u), µ)du ∨ δ,

where HB denotes the bracketing entropy of P1/2

k1 (Θ∗) under L2 distance (cf. [24] for
a definition of the bracket entropy).

Before arriving at the main results in this section, we state the result of Theorem 7.4
of [24] with the adaption of notations as those in our paper

Theorem 4.1. Take Ψ(δ) ≥ JB(δ,P1/2

k (Θ∗, δ), µ) in such a way that Ψ(δ)/δ2 is a
non-increasing function of δ. Then, for a universal constant c and for

√
nδ2
n ≥ cΨ(δn),

we have for all δ ≥ δn

P (h(pGn
, pG0

) > δ) ≤ c exp

[
−nδ

2

c2

]
.

Now, we are ready to state a general result on the MLE under the exact-fitted mixture
setting:

Theorem 4.2. (Exact-fitted mixtures) Assume that f satisfies the conditions of The-

orem 3.1. Take Ψ(δ) ≥ JB(δ,P1/2

k0 (Θ∗, δ), µ0) in such a way that
Ψ(δ)

δ2
is a non-

increasing function of δ. Then for a universal constant c, constant C1 = C1(Θ∗), a
non-negative sequence {δn} such that

√
nδ2
n ≥ cΨ(δn),

and for all δ ≥ δn√
C1

, we have

P (W1(Ĝn, G0) > δ) ≤ c exp

(
−nC

2
1δ

2

c2

)
.

Proof. By Theorem 3.1,

C1(Θ∗)W 2
1 (G,G0) ≤ V 2(pG, pG0

) ≤ 2h2(pG, pG0
) for all G ∈ Ek0(Θ∗), (5)
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where C1(Θ∗) is a positive constant depending only on Θ∗ and G0. Now, invoking
Theorem 4.1, as δ ≥ δn, there is a universal constant c > 0 such that

P (h(pĜn
, pG0) > δ) ≤ c exp

(
−nδ

2

c2

)
. (6)

Combining (5) and (6), we readily achieve the conclusion of our theorem.

Using the same argument we arrive at a general convergence rate result of the MLE
under the over-fitted setting:

Theorem 4.3. (Over-fitted mixtures) Assume that f satisfies the conditions in part

(a) of Theorem 3.2. Take Ψ(δ) ≥ JB(δ,P1/2

k (Θ∗, δ), µ0) in such a way that
Ψ(δ)

δ2
is a

non-increasing function of δ. Then for a universal constant c, constant C1 = C1(Θ∗),
{δn} is a non-negative sequence such that

√
nδ2
n ≥ cΨ(δn),

and for all δ ≥ δn√
C1

, we have

P (W2(Ĝn, G0) > δ1/2) ≤ c exp

(
−nC

2
1δ

2

c2

)
.

To derive the concrete rates δn, one simply need to verify the conditions on the
bracket entropy integral JB for a given model class. As a concrete example, the follow-
ing results are concerned with the finite mixtures of multivariate generalized Gaussian
distributions.

Corollary 4.1. (Mixtures of multivariate generalized Gaussian distributions) Given
Θ = [−an, an]d× [m,m] where an ≤ L(log(n))γ as L is some positive constant, γ >
0, and 1 < m ≤ m are two known positive numbers. Let {f(x|θ,m,Σ)|(θ,m) ∈ Θ,Σ
∈ Ω} to be the class of multivariate generalized Gaussian distributions.

(a) (Exact-fitted case) There holds P (W1(Ĝn, G0) > δn) . exp(−c log(n)), where
δn is a sufficiently large multiple of (log(n)/n)1/2 and c is positive constant
depending only on L, γ,m,m, λ, λ.

(b) (Over-fitted case) There holds P (W2(Ĝn, G0) > δ′n) . exp(−c log(n)), where
δ′n is a sufficiently large multiple of (log(n)/n)1/4 and c is positive constant
depending only on L, γ,m,m, λ, λ.

Remark (i) The condition m > 1 can be relaxed to m ≥ 1 under the exact-fitted
setting; however, it is crucial under the over-fitted setting that m > 1. In fact, the
location-covariance Gaussian mixtures (which correspond to m = 1) have to be ex-
cluded from the class of generalized Gaussian mixtures for the above results to hold.
This is a consequence of the fact that the (sub)class of location-covariance multivari-
ate Gaussian distributions is not identifiable in the second order. In fact, the failure to
satisfy the second-order identifiability leads to very slow convergence rate of the MLE
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under the over-fitted location-scale Gaussian mixture setting, as we noted briefly in
the introduction. (ii) The conclusions of this corollary also hold for mixtures of multi-
variate Student’s t-distribution as well as all the classes of distributions considered in
Theorem 3.3 with suitable boundedness conditions on the parameter spaces.

Finally, we shall show that the convergence rates n−1/2 and n−1/4 for the exact-
fitted and over-fitted finite mixtures, respectively, are in fact minimax lower bounds.
Under the exact-fitted finite mixture setting, it is simple to establish the standard n−1/2

minimax lower bound:

inf
Ĝn∈Ek0

sup
G0∈Ek0

EpG0
W1(Ĝn, G0) & n−1/2,

where the infimum is taken over all possible sequences of estimate Ĝn based on n-
samples. Perhaps more interesting is the following minimax lower bound result for the
over-fitted mixture setting.

Theorem 4.4. (Minimax lower bound for over-fitted mixtures) If the class of den-
sities f satisfies condition (c) of Theorem 3.2, then for any positive r < 4 and any
n ≥ 1,

inf
Ĝn∈Ok

sup
G0∈Ok\Ok0−1

EpG0
W1(Ĝn, G0) & n−1/r.

Proof. The proof is almost immediate following a standard argument for establishing
minimax lower bounds. Fix a G0 ∈ Ek0 and r ∈ [1, 2). Let C0 > 0 be any fixed
constant. According to Theorem 3.2, part (c), for any sufficiently small ε > 0, there
exists G′0 ∈ Ok such that W1(G0, G

′
0) = 2ε and h(pG0

, pG′0) ≤ C0ε
r. Applying

Lemma 1 from [27], for any sequence of estimates Ĝn ranging in Ok, we obtain that

sup
G∈{G0,G′0}

EpGW1(Ĝn, G) ≥ ε
(

1− V (pnG0
, pnG′0)

)
,

where pnG0
denotes the density of the n-iid sample X1, . . . , Xn. Now,

V (pnG0
, pnG′0) ≤ h(pnG0

, pnG′0)

=
√

1−
(
1− h2(pG0

, pG′0)
)n

≤
√

1− (1− C2
0ε

2r)
n
.

As a consequence, we obtain

sup
G∈{G0,G′0}

EpGW1(Ĝn, G) ≥ ε
(

1−
√

1− (1− C2
0ε

2r)
n
)
.

By choosing ε2r =
1

C2
0n

, the right hand side of the above inequality is bounded below

by C1ε � n−1/2r for any r < 2 where C1 is some positive constant. We achieve the
conclusion of our theorem. Noting thatG0, G

′
0 ∈ Ok \Ok0−1, this concludes the proof

of our theorem.
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Fig 1: Mixture of Student’s t-distributions. Left: Exact-fitted setting. Right: Over-fitted setting.
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Fig 2: Mixture of multivariate generalized Gaussian distributions. Left: Exact-fitted setting. Right:
Over-fitted setting.

4.2. Illustrations

For the remainder of this section, we shall illustrate via simulations the strong identifi-
ability bounds established in Section 3 for several classes of distributions with matrix-
variate parameter space for which strong identifiability conditions in both the first and
second order hold. In addition, we also present some simulations for the well-known
location-scale Gaussian finite mixtures, which satisfy the first-order identifiability but
not the second-order identifiability.

Strong identifiability bounds The inequalities V & W1 for exact-fitted mixtures
and V & W 2

2 for over-fitted mixtures are illustrated for the class of Student’s t-
distributions and the class of multivariate generalized Gaussian distributions, both of
which satisfy first and second-order identifiability. See Figure 1 and Figure 2. Here we
plot h against W1 and W 2

2 , but note the relation h ≥ V ≥ h2. The upper bounds of V
and h in terms of W1 were given in Section 2.

For details, we choose Θ = [−10, 10]2 for Student’s t-distribution (Gaussian dis-
tribution) or Θ = [−10, 10]2 × [1.5, 5] for multivariate generalized Gaussian distri-
bution, Ω =

{
Σ ∈ S++

2 :
√

2 ≤
√
λ1(Σ) ≤

√
λd(Σ) ≤ 2

}
. Note that closed inter-

val [1.5, 5] is chosen for m to exclude Gaussian distributions, which corresponds to
m = 1. Now, the true mixing probability measure G0 has exactly k0 = 2 support
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points with locations θ0
1 = (−2, 2), θ0

2 = (−4, 4), covariances Σ0
1 =

(
9/4 1/5
1/5 13/6

)
,

Σ0
2 =

(
5/2 2/5
2/5 7/3

)
, m0

1 = 2, m0
2 = 3 (for the setting of multivariate generalized

Gaussian distribution), and p0
1 = 1/3, p0

2 = 2/3. 10000 random samples of discrete
mixing measures G ∈ E2(Θ × Ω), 10000 samples of G ∈ O3(Θ × Ω) were gener-
ated to construct these plots. Note that, since we focus on obtaining the lower bound of
Hellinger distance in terms of small Wasserstein distances, we generate G by making
small perturbations of G0 (that is, adding small random noise ε to the mixing coeffi-
cients and support points of G0).

It can be observed that both lower bounds and upper bounds match exactly that of
our theorems for strongly identifiable classes of distributions such as the t-distribution
and the generalized Gaussian distribution. Turning to mixtures of location-covariance
Gaussian distributions (Figure 3), the bounds

√
W1 & h & W1 continue to hold under

the exact-fitted setting, but under the over-fitted setting it can be observed that the lower
bound h & W 2

2 no longer holds. In fact, if the Gaussian mixture is over-fitted by one
extra component, it can be shown that h & W 4

4 ≥ W 4
2 (see illustrations in the middle

and right panels), and that this bound is sharp. This has a drastic consequence on the
convergence rate of the mixing measure, which we discuss next.

Convergence rates of MLE First, we generate n-iid samples from a bivariate location-
covariance Gaussian mixture with three components with an arbitrarily fixed choice of
G0. The true parameters for the mixing measureG0 are: θ0

1 = (0, 3), θ0
2 = (1,−4), θ0

3 =

(5, 2), Σ0
1 =

(
4.2824 1.7324
1.7324 0.81759

)
, Σ0

2 =

(
1.75 −1.25
−1.25 1.75

)
, Σ0

3 =

(
1 0
0 4

)
, and

p0
1 = 0.3, p0

2 = 0.4, p0
3 = 0.3. The parameter spaces Θ,Ω are identical to those of

multivariate Student’s t-distribution setting. MLE Ĝn is obtained by the EM algorithm
as we assume that the data come from a mixture of k Gaussians where k ≥ k0 = 3.
See Figure 4 where the Wasserstein distances between Ĝn and G0 are plotted against
increasing sample size n (n ≤ 30000). The error bars were obtained by running the
experiment 7 times for each n. The simulation results under the exact-fitted case match
quite well with the standard n−1/2 rate. If we fit the data to a mixture of k = k0+1 = 4
Gaussian distributions, however, we observe empirically that the convergence rate of
W4(Ĝn, G0) (thus W2 distance) is almost n−1/8 up to a logarithmic term. This result
is much slower than the “standard” convergence rate n−1/4 under W2, should second-
identifiability condition holds. A rigorous theory for weakly identifiable mixture mod-
els such as location-covariance Gaussian mixtures will be reported elsewhere.

5. Proofs of key theorems

In this section, we present self-contained proofs for two key theorems: Theorem 3.1 for
strongly identifiable mixtures in the exact-fitted setting and Theorem 3.2 for strongly
identifiable mixtures in the over-fitted setting. These moderately long proofs carry use-
ful insights underlying the theory — they are organized in a sequence of steps to help
the reader. The proofs of the remaining results are deferred to the Appendices.
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5.1. Strong identifiability in exact-fitted mixtures

PROOF OF THEOREM 3.1 It suffices to show that

lim
ε→0

inf

{
V (pG, pG0

)/W1(G,G0)|W1(G,G0) ≤ ε
}
> 0, (7)

where the infimum is taken over all G ∈ Ek0(Θ× Ω).

Step 1 Suppose that (7) does not hold, which implies that we have a sequence of

Gn =
k0∑
i=1

pni δ(θni ,Σn
i ) ∈ Ek0(Θ × Ω) converging to G0 in the W1 distance such that

V (pGn
, pG0

)/W1(Gn, G0) → 0 as n → ∞. As W1(Gn, G0) → 0, the support points
of Gn must converge to that of G0. By permutation of the labels i, it suffices to assume
that for each i = 1, . . . , k0, (θni ,Σ

n
i ) → (θ0

i ,Σ
0
i ). For each pair (Gn, G0), let {qnij}

denote the corresponding probabilities of the optimal coupling for the pair (Gn, G0),
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so we can write:

W1(Gn, G0) =
∑

1≤i,j≤k0

qnij(‖θni − θ0
j‖+ ‖Σni − Σ0

j‖).

Since (θni ,Σ
n
i )→ (θ0

i ,Σ
0
i ) andGn andG0 have the same number of support points,

it is an easy observation that for sufficiently large n, qnii = min(pni , p
0
i ). And so,∑

i6=j q
n
ij =

∑k0
i=1 |pni − p0

i |. Adopting the notations that ∆θni := θni − θ0
i , ∆Σni :=

Σni − Σ0
i , and ∆pni := pni − p0

i for all 1 ≤ i ≤ k0, we have

W1(Gn, G0) =

k0∑
i=1

qnii(‖∆θni ‖+ ‖∆Σni ‖) +
∑
i 6=j

qnij(‖θni − θ0
j‖+ ‖Σni − Σ0

j‖)

.
k0∑
i=1

pni (‖∆θni ‖+ ‖∆Σni ‖) + |∆pni | =: d(Gn, G0).

The inequality in the above display is due to qnii ≤ pni , and the observation that ‖θni −
θ0
j‖, ‖Σni − Σ0

j‖ are bounded for all 1 ≤ i, j ≤ k0 for sufficiently large n. Thus, we
have V (pGn , pG0)/d(Gn, G0)→ 0.

Step 2 Now, consider the following important identity:

pGn
(x)− pG0

(x) =

k0∑
i=1

∆pni f(x|θ0
i ,Σ

0
i ) +

k0∑
i=1

pni (f(x|θni ,Σni )− f(x|θ0
i ,Σ

0
i )).

For each x, applying Taylor expansion to function f to the first order to obtain

k0∑
i=1

pni (f(x|θni ,Σni )− f(x|θ0
i ,Σ

0
i ) =

k0∑
i=1

pni

{
(∆θni )T

∂f

∂θ
(x|θ0

i ,Σ
0
i ) +

tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T∆Σni

)}
+Rn(x),

where Rn(x) = O

(
k0∑
i=1

pni (‖∆θni ‖1+δ1 + ‖∆Σni ‖1+δ2)

)
, where the appearance of

δ1 and δ2 are due the assumed Lipschitz conditions, and the big-O constant does not
depend on x. It is clear that supx |Rn(x)/d(Gn, G0)| → 0 as n→∞.

DenoteAn(x) =
k0∑
i=1

pni

[
(∆θni )T

∂f

∂θ
(x|θ0

i ,Σ
0
i ) + tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T∆Σni

)]
and

Bn(x) =
k∑
i=1

∆pni f(x|θ0
i ,Σ

0
i ). Then, we can rewrite

(pGn
(x)− pG0

(x))/d(Gn, G0) = (An(x) +Bn(x) +Rn(x))/d(Gn, G0).
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Step 3 We see that An(x)/d(Gn, G0) and Bn(x)/d(Gn, G0) are linear combina-

tions of the scalar elements of f(x|θ,Σ),
∂f

∂θ
(x|θ,Σ) and

∂f

∂Σ
(x|θ,Σ) such that the

coefficients do not depend on x. We shall argue that not all such coefficients in the
linear combination converge to 0 as n → ∞. Indeed, if the opposite is true, then the
summation of the absolute values of these coefficients must also tend to 0:{ k0∑

i=1

|∆pni |+ pni (‖∆θni ‖1 + ‖∆Σni ‖1)

}
/d(Gn, G)→ 0.

Since the entrywise `1 and `2 norms are equivalent, the above entails
{∑k0

i=1 |∆pni |+

pni (‖∆θni ‖ + ‖∆Σni ‖)
}
/d(Gn, G0) → 0, which contradicts with the definition of

d(Gn, G0). As a consequence, we can find at least one coefficient of the elements of
An(x)/d(Gn, G0) or Bn(x)/d(Gn, G0) that does not vanish as n→∞.

Step 4 Let mn be the maximum of the absolute value of the scalar coefficients of
An(x)/d(Gn, G0), Bn(x)/d(Gn, G0) and dn = 1/mn, then dn is uniformly bounded
from above for all n. Thus, as n→∞,

dnAn(x)/d(Gn, G0) →
k0∑
i=1

βTi
∂f

∂θ
(x|θ0

i ,Σ
0
i ) + tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T γi

)
,

dnBn(x)/d(Gn, G0) →
k0∑
i=1

αif(x|θ0
i ,Σ

0
i ),

such that not all scalar elements of αi, βi and γi vanish. Moreover, γi are symmetric
matrices because Σni are symmetric matrices for all n, i. Note that

dnV (pGn , pG0)/d(Gn, G0) =

∫
dn|pGn(x)− pG0(x)|/d(Gn, G0)

=

∫
dn|An(x) +Bn(x) +Rn(x)|/d(Gn, G0) dx→ 0.

By Fatou’s lemma, the integrand in the above display vanishes for almost all x. Thus,
for almost all x

k0∑
i=1

αif(x|θ0
i ,Σ

0
i ) + βTi

∂f

∂θ
(x|θ0

i ,Σ
0
i ) + tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T γi

)
= 0.

By the first-order identifiability criteria of f , we have αi = 0, βi = 0 ∈ Rd1 , and
γi = 0 ∈ Rd2×d2 for all i = 1, 2, ..., k, which is a contradiction. Hence, (7) is proved.

5.2. Strong identifiability in over-fitted mixtures

PROOF OF THEOREM 3.2 (a) We only need to establish that

lim
ε→0

inf
G∈Ok(Θ)

{
sup
x∈X
|pG(x)− pG0(x)|/W 2

2 (G,G0) : W2(G,G0) ≤ ε
}
> 0. (8)
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The conclusion of the theorem follows from an application of Fatou’s lemma in the
same manner as Step 4 in the proof of Theorem 3.1.

Step 1 Suppose that (8) does not hold, then we can find a sequence Gn ∈ Ok(Θ)
tending to G0 in W2 distance and sup

x∈X
|pGn

(x)− pG0
(x)|/W 2

2 (Gn, G0) → 0 as n →
∞. Since k is finite, there is some k∗ ∈ [k0, k] such that there exists a subsequence of
Gn having exactly k∗ support points. We cannot have k∗ = k0, due to Theorem 3.1
and the fact that W 2

2 (Gn, G0) .W1(Gn, G0) for all n. Thus, k0 + 1 ≤ k∗ ≤ k.

Write Gn =
k∗∑
i=1

pni δ(θni ,Σn
i ) and G0 =

k0∑
i=1

p0
i δ(θ0i ,Σ0

i ). Since W2(Gn, G0) → 0,

there exists a subsequence ofGn such that each support point (θ0
i ,Σ

0
i ) ofG0 is the limit

of a subset of si ≥ 1 support points ofGn. There may also a subset of support points of
Gn whose limits are not among the support points ofG0 — we assume there arem ≥ 0
such limit points. To avoid notational cluttering, we replace the subsequence of Gn by
the whole sequence {Gn}. By re-labeling the support points, Gn can be expressed by

Gn =

k0+m∑
i=1

si∑
j=1

pnijδ(θnij ,Σn
ij)

W2−→ G0 =

k0+m∑
i=1

p0
i δ(θ0i ,Σ0

i )

where (θnij ,Σ
n
ij) → (θ0

i ,Σ
0
i ) for each i = 1, . . . , k0 + m, j = 1, . . . , si, p0

i = 0 for
i < k0, and we have that pni· :=

∑si
j=1 p

n
ij → p0

i for all i. Moreover, the constraint

k0 + 1 ≤∑k0+m
i=1 si ≤ k must hold.

We note that if matrix Σ is (strictly) positive definite whose maximum eigenvalue
is bounded (from above) by constant M , then Σ is also bounded under the entrywise
`2 norm. However if Σ is only positive semidefinite, it can be singular and its `2 norm
potentially unbounded. In our context, for i ≥ k0 + 1 it is possible that the limiting
matrices Σ0

i can be singular. It comes from the fact that the some eigenvalues of Σnij can
go to 0 as n→∞, which implies det(Σnij)→ 0 and hence det(Σ0

i ) = 0. By re-labeling
the support points, we may assume without loss of generality that Σ0

k0+1, . . . ,Σ
0
k0+m1

are (strictly) positive definite matrices and Σ0
k0+m1+1, . . . ,Σ

0
k0+m are singular and

positive semidefinite matrices for some m1 ∈ [0,m]. For those singular matrices, we
shall make use of the assumption that for each θ ∈ Θ, except a finite number of values
of x ∈ X , we have lim

λ1(Σ)→0
f(x|θ,Σ) = 0 and the fact that θnij as k0 + m1 + 1 ≤

i ≤ k0 + m will converge to at most m − m1 ≤ k − k0 limit points: accordingly,
for all x except a finite number of values in X , f(x|θnij ,Σnij) → 0 as n → ∞ for all
k0 + m1 + 1 ≤ i ≤ k0 + m, 1 ≤ j ≤ si. Here, we denote f(x|θ0

i ,Σ
0
i ) = 0 for all

k0 +m1 + 1 ≤ i ≤ k0 +m.

Step 2 Using shorthand notations ∆θnij := θnij − θ0
i , ∆Σnij := Σnij − Σ0

i for i =
1, . . . , k0 +m1 and j = 1, . . . , si, it is simple to see that

W 2
2 (Gn, G0) . d(Gn, G0) :=

k0+m1∑
i=1

si∑
j=1

pnij(‖∆θnij‖2 + ‖∆Σnij‖2) +

k0+m∑
i=1

∣∣pni. − p0
i

∣∣,
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because W 2
2 (Gn, G0) is the optimal transport cost with respect to `22, while d(Gn, G0)

corresponds to a multiple of the cost of a possibly non-optimal transport plan, which
is achieved by coupling the atoms (θnij ,Σ

n
ij) for j = 1, . . . , si with (θ0

i ,Σ
0
i ) by mass

min(pni·, p
0
i ), while the remaining masses are coupled arbitrarily. From the assumption,

sup
x∈X
|pGn

(x)− pG0
(x)|/W 2

2 (Gn, G0) vanishes in the limit, it also implies that

sup
x∈X
|pGn(x)− pG0(x)|/d(Gn, G0)→ 0.

For each x, we make use of the key identity:

pGn
(x)− pG0

(x) =

k0+m1∑
i=1

si∑
j=1

pnij(f(x|θnij ,Σnij)− f(x|θ0
i ,Σ

0
i ))

+

k0+m1∑
i=1

(pni. − p0
i )f(x|θ0

i ,Σ
0
i ) +

k0+m∑
i=k0+m1+1

si∑
j=1

pnijf(x|θnij ,Σnij)

:= An(x) +Bn(x) + Cn(x). (9)

Step 3 By means of Taylor expansion up to the second order:

An(x) =

k0+m1∑
i=1

si∑
j=1

pnij(f(x|θnij ,Σnij)− f(x|θ0
i ,Σ

0
i )) =

k0+m1∑
i=1

∑
α

Anα1,α2
(θ0
i ,Σ

0
i )

+Rn(x),

where α = (α1, α2) such that α1 + α2 ∈ {1, 2}. Specifically,

An1,0(θ0
i ,Σ

0
i ) =

si∑
j=1

pnij(∆θ
n
ij)

T ∂f

∂θ
(x|θ0

i ,Σ
0
i ),

An0,1(θ0
i ,Σ

0
i ) =

si∑
j=1

pnij tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T∆Σnij

)
,

An2,0(θ0
i ,Σ

0
i ) =

1

2

si∑
j=1

pnij(∆θ
n
ij)

T ∂
2f

∂θ2
(x|θ0

i ,Σ
0
i )∆θ

n
ij ,

An0,2(θ0
i ,Σ

0
i ) =

1

2

si∑
j=1

pnij tr

(
∂

∂Σ

(
tr

(
∂

∂Σ
(x|θ0

i ,Σ
0
i )
T∆Σnij

))T
∆Σnij

)
,

An1,1(θ0
i ,Σ

0
i ) = 2

si∑
j=1

(∆θnij)
T

[
∂

∂θ

(
tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T∆Σnij

))]
.

In addition, Rn(x) = O

(∑k0+m1

i=1

∑si
j=1 p

n
ij(‖∆θnij‖2+δ + ‖∆Σnij‖2+δ)

)
due to the

second-order Lipschitz condition. It is clear that supx |Rn(x)|/d(Gn, G0) → 0 as
n→∞.
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Step 4 Write Dn := d(Gn, G0) for short. Note that (pGn(x) − pG0(x))/Dn is a
linear combination of the scalar elements of f(x|θ,Σ) and its derivatives taken with
respect to θ and Σ up to the second order, and evaluated at the distinct pairs (θ0

i ,Σ
0
i ) for

i = 1, . . . , k0+m. (To be specific, the elements of f(x|θ,Σ),
∂f

∂θ
(x|θ,Σ),

∂f

∂Σ
(x|θ,Σ),

∂2f

∂θ2
(x|θ,Σ),

∂2f

∂θ2
(x|θ,Σ),

∂2f

∂Σ2
(x|θ,Σ), and

∂2f

∂θ∂Σ
(x|θ,Σ)). In addition, the coeffi-

cients associated with these elements do not depend on x. As in the proof of Theo-
rem 3.1, we shall argue that not all such coefficients vanish as n → ∞. Indeed, if this
is not true, then by taking the summation of all the absolute value of the coefficients

associated with the elements of
∂2f

∂θ2
l

as 1 ≤ l ≤ d1 and
∂2f

∂Σ2
uv

for 1 ≤ u, v ≤ d2, we

obtain
k0+m1∑
i=1

si∑
j=1

pnij(‖∆θnij‖2 + ‖∆Σij‖2)/Dn → 0.

Therefore,
k0+m∑
i=1

|pni. − p0
i |/Dn → 1 as n → ∞. It implies that we should have at

least one coefficient associated with an element of f(x|θ,Σ) (appearing in Bn(x)/Dn,
Cn(x)/Dn) not converging to 0 as n → ∞, which is a contradiction. As a conse-
quence, not all the coefficients vanish to 0.

Step 5 Let mn be the maximum of the absolute value of the aforementioned coeffi-
cients. and set dn = 1/mn. Then, dn is uniformly bounded above when n is sufficiently
large. Therefore, as n→∞, we obtain

dnBn(x)/Dn →
k0+m1∑
i=1

αif(x|θ0
i ,Σ

0
i ),

dn

k0+m1∑
i=1

An1,0(θ0
i ,Σ

0)/Dn →
k0+m1∑
i=1

βTi
∂f

∂θ
(x|θ0

i ,Σ
0
i ),

dn

k0+m1∑
i=1

An0,1(θ0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T γi

)
,

dn

k0+m1∑
i=1

An2,0(θ0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

si∑
j=1

νTij
∂2f

∂θ2
(x|θ0

i ,Σ
0
i )νij ,

dn

k0+m1∑
i=1

An0,2(θ0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

si∑
j=1

tr

(
∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T ηij

))T
ηij

)
,

dn

k0+m1∑
i=1

An1,1(θ0
i ,Σ

0
i )/Dn →

k0+m1∑
i=1

si∑
j=1

νTij

[
∂

∂θ

(
tr

(
∂

∂Σ
(x|θ0

i ,Σ
0
i )
T ηij

))]
,

where αi ∈ R, βi, νi1, . . . , νisi ∈ Rd1 , γi, ηi1, . . . , ηisi are symmetric matrices in
Rd2×d2 for all 1 ≤ i ≤ k0 + m1, 1 ≤ j ≤ si. Additionally, dnCn(x)/Dn =
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D−1
n

k0+m∑
i=k0+m1+1

si∑
j=1

dnp
n
ijf(x|θnij ,Σnij) → 0 due to the fact that for almost all x,

f(x|θnij ,Σnij) → 0 for all k0 + m1 + 1 ≤ i ≤ k0 + m, 1 ≤ j ≤ si and the fact
that dnpnij/Dn ≤ 1 for all k0 +m1 + 1 ≤ i ≤ k0 +m, 1 ≤ j ≤ si. As a consequence,
we obtain for almost all x that
k0+m1∑
i=1

{
αif(x|θ0

i ,Σ
0
i ) + βTi

∂f

∂θ
(x|θ0

i ,Σ
0
i ) +

si∑
j=1

νTij
∂2f

∂θ2
(x|θ0

i ,Σ
0
i )νij +

tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T γi

)
+ 2

si∑
j=1

νTij

[
∂

∂θ

(
tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T ηij

))]
+

si∑
j=1

tr

(
∂

∂Σ

(
tr

(
∂f

∂Σ
(x|θ0

i ,Σ
0
i )
T ηij

))T
ηij

)}
= 0. (10)

Now, in this paragraph we will argue that not all coefficients in (10) go to 0 as
n → ∞. There are two scenarios. Case 1: If mn, the maximum of all the coefficients
considered in Step 4, does not lie in the set

{
pnij/Dn

}
as k0+m1+1 ≤ i ≤ k0+m, 1 ≤

j ≤ si for infinitely many n. Then, it indicates that at least one coefficient in (10)
should be 1. Our observation is proved. Case 2: Otherwise,mn lies in the set

{
pnij/Dn

}
as k0 + m1 + 1 ≤ i ≤ k0 + m, 1 ≤ j ≤ si for infinitely many n. This means
that we can find two indices i∗ ∈ [k0 + m1 + 1, k0 + m], j∗ ∈ [1, si∗ ] such that
mn = pni∗j∗/Dn. Assume now that all of the coefficents in (10) vanish to 0. Therefore,
dn|pni.−p0

i |/Dn = |pni.−p0
i |/pni∗j∗ → 0 for all 1 ≤ i ≤ k0+m1. Since we have pni∗j∗ ≤

k0+m∑
i=k0+m1+1

si∑
j=1

pnij ≤
k0+m1∑
i=1

|pni. − p0
i |, this leads to |pni. − p0

i |/
k0+m1∑
i=1

|pni. − p0
i | → 0

for all 1 ≤ i ≤ k0 + m1 as n → ∞, which is a contradiction. Our observation is
proved.

Therefore, at least one coefficient in (10) is different from 0. However, from the
second-order identifiability of {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω}, we obtain αi = 0, βi =
νi1 = . . . = νisi = 0 ∈ Rd1 , γi = ηi1 = . . . = ηisi = 0 ∈ Rd2×d2 for all
1 ≤ i ≤ k0 + m1, which is a contradiction. This concludes the proof of Eq. (8) and
that of the theorem.

(b) Recall G0 =
k0∑
i=1

p0
i δ(θ0i ,Σ0

i ). Construct a sequence of probability measures Gn

having exactly k0 + 1 support points as follows: Gn =
k0+1∑
i=1

pni δ(θni ,Σn
i ), where θn1 =

θ0
1 −

1

n
1d1 , θ

n
2 = θ0

1 +
1

n
1d1 ,Σ

n
1 = Σ0

1 −
1

n
Id2 and Σn2 = Σ0

1 +
1

n
Id2 . Here, Id2

denotes the identity matrix in Rd2×d2 and 1n a vector with all elements being equal to

1. In addition, (θni+1,Σ
n
i+1) = (θ0

i ,Σ
0
i ) for all i = 2, . . . , k0. Also, pn1 = pn2 =

p0
1

2
and pni+1 = p0

i for all i = 2, . . . , k0. It is simple to verify that En := W r
1 (Gn, G0) =

(p0
1)r

2r
(‖θn1−θ0

1‖+‖θn2−θ0
2‖+‖Σn1−Σ0

1‖+‖Σn2−Σ0
1‖)r =

(p0
1)r

2r
(
√
d1+
√
d2)r

1

nr
�

1

nr
.
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By means of Taylor’s expansion up to the first order, we get that as n→∞

V (pGn , pG0) �
∫
x∈X

∣∣∣∣∣
2∑
i=1

∑
α1,α2

(∆θn1i)
α1(∆Σn1i)

α2
∂f

∂θα1∂Σα2
(x|θ0

1,Σ
0
1) +R1(x)

∣∣∣∣∣ dx

=

∫
x∈X

|R1(x)| dx,

where α1 ∈ Nd1 , α2 ∈ Nd2×d2 in the sum such that |α1| + |α2| = 1, R1(x) is
Taylor expansion’s remainder. The second equality in the above equation is due to
2∑
i=1

(∆θn1i)
α1(∆Σn1i)

α2 = 0 for each α1, α2 such that |α1| + |α2| = 1. Since f is

second-order differentiable with respect to θ,Σ, R1(x) takes the form

R1(x) =

2∑
i=1

∑
|α|=2

2

α!
(∆θn1i)

α1(∆Σn1i)
α2 ×

×
1∫

0

(1− t) ∂2f

∂θα1∂Σα2
(x|θ0

1 + t∆θn1i,Σ
0
1 + t∆Σn1i)dt,

where α = (α1, α2). Note that,
2∑
i=1

|∆n
1i|α1 |∆Σn1i|α2 = O(n−2). Additionally, from

the hypothesis, sup
t∈[0,1]

∫
x∈X

∣∣∣∣ ∂2f

∂θα1∂Σα2
(x|θ0

1 + t∆θn1i,Σ
0
1 + t∆Σn1i)

∣∣∣∣dx < ∞. It fol-

lows that
∫
|R1(x)| dx = O(n−2). So for any r < 2, V (pGn , pG0) = o(W r

1 (Gn, G0)).
This concludes the proof.

(c) Continuing with the same sequence Gn constructed in part (b), we have

h2(pGn , pG0) ≤ 1

2p0
1

∫
x∈X

(pGn(x)− pG0(x))2

f(x|θ0
1,Σ

0
1)

dx .
∫

x∈X

R2
1(x)

f(x|θ0
1,Σ

0
1)

dx.

where first inequality is due to
√
pGn(x)+

√
pG0(x) >

√
pG0(x) >

√
p0

1f(x|θ0
1,Σ

0
1)

and the second inequality is because of Taylor expansion taken to the first order. The
proof proceeds in the same manner as that of part (b).
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APPENDIX I

In this appendix, we give proofs of the following results: Theorem 3.4 regarding the
characterization of strong identifiability in mixture models with matrix-variate parame-
ters and most of the remained propositions and corollaries. For the transparency of our
argument, the proofs for Theorem 3.4 are restricted to only first-order identifiability.
The proof techniques are similar for the second-order identifiability.

6. Proofs of other results

6.1. Extension to the whole domain in exact-fitted mixtures

PROOF OF COROLLARY 3.1 By Theorem 3.1, there are positive constants ε =
ε(G0) and C0 = C0(G0) such that V (pG, pG0

) ≥ C0W1(G,G0) when W1(G,G0) ≤
ε. It remains to show that inf

G∈G:W1(G,G0)>ε
V (pG, pG0

)/W1(G,G0) > 0. Assume the

contrary, then we can find a sequence of Gn ∈ G and W1(Gn, G0) > ε such that
V (pGn , pG0)

W1(Gn, G0)
→ 0 as n → ∞. Since G is a compact set, we can find G′ ∈ G and

W1(G′, G0) > ε such that Gn → G′ under W1 metric. It implies that W1(Gn, G0)→
W1(G′, G0) as n → ∞. As G′ 6≡ G0, we have lim

n→∞
W1(Gn, G0) > 0. As a conse-

quence, V (pGn
, pG0

)→ 0 as n→∞.
From the hypothesis, V (pGn

, pG′) ≤ C(Θ,Ω)Wα
1 (Gn, G

′), so V (pGn
, pG′) → 0

as W1(Gn, G
′)→ 0. Thus, V (pG′ , pG0) = 0 or equivalently pG0 = pG′ almost surely.

From the first-order identifiability of {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω}, it implies that G′ ≡
G0, which is a contradiction. This completes the proof.

6.2. The importance of boundedness conditions in the over-fitted setting

PROOF OF PROPOSITION 3.1 We choose Gn =
k0+1∑
i=1

pni δ(θni ,Σn
i ) ∈ Ok(Θ× Ω)

such that (θni ,Σ
n
i ) = (θ0

i ,Σ
0
i ) for i = 1, . . . , k0, θnk0+1 = θ0

1 , Σnk0+1 = Σ0
1 +

exp(n/r)

nα
Id2 where α =

1

2β
. Additionally, pn1 = p0

1 − exp(−n), pni = p0
i for all

2 ≤ i ≤ k0, and pnk0+1 = exp(−n). With this construction, we can check that

W β
r (G,G0) = d

β/2
2 /
√
n. Now, as h2(pGn , pG0) . V (pGn , pG0), we have

exp

(
2

W β
r (Gn, G0)

)
h2(pG, pG0

) . exp

(
−n+

2
√
n

d
β/2
2

)
×∫

x∈X

|f(x|θ0
1,Σ

n
k0+1)− f(x|θ0

1,Σ
0
1)|dx,

which converges to 0 as n→∞. The conclusion of our proposition is proved.
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6.3. Characterization of strong identifiability

PROOF OF THEOREM 3.4 We only present the proof for part (a) and part (b). The
proofs for part (c) and (d) are somewhat similar and deferred to the Appendix III.
(a) Assume that for given k ≥ 1 and k different tuples (θ1,Σ1,m1), . . . , (θk,Σk,mk),
we can find αj ∈ R, βj ∈ Rd, symmetric matrices γj ∈ Rd×d, and ηj ∈ R, for
j = 1, . . . , k such that:

k∑
j=1

αjf(x|θj ,Σj ,mj) + βTj
∂f

∂θ
(x|θj ,Σj ,mj) + tr

(
∂f

∂Σ
(x|θj ,Σj ,mj)

T γj

)
+ηj

∂f

∂m
(x|θj ,Σj ,mj) = 0,

Substituting the first derivatives of f to get

k∑
j=1

{
α′j+

(
(β′j)

T (x− θj) + (x− θj)T γ′j(x− θj)
)
×

[
(x− θj)TΣ−1

j (x− θj)
]mj−1

+ η′j log[(x− θj)TΣ−1
j (x− θj)]

}
×

exp

(
−
[
(x− θj)TΣ−1

j (x− θj)
]mj

)
= 0, (11)

where

α′j =

2αjmjΓ(d/2)−mjΓ(d/2) tr(Σ−1
j γj) + 2ηjΓ(d/2)

(
1− d

2mj
ψ

(
d

2mj

))
2πd/2Γ(d/(2mj))|Σj |1/2

,

β′j =
2m2

jΓ(d/2)

πd/2Γ(d/(2mj))|Σj |1/2
Σ−1
j βj , γ′j =

m2
jΓ(d/2)

πd/2Γ(d/(2mj))|Σj |1/2
Σ−1
j γjΣ

−1
j , and

η′j =
−mjηjΓ(d/2)

πd/2Γ(d/(2mj))|Σj |1/2
.

Without loss of generality, assume m1 ≤ m2 ≤ . . . ≤ mk. Let i ∈ [1, k] be the
maximum index such that m1 = mi. As the tuples (θi,Σi,mi) are distinct, so are the
pairs (θ1,Σ1), . . . , (θi,Σi). In what follows, we represent x by x = x1x

′ where x1 is
scalar and x′ ∈ Rd. Define

ai = (x′)T γ′ix
′, bi =

[
(β′i)

T − 2θTi γ
′
i

]
x′, ci = θTi γ

′
iθi − (β′i)

T θi,

di = (x′)TΣ−1
i x′, ei = −2(x′)TΣ−1

i θi, fi = θTi Σ−1
i θi.

Borrowing a technique from [26], since (θ1,Σ1), . . . , (θi,Σi) are distinct, we have two
possibilities:

Possibility 1 If Σj are the same for all 1 ≤ j ≤ i, then θ1, . . . , θi are distinct. For
any i < j, denote ∆ij = θi − θj . Note that if x′ /∈

⋃
1≤i<j≤i

{
u ∈ Rd : uT∆ij = 0

}
,
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which is a finite union of hyperplanes, then (x′)T θ1, . . . , (x
′)T θi are distinct. Hence, if

we choose x′ ∈ Rd outside this union of hyperplanes, we have ((x′)T θ1, (x
′)TΣ1x

′),
. . . , ((x′)T θi, (x

′)TΣix
′) are distinct.

Possibility 2 If Σj are not the same for all 1 ≤ j ≤ i, then we assume without loss
of generality that Σ1, . . . ,Σm are the only distinct matrices from Σ1, . . . ,Σi, where
m ≤ i. Denote δij = Σi − Σj as 1 ≤ i < j ≤ m, then as x′ does not belong to⋃
1≤i<j≤m

{
u ∈ Rd : uT δiju = 0}, we have (x′)TΣ1x

′, . . . , (x′)TΣmx
′ are distinct.

Therefore, if x′ does not belong to
⋃

1≤i<j≤m

{
u ∈ Rd : uT δiju = 0

}
, which is a finite

union of conics, then we have ((x′)T θ1, (x
′)TΣ1x

′), . . . , ((x′)T θm, (x
′)TΣmx

′) are
distinct. Additionally, for any θj where m+ 1 ≤ j ≤ i that shares the same Σi where
1 ≤ i ≤ m, using the argument in the first case, we can choose x′ outside a finite
hyperplane such that these (x′)T θj are again distinct. Hence, for x′ outside a finite
union of conics and hyperplanes, ((x′)T θ1, (x

′)TΣ1x
′), . . . , ((x′)T θi, (x

′)TΣix
′) are

all different.
Combining these two cases, we can find a set D, which is a finite union of conics

and hyperplanes, such that for x′ /∈ D, ((x′)T θ1, (x
′)TΣ1x

′), . . . ((x′)T θi, (x
′)TΣix

′)
are distinct. Thus, (di, ei) are different as 1 ≤ i ≤ i.

Choose di1 = min
1≤i≤i

{di}. Denote J =
{

1 ≤ i ≤ i : di = di1
}

. Choose 1 ≤ i2 ≤ i

such that ei2 = max
i∈J
{ei}. Now, we define for all 1 ≤ i ≤ k that

Ai(x1) = α′i + (aix
2
1 + bix1 + ci)(dix

2
1 + eix1 + fi)

mi−1 + η′i log(dix
2
1 + eix1 + fi).

Multiplying both sides of (11) with exp−(di2x
2
1 + ei2x1 + fi2)mi2 , we get

Ai2(x1) +
∑
j 6=i2

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
= 0. (12)

Note that if j ∈ J\{i2}, dj = di2 , mj = mi2 , and ej > ei2 . So,

(di2x
2
1 + ei2x1 + fi2)mi2 − (djx

2
1 + ejx1 + fj)

mj . −x1 as x1 is large enough.

This implies that when x1 →∞,

B1(x1) :=
∑

j 6=J\{i2}

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
→ 0.

On the other hand, if j /∈ J and 1 ≤ j ≤ i, then dj > di2 and mi2 = mj . So,

(di2x
2
1 + ei2x1 + fi2)mi2 − (djx

2
1 + ejx1 + fj)

mj . −x2mi2
1 as x1 is large enough.
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This implies that when x1 →∞,

B2(x1) :=
∑
j /∈J,

1≤j≤i

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
→ 0.

Otherwise, if j > i, then mj > mi2 . So, (di2x
2
1 + ei2x1 + fi2)mi2 − (djx

2
1 + ejx1 +

fj)
mj . −x2mj

1 . As a result,

B3(x1) :=
∑
j>i

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)mi2 −

(djx
2
1 + ejx1 + fj)

mj

]
→ 0.

Now, by letting x1 →∞,∑
j 6=i2

Aj(x1) exp

[
(di2x

2
1 + ei2x1 + fi2)mi2 − (djx

2
1 + ejx1 + fj)

mj

]
=

A1(x) +A2(x) +A3(x) → 0.(13)

Combining (12) and (13), we obtain that as x1 → ∞, Ai2(x1) → 0. The only possi-
bility for this result to happen is ai2 = bi2 = η′i2 = 0. Or, equivalently, (x′)T γ′i2x

′ =[
(β′i)

T − 2θTi2γ
′
i2

]
x′ = 0. If γ′i2 6= 0, we can choose the element x′ /∈ D lying outside

the hyperplane
{
u ∈ Rd : uT γ′i2u = 0

}
. It means that (x′)T γ′i2x

′ 6= 0, which is a con-
tradiction. Therefore, γ′i2 = 0. It implies that (β′i2)Tx′ = 0. If β′i2 6= 0, we can choose
x′ /∈ D such that (β′i2)Tx′ 6= 0. Hence, β′i2 = 0. With these results, α′i2 = 0. Overall,
we obtain α′i2 = β′i2 = γ′i2 = η′i2 = 0. Repeating the same argument to the remaining
parameters α′j , β

′
j , γ
′
j , η
′
j , we get α′j = β′j = γ′j = η′j = 0 for 1 ≤ j ≤ k. It is also

equivalent that αj = βj = γj = ηj = 0 for all 1 ≤ j ≤ k. This concludes the proof of
part (a) of our theorem.

(b) Consider that for given k ≥ 1 and k different pairs (θ1,Σ1), ..., (θk,Σk), where
θj ∈ Rd, Σj ∈ S++

d for all 1 ≤ j ≤ k, we can find αj ∈ R, βj ∈ Rd, and symmetric
matrices γj ∈ Rd×d such that:

k∑
j=1

αjf(x|θj ,Σj) + βTj
∂f

∂θ
(x|θj ,Σj) + tr(

∂f

∂Σ
(x|θj ,Σj)T γj) = 0. (14)

Multiplying both sides with exp(itTx) and taking the integral in Rd, after direct calcu-
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lations, the above equation can be rewritten as

k∑
j=1

[ ∫
Rd

(
α′j exp(i(Σ

1/2
j t)Tx)

(ν + ‖x‖2)(ν+d)/2
+

exp(i(Σ
1/2
j t)Tx)(β′j)

Tx

(ν + ‖x‖2)(ν+d+2)/2
+

exp(i(Σ
1/2
j t)Tx)xTMjx

(ν + ‖x‖2)(ν+d+2)/2

)
dx

]
exp(itT θj) = 0, (15)

whereα′j = αj−
tr(Σ−1

j γj)

2
, β′j =

(ν + d)

2
Σ−1/2βj , andMj =

ν + d

2
Σ
−1/2
j γjΣ

−1/2
j .

To simplify the left hand side of equation (15), it is sufficient to calculate the fol-

lowing quantities A =

∫
Rd

exp(itTx)

(ν + ‖x‖2)(ν+d)/2
dx, B =

∫
Rd

exp(itTx)(β′)Tx

(ν + ‖x‖2)(ν+d+2)/2
dx,

and C =

∫
Rd

exp(itTx)xTMx

(ν + ‖x‖2)(ν+d+2)/2
dx, where β′ ∈ Rd and M = (Mij) ∈ Rd×d.

In fact, by using an orthogonal transformation x = O.z, where O ∈ Rd×d and its

first column to be (
t1
‖t‖ , ...,

td
‖t‖ )T , we can verify that exp(itTx) = exp(i‖t‖z1),

‖x‖2 = ‖z‖2, and dx = |det(O)|dz = dz and then we obtain the following results:

A =

∫
Rd

exp(i‖t‖z1)

(ν + ‖z‖2)(ν+d)/2
dz

=

∫
R

exp(i‖t‖z1)

∫
R

...

∫
R

1

(ν + ‖z‖2)(ν+d)/2
dzddzd−1...dz1

= C1A1(‖t‖),

whereC1 =

d∏
j=2

∫
R

1

(1 + z2)(ν+j)/2
dz andA1(t′) =

∫
R

exp(i|t′|z)
(v + z2)(ν+1)/2

dz for any t′ ∈

R. Hence, for all 1 ≤ j ≤ k∫
Rd

exp(i(Σ
1/2
j t)Tx)

(ν + ‖x‖2)(ν+d)/2
dx = C1A1(‖Σ1/2

j t‖). (16)

Turning to B and C, by the same line of calculations we obtain

B =

 d∑
j=1

Oj1β
′
j

∫
Rd

exp(ittz1)z1

(ν + ‖z‖2)(ν+d+2)/2
dz =

 d∑
j=1

Oj1β
′
j

C2A2(‖t‖)

=
C2(β′)T tA2(‖t‖)

‖t‖ .
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where C2 =

d∏
j=2

∫
R

1

(1 + z2)(ν+2+j)/2
dz and A2(t′) =

∫
R

exp(i|t′|z)z
(ν + z2)(ν+3)/2

dz for any

t′ ∈ R.

C = C3(

d∑
j=1

Mjj)A1(‖t‖) + (
∑
jl

MjlOj1Ol1)(C2A3(‖t‖)− C3A1(‖t‖))

= C3(

d∑
j=1

Mjj)A1(‖t‖) +
1

‖t‖2 (
∑
j,l

Mjltjtl)(C2A3(‖t‖)− C3A1(‖t‖)).

where we can define C3 =

∫
R

z2

(1 + z2)(ν+4)/2
dz

k∏
j=3

∫
R

1

(1 + z2)(ν+2+j)/2
dz and

A3(t′) =

∫
R

exp(i|t′|z)z2

(ν + z2)(ν+3)/2
dz for any t′ ∈ R. Thus, for all 1 ≤ j ≤ d

∫
Rd

exp(i(Σ
1/2
j t)Tx)(β′j)

Tx

(ν + ‖x‖2)(ν+d+2)/2
dx =

C2(β′j)
TΣ

1/2
j tA2(‖Σ1/2

j t‖)
‖t‖ . (17)

∫
Rd

exp(i(Σ
1/2
j t)Tx)xTMjx

(ν + ‖x‖2)(ν+d+2)/2
dx =

1

‖Σ1/2
j t‖2

(
∑
u,v

M j
uv[Σ

1/2
j t]u[Σ

1/2
j t]v)×

×(C2A3(‖Σ1/2
j t‖)− C3A1(‖Σ1/2

j t‖)) + C3(

d∑
l=1

M j
ll)A1(‖Σ1/2

j t‖), (18)

where M j
uv indicates the element at u-th row and v-th column of Mj and [Σ

1/2
j t]u

simply means the u-th component of Σ
1/2
j t.

As a consequence, by combining (16),(17), and (18), we can rewrite (15) as:

k∑
j=1

[
α′jA1(‖Σ1/2

j t‖) + C2

(Σ
1/2
j t)Tβ′j

‖Σ1/2
j t‖

A2(‖Σ1/2
j t‖) + C3(

d∑
l=1

M j
ll)A1(‖Σ1/2

j t‖) +

(∑
u,v

M j
uv

[Σ
1/2
j t]u[Σ

1/2
j t]v

‖Σ1/2
j t‖2

)
(C2A3(‖Σ1/2

j t‖)− C3A1(‖Σ1/2
j t‖))

]
exp(itT θj) = 0.

Define t = t1t
′, where t1 ∈ R and t′ ∈ Rd. By using the same argument as in the

case of the multivariate generalized Gaussian distribution, we can findD to be the finite
union of conics and hyperplanes such that as t′ /∈ D, ((t′)T θ1, (t

′)TΣ1t
′), ...((t′)T θk, (t

′)TΣkt
′)

are pairwise distinct. By denoting θ′j = (t′)T θj , σj = (t′)TΣjt
′, we can rewrite the
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above equation as:

k∑
j=1

[
α′jA1(σj |t1|) + C2

t1(Σ
1/2
j t′)Tβ′j
|t1|σj

A2(σj |t1|) + C3(

d∑
l=1

M j
ll)A1(σj |t1|) +

(∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

)
(C2A3(σj |t1|)− C3A1(σj |t1|)

]
exp(iθ′jt1) = 0.

Since A2(σj |t1|) = (i|t1|)A1(σj |t1|), the above equation can be rewritten as:

k∑
j=1

[(
α′j + C3(

d∑
l=1

M j
ll)− C3

(∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

))
| ×

×A1(σj |t1|) + C2

(∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

)
A3(σj |t1|) +

C2(it1)
(Σ

1/2
j t′)Tβ′j
σj

A1(σj |t1|)
]

exp(iθ′jt1) = 0. (19)

As ν is an odd number, we assume ν = 2l − 1. By using a classical result in complex
analysis, we obtain for any m ∈ N that
+∞∫
−∞

exp(i|t1|z)
(z2 + ν)m

dz =
2π exp(−|t1|

√
2l − 1)

(2
√

2l − 1)2m−1

 m∑
j=1

(
2m− 1− j
m− j

)
(2|t1|

√
2l − 1)j−1

(j − 1)!

 .
It means that we can write A1(t1) = C4 exp(−|t1|

√
2l − 1)

l−1∑
u=0

au|t1|u, where C4 =

2π

(2
√

2l − 1)2l−1
, au =

(
2l − u− 2

l − u− 1

)
(2
√

2l − 1)u

u!
.

Simultaneously, as A3(t1) = A1(t1)− ν
∫
R

exp(i|t1|z)
(ν + z2)(ν+3)/2

dz, we can write

A3(t1) = C4 exp(−|t1|
√

2l − 1)

l∑
u=0

bu|t1|u,

where bu =

[(
2l − u− 2

l − u− 1

)
− 1

4

(
2l − u
l − u

)]
(2
√

2l − 1)u

u!
as 0 ≤ u ≤ l − 1, and

bl = −1

4

(2
√

2l − 1)l

l!
. It is not hard to notice that a0, al−1, bl 6= 0.

Now, for all t1 ∈ R, equation (19) can be rewritten as:

k∑
j=1

[(
α
′′

j + β
′′

j (it1)
) l−1∑
u=0

auσ
u
j |t1|u + γ

′′

j

l∑
u=0

buσ
u
j |t1|u

]
×

exp
(
itθ′j − σj

√
2l − 1|t1|

)
= 0,
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whereα
′′

j = α′j+C3(
d∑
l=1

M j
ll)−C3(

∑
u,v
M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

), β
′′

j = C2

(Σ
1/2
j t′)Tβ′j
σj

,

and γ
′′

j = C2(
∑
u,v
M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

). The above equation yields that for all

t1 ≥ 0

k∑
j=1

[(
α
′′

j + β
′′

j (it1)
) l−1∑
u=0

auσ
u
j t
u
1 + γ

′′

j

l∑
u=0

buσ
u
j t
u
1

]
×

exp
(
it1θ

′
j − σj

√
2l − 1t1

)
= 0. (20)

Using the Laplace transformation on both sides of (20) and denoting cj = σj
√

2l − 1−
iθ′j as 1 ≤ j ≤ k, we obtain that as Re(s) > max

1≤j≤k

{
−σj
√

2l − 1
}

k∑
j=1

α
′′

j

l−1∑
u=0

u!auσ
u
j

(s+ cj)u+1
+ iβ

′′

j

l∑
u=1

u!au−1σ
u−1
j

(s+ cj)u+1
+

γ
′′

j

l∑
u=0

u!buσ
u
j

(s+ cj)u+1
= 0. (21)

Without loss of generality, we assume that σ1 ≤ σ2 ≤ ... ≤ σk. It demonstrates
that −σ1

√
2l − 1 = max

1≤j≤k

{
−σj
√

2l − 1
}

. Denote aju = auσ
u
j and bju = buσ

u
j for all

u. By multiplying both sides of (21) with (s + c1)l+1, as Re(s) > −σ1

√
2l − 1 and

s → −c1, we obtain |iβ′′1 l!a1
l−1 + γ

′′

1 bll!b
1
l | = 0 or equivalently β

′′

1 = γ
′′

1 = 0 since
a1
l−1, b

1
l 6= 0. Likewise, multiply both sides of (21) with (s + c1)l and using the same

argument, as s → −c1, we obtain α
′′

1 = 0. Overall, we obtain α
′′

1 = β
′′

1 = γ
′′

1 = 0.
Continue in this fashion until we get α

′′

j = β
′′

j = γ
′′

j = 0 for all 1 ≤ j ≤ k or
equivalently αj = βj = γj = 0 for all 1 ≤ j ≤ k.

As a consequence, for all 1 ≤ j ≤ k, we have

α′j + C3(

d∑
l=1

M j
ll)− C3(

∑
u,v

M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

) = 0,
(Σ

1/2
j t′)Tβ′j
σj

= 0,

and
∑
u,v
M j
uv

[Σ
1/2
j t′]u[Σ

1/2
j t′]v

σ2
j

= 0. Since
∑
u,v
M j
uv[Σ

1/2
j t′]u[Σ

1/2
j t′]v = (t′)TΣ

1/2
j MjΣ

1/2
j t′ =

(t′)T γjt
′, it is equivalent that

α′j + C3(

d∑
l=1

M j
ll) = 0, (t′)TΣ

1/2
j β′j = 0, and (t′)T γjt

′ = 0.

By the same argument as that of part (a), we readily obtain that α′j = 0, β′j =

0 ∈ Rd, and γj = 0 ∈ Rd×d. From the formation of α′j , β
′
j , it follows that αj = 0,

βj = 0 ∈ Rd, and γj = 0 ∈ Rd×d for all 1 ≤ j ≤ k. We achieve the conclusion of
part (b) of our theorem.
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APPENDIX II

For completeness in this appendix we verify the statements made in Examples 2.1, 2.2,
2.3, and 2.4. The proofs are long but elementary. We start with the following definition:

Definition 6.1. We call density function f : Rd → R+ to be a type I density function
with parameter α1 ≥ 1 if for any bounded subset Θ ∈ Rd, we can find a positive
constant C(Θ) such that h2(f(x−θ1), f(x−θ2)) ≤ C(Θ)‖θ1−θ2‖α1 for all θ1, θ2 ∈
Θ.

Lemma 6.1. (a) If f(x) = Cα exp(−‖x‖2α) for all x ∈ R, where α ≥ 1 and

Cα =
αΓ(d/2)

πd/2Γ(d/(2α))
, then f is a type I density function with parameter α1 = 2.

(b) If f(x) = Cν(ν + ‖x‖2)−(ν+d)/2 for all x ∈ R, where Cν =
Γ((ν + d)/2)νν/2

Γ(ν/2)πd/2
,

d ≥ 1, ν > 0, then f is a type I density function with parameter α1 = 2.

Proof. (a) Denote θ = θ1 − θ2. We can find M = M(Θ) such that ‖θ‖2 ≤ M .
We need to show that h2(f(x + θ), f(x)) ≤ C‖θ‖α for all θ ≤ M , where C and
α are some positive constants. Let D =

{
x ∈ Rd : ‖x+ θ‖ ≥ ‖x‖

}
. We can write

h2(f(‖x+ θ‖2), f(‖x‖2)) as

h2(f(x+ θ), f(x)) = Cα

∫
Rd

(
exp(| |x+ θ‖2α

2
)− exp(

‖x‖2α
2

)

)2

exp(‖x+ θ‖2α) exp(‖x‖2α)
dx

= Cα

∫
D

(
exp(| |x+ θ‖2α

2
)− exp(

‖x‖2α
2

)

)2

exp(‖x+ θ‖2α) exp(‖x‖2α)
dx+

+Cα

∫
Dc

(
exp(| |x+ θ‖2α

2
)− exp(

‖x‖2α
2

)

)2

exp(‖x+ θ‖2α) exp(‖x‖2α)
dx. (22)

Denote A =

∫
D

(
exp(| |x+ θ‖2α

2
)− exp(

‖x‖2α
2

)

)2

exp(‖x+ θ‖2α) exp(‖x‖2α)
dx and

B =

∫
Dc

(
exp(| |x+ θ‖2α

2
)− exp(

‖x‖2α
2

)

)2

exp(‖x+ θ‖2α) exp(‖x‖2α)
dx. We obtain

A =

∫
D

(
1− exp

(‖x‖2α − ‖x+ θ‖2α
2

))2

exp(‖x‖2α)
dx ≤ 1

4

∫
D

(
‖x+ θ‖2α − ‖x‖2α

)2
exp(‖x‖2α)

dx, (23)
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where the last inequality is due to 1 − exp(−x) ≤ x as x ≥ 0. By the mean value
theorem, by denoting g(x) = ‖x‖2α, which is differentiable in Rd, we can find cx ∈
(0, 1) such that∥∥|x+ θ‖2α − ‖x‖2α

∣∣ =

∣∣∣∣∂g∂x (cx(x+ θ) + (1− cx)x)T θ

∣∣∣∣
≤ 2α‖θ‖‖cx(x+ θ) + (1− cx)x‖2α−1

≤ 2α‖θ‖(‖x‖+ ‖θ‖)2α−1

≤ 2α22α−2‖θ‖(‖x‖2α−1 + ‖θ‖2α−1).

Combining the above inequality with (23), we obtain

A ≤ α224α−4‖θ‖2
∫
D

(
‖x‖2α−1 + ‖θ‖2α−1

)2
exp(

‖x‖2α
2α

)

dx.

For each non-negative real number a, by means of spherical coordinates in Rd, we can
verify that

∫
Rd

‖x‖a
exp(‖x‖2α)

dx =

2π∫
0

π∫
0

...

π∫
0

∞∫
0

Ra

exp(R2α)
d(V ) <∞.

where d(V ) = Rd−1 sin(φ1)d−2 sin(φ2)d−3... sin(φd−2)dRdφ1...dφd−1.

As a consequence, since ‖θ‖ ≤M , we have
∫
D

(
‖x‖2α−1 + ‖θ‖2α−1

)2
exp(‖x‖2α)

dx ≤M1, for

some positive constant M1. This implies that

A ≤ α224α−4M1‖θ‖2 = O(‖θ‖2). (24)

By the same argument,

B = O(‖θ‖2). (25)

Combining (22), (24), and (25), we achieve the conclusion of part (a) with α1 = 2.
(b) Using the same argument as that of part (a), we can write h2(f(x+ θ), f(x)) as

h2(f(x+ θ), f(x)) = Cν

∫
D

(
(ν + ‖x+ θ‖2)(ν+d)/4 − (ν + ‖x‖2)(ν+d)/4

)2
[(ν + ‖x+ θ‖2)(ν + ‖x‖2)]

(ν+d)/2
dx

+Cν

∫
Dc

(
(ν + ‖x+ θ‖2)(ν+d)/4 − (ν + ‖x‖2)(ν+d)/4

)2
[(ν + ‖x+ θ‖2)(ν + ‖x‖2)]

(ν+d)/2
dx. (26)

Denote A′ =

∫
D

(
(ν + ‖x+ θ‖2)(ν+d)/4 − (ν + ‖x‖2)(ν+d)/4

)2
[(ν + ‖x+ θ‖2)(ν + ‖x‖2)]

(ν+d)/2
dx and
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B′ =

∫
Dc

(
(ν + ‖x+ θ‖2)(ν+d)/4 − (ν + ‖x‖2)(ν+d)/4

)2
[(ν + ‖x+ θ‖2)(ν + ‖x‖2)]

(ν+d)/2
dx. Then,

A′ =

∫
D

(
(ν + ‖x+ θ‖2)ν+d − (ν + ‖x‖2)ν+d

)2
/E dx,

where E =
(
(ν + ‖x+ θ‖2)(ν+d)/2 + (ν + ‖x‖2)(ν+d)/2

)2
(ν + ‖x+ θ‖2)(ν+d)/4+

+(ν + ‖x‖2)(ν+d)/4)2
[
(ν + ‖x+ θ‖2)(ν + ‖x‖2)

](ν+d)/2
. Note that E ≥ (ν + ‖x+

θ‖2)2(ν+d)(ν + ‖x‖2)(ν+d)/2, and so

A′ ≤
∫
D

(
(ν + ‖x+ θ‖2)ν+d − (ν + ‖x‖2)ν+d

)2
(ν + ‖x+ θ‖2)2(ν+d)(ν + ‖x‖2)(ν+d)/2

dx

=

∫
D

(
1−

(
ν + ‖x‖2

ν + ‖x+ θ‖2
)ν+d

)2

(ν + ‖x‖2)(ν+d)/2
dx.

As x ∈ D, we have ν+‖x‖2 < ν+‖x+θ‖2. Additionally, since ν+d > 1, by means
of Bernoulli’s inequality,(

ν + ‖x‖2
ν + ‖x+ θ‖2

)ν+d

=

(
1− ‖x+ θ‖2 − ‖x‖2

ν + ‖x+ θ‖2
)ν+d

≥ 1− (ν + d)
‖x+ θ‖2 − ‖x‖2
ν + ‖x+ θ‖2 .

Hence,

A′ ≤ (ν + d)2

∫
D

(
‖x+ θ‖2 − ‖x‖2

)2
(ν + ‖x+ θ‖2)2(ν + ‖x‖2)(ν+d)/2

dx.

Notice that

‖x+ θ‖2 − ‖x‖2
ν + ‖x+ θ‖2 =

‖θ‖2 + 2θTx

ν + ‖x+ θ‖2 =

d∑
i=1

θ2
i + 2θixi

ν +
d∑
i=1

(xi + θi)2

≤

d∑
i=1

2|θ2
i + θixi|

ν +
d∑
i=1

(xi + θi)2

≤
d∑
i=1

2|θ2
i + θixi|

ν + (xi + θi)2
.

Since
2|θ2

i + θixi|
ν + (xi + θi)2

≤ |θi‖xi + θi|√
ν|xi + θi|

=
|θi|√
ν

, it yields that
‖x+ θ‖2 − ‖x‖2
ν + ‖x+ θ‖2 ≤

‖θ‖1√
ν
≤
√
d√
ν
‖θ‖. Hence,

A′ ≤ d(ν + d)2

ν

∫
D

1

(ν + ‖x‖2)(ν+d)/2
dx

 ‖θ‖2 = O(‖θ‖2). (27)
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By a similar argument, we also have

B′ ≤ (ν + d)2

∫
Dc

(
‖x‖2 − ‖x+ θ‖2

)2
(ν + ‖x‖2)2(ν + ‖x+ θ‖2)(ν+d)/2

dx.

As x ∈ Dc, 0 <
‖x‖2 − ‖x+ θ‖2

ν + ‖x‖2 ≤ −2θTx

ν + ‖x‖2 ≤
2‖θ‖‖x‖
2
√
ν‖x‖ =

‖θ‖√
ν

. So,

B′ ≤ (ν + d)2

ν

∫
Dc

1

(ν + ‖x+ θ‖2)(ν+d)/2
dx

 ‖θ‖2 = O(‖θ‖2). (28)

Combining (26), (27), and (28) concludes the proof of part (b) with α1 = 2.

Definition 6.1 concerns with location parameters. The following definition helps to
deal with the covariance matrices:

Definition 6.2. We call function f : Rd × S++
d → R+ to be a type II density function

with parameter α1 ≥ 1 if
∫
Rd

f(x,Σ)dx = 1 for any Σ ∈ S++
d and for any set Ω ={

Σ ∈ S++
d : λ ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, where λ, λ > 0, we obtain

h2(f(x,Σ1), f(x,Σ2)) ≤ C(Ω)‖Σ1 − Σ2‖α1 for all Σ1,Σ2 ∈ Ω,

where C(Ω) is a positive constant depending only on Ω.

Remark By defintion, the elements Σ of Ω are bounded in entrywise `2 norm as well
as in the determinant.

Lemma 6.2. (a) If f(x,Σ) =
1

|Σ|1/2 f1(xTΣ−1x), where f1(x) = Cα exp (−xα),

α ≥ 1, and Cα =
αΓ(d/2)

πd/2Γ(d/(2α))
, then f is a type II density function with parameter

α1 = 2.

(b) If f(x,Σ) =
1

|Σ|1/2 f2(xTΣ−1x), where f2(x) = Cν(ν + x)−(ν+d)/2 and Cν =

Γ((ν + d)/2)νν/2

Γ(ν/2)πd/2
, then f is a type II density function with parameter α1 = 2.

Proof. (a) We can write h2 = h2(f(x,Σ1), f(x,Σ2)) as

h2 = C

∫
Rd

(
|Σ2|1/4g(x,Σ2)− |Σ1|1/4g(x,Σ1)

)2
g2(x,Σ1)g2(x,Σ2)

dx, (29)

where g(x,Σ) = exp

(
(xTΣ−1x)α

2

)
and C =

Cα
|Σ1|1/2|Σ2|1/2

. By Cauchy-Schwarz
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inequality,(
|Σ2|1/4g(x,Σ2)− |Σ1|1/4g(x,Σ1)

)2

≤ 2

[
(|Σ2|1/4 − |Σ1|1/4)2g2(x,Σ2)

+|Σ1|1/2(g(x,Σ2)− g(x,Σ1))2

]
.

Hence,

h2 ≤ C
[(
|Σ2|1/4 − |Σ1|1/4

)2
∫
Rd

1

g2(x,Σ1)
dx+

+|Σ1|1/2
∫
Rd

(g(x,Σ2)− g(x,Σ1))2

g2(x,Σ1)g2(x,Σ2)
dx

]
. (30)

So,∥∥∥Σ2|1/4 − |Σ1|1/4
∣∣∣ =

‖Σ2| − |Σ1||
(|Σ2|1/2 + |Σ1|1/2)(|Σ2|1/4 + |Σ1|1/4)

≤M(Ω) ‖Σ2| − |Σ1|| .

Denote l(Σ) = |Σ| for all Σ ∈ Rd×d. By a Taylor expansion to the first order, we have

|Σ2| − |Σ1| = Tr
(
∂l

∂Σ
(Σ1)T (Σ2 − Σ1)

)
+R1(Σ2 − Σ1),

where R1(Σ2 − Σ1) denotes the remainder of the Taylor expansion. Note that∣∣∣∣Tr
(
∂l

∂Σ
(Σ1)T (Σ2 − Σ1)

)∣∣∣∣ = |Σ1|
∣∣Tr(Σ−1

1 (Σ2 − Σ1))
∣∣

≤ |Σ1‖|Σ−1
1 ‖‖Σ2 − Σ1‖

= O(‖Σ2 − Σ1‖).

Similarly, we also obtain |R1(Σ2 − Σ1)| = O(‖Σ2 − Σ1‖). As a consequence,

‖Σ2| − |Σ1|| ≤ |Σ1|
∣∣Tr(Σ−1

1 (Σ2 − Σ1))
∣∣+ |R1(Σ2 − Σ1)|

= O(‖Σ2 − Σ1‖). (31)

Additionally, by denoting D =
{
x ∈ Rd : xTΣ−1

2 x ≥ xTΣ−1
1 x

}
, we have∫

Rd

(g(x,Σ2)− g(x,Σ1))2

g2(x,Σ1)g2(x,Σ2)
dx =

∫
D

(g(x,Σ2)− g(x,Σ1))2

g2(x,Σ1)g2(x,Σ2)
dx+

+

∫
Dc

(g(x,Σ2)− g(x,Σ1))2

g2(x,Σ1)g2(x,Σ2)
dx. (32)
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Note that, by using the inequality 1− exp(−x) ≤ x as x ≥ 0, we obtain

∫
D

(g(x,Σ2)− g(x,Σ1))2

g2(x,Σ1)g2(x,Σ2)
dx =

∫
D

(
1− exp

(
(xTΣ−1

1 x)α

2
− (xTΣ−1

2 x)α

2

))2

g2(x,Σ1)
dx

≤ 1

4

∫
D

(
(xTΣ−1

2 x)α − (xTΣ−1
1 x)α

)2
g2(x,Σ1)

dx. (33)

As x ∈ D, i.e xTΣ−1
2 x ≥ xTΣ−1

1 x, we have

|(xTΣ−1
2 x)α − (xTΣ−1

1 x)α| ≤ α|xTΣ−1
2 x− xTΣ−1

1 x|(xTΣ−1
2 x)α−1.

By Cauchy-Schwarz inequality, |xTΣ−1
2 x−xTΣ−1

1 x| ≤ ‖x‖2‖Σ−1
2 −Σ−1

1 ‖ |xTΣ−1
2 x| ≤

‖x‖2‖Σ−1
2 ‖. Therefore,

|(xTΣ−1
2 x)α − (xTΣ−1

1 x)α| ≤ α‖Σ−1
2 ‖α−1‖Σ−1

2 − Σ−1
1 ‖‖x‖2α. (34)

For each pair (i, j), where 1 ≤ i, j ≤ d, we denote u(Σ) = [Σ−1]ij . By a Taylor
expansion,∣∣[Σ−1

1 − Σ−2
1 ]ij

∣∣ = |u(Σ1)− u(Σ2)|

=

∣∣∣∣Tr
(
∂u

∂Σ
(Σ2)T (Σ1 − Σ2)

)
+R2(Σ1 − Σ2)

∣∣∣∣
≤ ‖Σ1 − Σ2‖‖

∂u

∂Σ
(Σ2)‖+ |R2(Σ1 − Σ2)| .

Note that
∂u

∂Σlk
(Σ2) = −(Σ−1

2 )il(Σ
−1
2 )kj for all pairs (l, k). It implies that ‖ ∂u

∂Σ
(Σ2)‖1

= O(1). Therefore, ‖Σ1 − Σ2‖‖
∂g

∂Σ
(Σ2)‖ = O(‖Σ1 − Σ2‖). Similarly, we also have

|R3(Σ1 − Σ2)| = O(‖Σ1 − Σ2‖). Thus, |[Σ−1
1 − Σ−1

2 ]ij | = O(‖Σ1 − Σ2‖) and so

‖Σ−1
2 − Σ−1

1 ‖ = O(‖Σ1 − Σ2‖). (35)

By combining (33),(34), and (35) we have∫
D

(g(x,Σ2)− g(x,Σ1))2

g2(x,Σ1)g2(x,Σ2)
dx ≤ O(‖Σ2 − Σ1‖2)

∫
D

‖x‖4α
g2(x,Σ1)

dx

= O(‖Σ2 − Σ1‖2), (36)

where the last equality is due to the argument in part (a) of Lemma 6.1.
Using the same argument, we also get∫

Dc

(g(x,Σ2)− g(x,Σ1))2

g2(x,Σ1)g2(x,Σ2)
dx = O(‖Σ2 − Σ1‖2). (37)
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Combining (30), (32), (36), and (37) completes the proof of part (a) with α1 = 2.
(b) Using the same argument as that of part (a), we have the following inequality

h2 ≤ C
[(
|Σ2|1/4 − |Σ1|1/4

)2
∫
Rd

1

g2
1(x,Σ1)

dx+

+|Σ1|1/2
∫
Rd

(g1(x,Σ2)− g1(x,Σ1))2

g2
1(x,Σ1)g2

1(x,Σ2)
dx

]
, (38)

where g1(x,Σ) = (ν+xTΣ−1x)(ν+d)/4. We still keep the same notation ofD and use
the same argument as that of part (b) of Lemma 6.1 to obtain∫
D

(g1(x,Σ2)− g1(x,Σ1))2

g2
1(x,Σ1)g2

1(x,Σ2)
dx ≤

∫
D

(
(ν + xTΣ−1

2 x)(ν+d) − (ν + xTΣ−1
1 x)(ν+d)

)2
(ν + xTΣ−1

2 x)2(ν+d)(ν + xTΣ−1
1 x)(ν+d)/2

dx

≤
∫
D

(xTΣ−1
2 x− xTΣ−1

1 x)2

(ν + xTΣ−1
2 x)2(ν + xTΣ−1

1 x)(ν+d)/2
dx

≤ ‖Σ−1
2 − Σ−1

1 ‖2
∫
Rd

‖x‖2
(ν + xTΣ−1

1 x)(ν+d+4)/2
dx,

where the second inequality is due to Bernoulli’s inequality and the last inequality is
due to Cauchy-Schwarz inequality, D ⊂ Rd, and xTΣ−1

2 x ≥ xTΣ−1
1 x.

From part (a), we have already known that ‖Σ−1
2 −Σ−1

1 ‖ = O(‖Σ2−Σ1‖2). Now,

we will demonstrate that
∫
Rd

‖x‖2
(ν + xTΣ−1

1 x)(ν+d+4)/2
dx is finite. In fact, by changing

variable x = Σ
1/2
1 y, the orginal integral will become∫

Rd

‖x‖2
(ν + xTΣ−1

1 x)(ν+d+4)/2
dx =

1

|Σ1|1/2
∫
Rd

xTΣ1x

(ν + ‖x‖2)(ν+d+4)/2
dx.

It suffices to show that
∫
Rd

‖x‖2
(ν + ‖x‖2)(ν+d+4)/2

dx is finite. Using the spherical coor-

dinate and argue the same way as that of part (a) of Lemma 6.1, we only need to verify

that

+∞∫
0

Rd+1

(ν +R2)(ν+d+4)/2
dR is finite. In fact

+∞∫
0

Rd+1

(ν +R2)(ν+d+4)/2
dR ≤

1∫
0

1

(ν +R2)(ν+d+4)/2
dR+

+∞∫
1

Rd+1

(ν +R2)(ν+d+4)/2
dR

≤
1∫

0

1

(ν +R2)(ν+d+4)/2
dR+

+∞∫
1

1

Rν+3
dR.
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It is noticeable that

+∞∫
1

1

Rν+3
dR <∞. Additionally, we can think of

1

(ν +R2)(ν+d+4)

as the multivariate Cauchy density with dimension d + 4 (without a normalizing con-

stant). So,

1∫
0

1

(ν +R2)(ν+d+4)/2
dR is finite and so is

+∞∫
0

Rd+1

(ν +R2)(ν+d+4)/2
dR.

Therefore, ∫
D

(g1(x,Σ2)− g1(x,Σ1))2

g2
1(x,Σ1)g2

1(x,Σ2)
dx = O(‖Σ2 − Σ1‖2).

We conclude the proof of part (b) with α1 = 2.

Lemma 6.3. Let f(x,Σ) =
1

|Σ|1/2 f1(xTΣ−1x) to be a type II density function

with parameter α1 such that f(x, Id) is a type I density function with parameter α2,
where Id denotes the identity matrix. Then for a bounded set Θ ⊂ Rd and Ω ={

Σ ∈ S++
d : λ ≤

√
λ1(Σ) ≤

√
λd(Σ) ≤ λ

}
, we have

h2(f(x− θ1,Σ1), f(x− θ2,Σ2)) ≤ C(Θ,Ω)(‖θ1 − θ2‖α + ‖Σ1 − Σ2‖α),

for all θ1, θ2 ∈ Θ, Σ1,Σ2 ∈ Ω, where α = min {α1, α2} and C(Θ,Ω) is a positive
constant depending only on Θ,Ω.

Proof. By the triangle inequality and Cauchy-Schwarz inequality,

h2(f(x− θ1,Σ1), f(x− θ2,Σ2)) ≤ 2(h2(f(x− θ1,Σ1), f(x− θ2,Σ1))

+h2(f(x− θ2,Σ1), f(x− θ2,Σ2))).

Since f is a type II density function with parameter α1, it indicates that

h2(f(x− θ2,Σ1), f(x− θ2,Σ2)) = h2(f(x,Σ1), f(x,Σ2))

≤ C1(Ω)‖Σ1 − Σ2‖α1 . (39)

In addition, by changes of variables θ1 = Σ
1/2
1 θ′1,θ2 = Σ

1/2
1 θ′2,

h2(f(x− θ1,Σ1), f(x− θ2,Σ1)) = h2(f1(‖x− θ′1‖2), f1(‖x− θ′2‖2)).

Since θ′1 = Σ
−1/2
1 θ1, it is clear that ‖θ′1‖ ≤ ‖Σ−1/2

1 ‖‖θ1‖ ≤ M2(Θ,Ω). Addition-

ally, the smallest eigenvalue of Σ−1
1 satisfies M ′1(Ω) ≤ λmin(Σ−1

1 ) ≤ θT1 Σ−1
1 θ1

θT1 θ1
≤

‖Σ−1/2
1 θ1‖2
M
′′
1 (Θ)

. Hence, ‖θ′1‖ ≥ M ′1(Ω)M
′′

1 (Θ), i.e., θ1 lies in a bounded set. Similarly,

θ′2 lies in the same bounded set as that of θ′1. Therefore, as f is a type I density function
with parameter α2, we obtain

h2(f1(‖x− θ′1‖2, f1(‖x− θ′2‖2)) ≤ C2(Θ)‖θ′1 − θ′2‖α1

≤ C2(Θ)‖Σ−1/2
1 ‖α1‖θ1 − θ2‖α1

≤ C2(Θ,Ω)‖θ1 − θ2‖α1 . (40)
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Combining (39) and (40) concludes the proof.

Now, by combining Lemma 1 of [19] and Lemma 6.3, we arrive at

Corollary 6.1. Let g(x,Σ) =
1

|Σ|1/2 g1(xTΣ−1x) be a type II density function with

parameterα1 such that g(x, Id) is a type I density function with parameterα2, where Id
denotes the identity matrix. Let the family of density functions {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω}
such that f(x|θ,Σ) = g(x−θ,Σ) for all θ ∈ Θ,Σ ∈ Ω. Then for any G1, G2, we have

h2(pG1
(x), pG2

(x)) ≤ C(Θ,Ω)Wα
α (G1, G2),

where α = min {α1, α2} and C(Θ,Ω) is a positive constant depending only on Θ and
Ω.

From Corollary 6.1, we have an upper bound for the Hellinger distance between two
mixtures of elliptical distributions based on the α-order Wasserstein distance between
two mixing measures. Therefore, using the result from part (b) of Lemma 6.1 and
Lemma 6.2, we obtain the conclusion stated in Example 2.2.

We also wish to extend this result to density classes other than the class of elliptical
distributions, such as those discussed in Example 2.1, 2.3 and 2.4.

Lemma 6.4. (Multivariate generalized Gaussian distribution) Let f(x|θ,Σ,m) =
1

|Σ|1/2 f((x − θ)TΣ−1(x − θ)), where f(x,m) =
mΓ(d/2)

πd/2Γ(d/(2m))
exp(−xm) as

x ∈ R and m ≥ 1. Assume that Θ1 is a bounded subset of Rd, Θ2 = {m ∈ R+ : 1 ≤
m ≤ m ≤ m}, and Ω =

{
Σ ∈ S++

d : λ ≤
√
λ1(Σ) ,

√
λd(Σ) ≤ λ

}
. Then for any

G1, G2,

h2(pG1
(x), pG2

(x)) ≤ C(Θ1,Θ2,Σ)W 2
2 (G1, G2),

where C(Θ1,Θ2,Σ) is a positive constant.

Proof. From Lemma 6.1, Lemma 6.2, and Lemma 6.3, in order to get the conclusion
of our lemma, it suffices to prove that for any θ ∈ Θ1,Σ ∈ Ω,m1,m2 ∈ Θ2

h2(f(x|θ,Σ,m1), f(x|θ,Σ,m2)) ≤ C(Θ2)|m1 −m2|2,
where C(Θ2) is a positive constant. WLOG, we assume that m1 < m2 (The case
m1 = m2 is clearly true). Applying the Cauchy-Schwarz inequality to obtain

h2(pG1
(x), pG2

(x)) ≤ 2(
√
C(m1)−

√
C(m2))2

∫
Rd

exp(−‖x‖2m1)dx

+2C(m2)

∫
Rd

(
exp

(
−‖x‖

2m1

2

)
− exp

(
−‖x‖

2m2

2

))2

dx, (41)

where C(m) =
mΓ(d/2)

πd/2Γ(d/(2m))
as m ≥ 1.

By the mean value theorem, we can find m′ ∈ (m1,m2) such that

|C(m1)− C(m2)| = |m1 −m2|
∣∣∣∣Γ(d/(2m′)− d

2m′
ψ(d/(2m′))

∣∣∣∣ . (42)



N. Ho and X. Nguyen/Convergence rates of parameter estimation 47

As m ≤ m1,m2 ≤ m, we can find a positive constant C(m,m) such that∣∣∣∣Γ(d/(2m′)− d

2m′
ψ(d/(2m′))

∣∣∣∣ ≤ C(m,m).

Therefore, as m1,m2 ∈ Θ1

(
√
C(m1)−

√
C(m2))2 . (C(m1)− C(m2))2 = O(m1 −m2)2. (43)

Additionally, by the mean value theorem, for each x ∈ Rd, we can findmx ∈ (m1,m2)
such that∣∣∣∣exp

(
−‖x‖

2m1

2

)
− exp

(
−‖x‖

2m2

2

)∣∣∣∣ = |m1 −m2‖ log(‖x‖)‖|x‖2mx ×

× exp

(
−‖x‖

2mx

2

)
.

Note that

| log(‖x‖)‖|x‖mx exp

(
−‖x‖

mx

2

)
≤

1, if ‖x‖ ≤ 1

‖x‖m2+1 exp

(
−‖x‖

m1

2

)
, if ‖x‖ > 1

.

From the argument of Lemma 6.2,∫
‖x‖>1

‖x‖m2+1 exp

(
−‖x‖

m1

2

)
dx = O(1). (44)

Thus,∫
Rd

(
exp

(
−‖x‖

2m1

2

)
− exp

(
−‖x‖

2m2

2

))2

dx = O(|m1 −m2|2). (45)

Combining (41), (42), and (45), we conclude the proof of the lemma.

Lemma 6.5. (Exponentially modified t-distribution) Let f(x|θ, λ,Σ) be the density
function of X = Y + Z, where Y follows a multivariate t-distribution with location
θ, covariance matrix Σ, fixed degree of freedom ν, and Z is distributed by the product
of d independent exponential distributions with the combined shape λ = (λ1, ..., λd).

Assume that Θ is a bounded subset of Rd×Rd+ and Ω =
{

Σ ∈ S++
d : λ ≤

√
λ1(Σ) ≤√

λd(Σ) ≤ λ
}

. Then for any G1, G2,

h2(pG1
(x), pG2

(x)) ≤ C(Θ,Ω)W 2
2 (G1, G2),

where C(Θ,Ω) is a positive constant.
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Proof. It suffices to verify that

h2(f(x|θ1, λ1,Σ1), f(x|θ2, λ2,Σ2)) ≤ C(Θ,Σ)(‖θ1 − θ2‖2 + ‖λ1 − λ2‖2 +

+‖Σ1 − Σ2‖2).

for any (θ1, λ1,Σ1),(θ2, λ2,Σ2) ∈ Θ×Ω and for some positive constant C(Θ,Ω). By
Cauchy-Schwartz inequality,

1

2
h2(f(x|θ1, λ1,Σ1), f(x|θ2, λ2,Σ2)) ≤ h2(f(x|θ1,Σ1, λ1), f(x|θ1,Σ1, λ2)) +

h2(f(x|θ1,Σ1, λ2), f(x|θ2,Σ2, λ2)).

Denoting h2
1 = h2(f(x|θ1,Σ1, λ1), f(x|θ1,Σ1, λ2)) and h2

2 = h2(f(x|θ1,Σ1, λ2),
f(x|θ2,Σ2, λ2)), we have

h2
1 =

1

2

∫
Rd

√√√√∫
Rd

fY (y|θ1,Σ1)fZ(x− y|λ1)dy −
√√√√∫

Rd

fY (y|θ1,Σ1)fZ(x− y|λ2)dy


2

dx

≤ 1

2

∫
Rd

∫
Rd

(√
fY (y|θ1,Σ1)fZ(x− y|λ1)−

√
fY (y|θ1,Σ1)fZ(x− y|λ2)

)2

dydx

=
1

2

∫
Rd

fY (x|θ1,Σ1)dx

∫
Rd

(√
fZ(x|λ1)−

√
fZ(x|λ2)

)2

dx

= h2(fZ(x|λ1), fZ(x|λ2)).

The second inequality in the above display is due to Holder’s inequality. Similarly, we
also obtain

h2
2 ≤ h2(fY (x|θ1,Σ1), fY (x|θ2,Σ2)).

As a result,

1

2
h2(f(x|θ1, λ1,Σ1), f(x|θ2, λ2,Σ2)) ≤ h2(fY (x|θ1,Σ1), fY (x|θ2,Σ2)

+h2(fZ(x|λ1), fZ(x|λ2)). (46)

From Lemma 6.3, as f(x,Σ) = Cν(ν + xTΣ−1x)−(ν+d)/2, where we have Cν =
Γ((ν + d)/2)νν/2

Γ(ν/2)πd/2
, is a type II density function with parameter α1 = 2 and f(x, Id)

is a type I density function with parameter α2 = 2, we have

h2(fY (x|θ1,Σ1), fY (x|θ2,Σ2)) ≤ C1(Θ,Ω)(‖θ1 − θ2‖2 + ‖Σ1 − Σ2‖2). (47)

Additionally, by denoting fZi
(xi|λ′) = λ′ exp(−λ′xi).1{xi>0} as λ′ > 0 for all xi ∈

R, we obtain fZ(x|λ∗) =
d∏
i=1

fZi(xi|λ∗i ), where λ∗ = (λ∗1, ..., λ
∗
d). By the triangle
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inequality,

h2(fZ(x|λ1), fZ(x|λ2)) ≤ 2d−1
d∑
i=1

h2(fZi
(xi|λ1,i), fZi

(xi|λ2,i)),

where λ1 = (λ1,1, ..., λ1,d), λ2 = (λ2,1, ..., λ2,d). By a direct calculation, we obtain

h2(fZi
(xi|λ1,i), fZi

(xi|λ2,i)) =
(λ1,i − λ2,i)

2

(
√
λ1,i +

√
λ2,i)2(λ1,i + λ2,i)

≤ C2(Θ)(λ1,i − λ2,i)
2.

Therefore, we get

h2(fZ(x|λ1), fZ(x|λ2)) = O(‖λ1 − λ2‖2). (48)

Combining (46),(47), and (48) leads to the conclusion of the proof.

Lemma 6.6. (Modified Gaussian-Gamma distribution) Let f(x|θ, λ, β,Σ) be the den-
sity function ofX = Y +Z, where Y follows a multivariate Gaussian distribution with
mean θ and covariance matrix Σ and Z is distributed by the product of independent
Gamma distributions with the combined shape λ = (λ1, ..., λd), and the combined rate
β = (β1, ..., βd). Assume that Θ is a bounded subset of Rd × Rd+ × Rd+ and Ω is a
bounded subset of S++

d with its elements having all eigenvalues bounded away from 0.
Then for any G1, G2,

h2(pG1(x), pG2(x)) ≤ C(Θ,Σ)W1(G1, G2), (49)

where C(Θ,Ω) is a positive constant.

Proof. Using the same argument as that of Lemma 6.5, we obtain

1

2
h2(f(x|θ1, λ1, β1,Σ1), f(x|θ2, λ2, β2,Σ2)) ≤ h2(fY (x|θ1,Σ1), fY (θ2,Σ2))

+h2(fZ(x|λ1, β1), fZ(x|λ2, β2)).

By denoting fZi(xi|λ′, β′) =
(β′)λ

′

Γ(λ′)
xλ
′−1
i exp(−β′xi).1{xi>0} and the triangle in-

equality,

h2(fZ(x|λ1, β1), fZ(x|λ2, β2)) ≤ 2d−1
d∑
i=1

h2(fZi
(xi|λ1,i, β1,i), fZi

(xi|λ2,i, β2,i)).

By denoting h2 := h2(fZi
(xi|λ1,i, β1,i), fZi

(xi|λ2,i, β2,i)), we obtain

h2 = 1−
β
λ1,i/2
1,i β

λ2,i/2
2,i

(
β1,i + β2,i

2
)(λ1,i+λ2,i)/2

Γ((λ1,i + λ2,i)/2)

Γ(λ1,i)1/2Γ(λ2,i)1/2

≤ C(Θ)(

∣∣∣∣(β1,i + β2,i

2
)(λ1,i+λ2,i)/2 − βλ1,i/2

1,i β
λ2,i/2
2,i

∣∣∣∣+

+

∣∣∣∣√Γ(λ1,i)Γ(λ2,i)− Γ(
λ1,i + λ2,i

2
)

∣∣∣∣).
:= C(Θ)A+B. (50)
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By the triangle inequality and a Taylor expansion to the first order,

A ≤ C1(Θ)

∣∣∣∣ (β1,i + β2,i

2

)λ1,i/2

− βλ1,i/2
1,i

∣∣∣∣+

+ C2(Θ)

∣∣∣∣ (β1,i + β2,i

2

)λ2,i/2

− βλ2,i/2
2,i

∣∣∣∣
= O(|β1,i − β2,i|), (51)

where C1(Θ) and C2(Θ) are two positive constants.
Similarly, by the triangle inequality,

B ≤ C3(Θ)

∣∣∣∣∣Γ
(
λ1,i + λ2,i

2

)2

− Γ(λ1,i)Γ(λ2,i)

∣∣∣∣∣
≤ C3(Θ)

∣∣∣∣Γ(λ1,i + λ2,i

2

)
− Γ(λ1,i)

∣∣∣∣ ∣∣∣∣Γ(λ1,i + λ2,i

2

)
− Γ(λ2,i)

∣∣∣∣+

+ C3(Θ)

∣∣∣∣ (Γ

(
λ1,i + λ2,i

2

)
− Γ(λ1,i)

)
Γ(λ2,i) +

+

(
Γ

(
λ1,i + λ2,i

2

)
− Γ(λ2,i)

)
Γ(λ1,i)

∣∣∣∣. (52)

By a Taylor expansion to the first order, we readily obtain

C3(Θ)

∣∣∣∣Γ(λ1,i + λ2,i

2

)
− Γ(λ1,i)

∣∣∣∣ ∣∣∣∣Γ(λ1,i + λ2,i

2

)
− Γ(λ2,i)

∣∣∣∣ =

O(|λ1,i − λ2,i|2). (53)

Additionally, by a Taylor expansion up to the second order

Γ

(
λ1,i + λ2,i

2

)
− Γ(λ1,i) =

λ2,i − λ1,i

2
Γ′(λ1,i) +

(λ2,i − λ1,i)
2

8
Γ
′′
(λ1,i)

+R1(λ2,i − λ1,i).

Γ

(
λ1,i + λ2,i

2

)
− Γ(λ2,i) =

λ1,i − λ2,i

2
Γ′(λ2,i) +

(λ1,i − λ2,i)
2

8
Γ
′′
(λ2,i)

+R2(λ1,i − λ2,i).

whereR1, R2 are two remainder terms from the Taylor expansion. It is simple to check
that |R1(λ2,i − λ1,i)| = |R2(λ1,i − λ2,i)| = O(|λ1,i − λ2,i|2). In addition,∣∣∣∣λ2,i − λ1,i

2
Γ′(λ1,i)Γ(λ2,i) +

λ1,i − λ2,i

2
Γ′(λ2,i)Γ(λ1,i)

∣∣∣∣ =
|λ2,i − λ1,i|

2
Γ(λ1,i)×

×Γ(λ2,i)|ψ(λ1,i)− ψ(λ2,i)|.

By a Taylor expansion to the first order, it is noted that

|ψ(λ1,i)− ψ(λ2,i)| = O(|λ1,i − λ2,i|). (54)
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Therefore,∣∣∣∣λ2,i − λ1,i

2
Γ′(λ1,i)Γ(λ2,i) +

λ1,i − λ2,i

2
Γ′(λ2,i)Γ(λ1,i)

∣∣∣∣ = O(|λ1,i − λ2,i|2). (55)

As a consequence, ∣∣∣∣ (Γ

(
λ1,i + λ2,i

2

)
− Γ(λ1,i)

)
Γ(λ2,i) +

+

(
Γ

(
λ1,i + λ2,i

2

)
− Γ(λ2,i)

)
Γ(λ1,i)

∣∣∣∣ = O(|λ1,i − λ2,i|2) (56)

Combining (52), (53), and (56), we obtain∣∣∣∣√Γ(λ1,i)Γ(λ2,i)− Γ(
λ1,i + λ2,i

2
)

∣∣∣∣ = O(|λ1,i − λ2,i|2). (57)

Combining (50),(51), and (57), we get

h2(fZi(xi|λ1,i, β1,i), fZi(xi|λ2,i, β2,i)) = O(|λ1,i − λ2,i|2) +O(|β1,i − λ2,i|).

As a result,

h2(fZ(x|λ1, β1), fZ(x|λ2, β2)) = O(‖λ1 − λ2‖2) +O(‖β1 − β2‖).

This concludes our proof.
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APPENDIX III

In this appendix, we give proofs of remained results in the paper. It includes the proof
of Theorem 3.3, which concerns the characterization of strong identifiability in multi-
ple scalar parameters. For simplicity, the proofs for Theorem 3.4 are restricted to only
first-order identifiability. The proof techniques are similar for the second-order iden-
tifiability. Additionally, the proof of Theorem 3.5, which follows from an application
of chain rule, and the proof of Corollary 3.3 follows from the triangle inequality are
included in this appendix. Proof of Corollary 4.1 relies on calculations of the bracket
entropy integral, which is a straightforward extension of the argument of [9] to the
multivariate setting.

PROOF OF THEOREM 3.5. The proof is a straightforward application of the chain
rule.

“If” direction: Let k ≥ 1 and let (η∗1 ,Λ
∗
1), (η∗2 ,Λ

∗
2) . . . , (η∗k,Λ

∗
k) ∈ Θ∗ × Ω∗ be k

different pairs. Suppose there are αi ∈ R, βi ∈ Rd1 , and symmetric matrices γi ∈
Rd2×d2 such that for almost all x

k∑
i=1

αig(x|η∗i ,Λ∗i ) + βTi
∂g

∂η
(x|η∗i ,Λ∗i ) + tr

(
∂g

∂Λ
(x|η∗i ,Λ∗i )T γi

)
= 0. (58)

Let (θi,Σi) := T (η∗i ,Λ
∗
i ) for i = 1, . . . , k. Since T is bijective, (θ1,Σ1), (θ2,Σ2), . . . ,

(θk,Σk) are distinct. By the chain rule,

∂g

∂ηi
(x|η,Λ) =

d1∑
l=1

∂f

∂θl
(x|θ,Σ)

∂θl
∂ηi

+
∑

1≤u,v≤d2

∂f

∂Σuv
(x|θ,Σ)

∂Σuv
∂ηi

=

d1∑
l=1

∂f

∂θl
(x|θ,Σ)

∂[T1(η,Λ)]l
∂ηi

+
∑

1≤u,v≤d2

∂f

∂Σuv
(x|θ,Σ)

∂[T2(η,Λ)]uv
∂ηi

and similarly,

∂g

∂Λij
(x|η,Λ) =

d1∑
l=1

∂f

∂θl
(x|θ,Σ)

∂[T1(η,Λ)]l
∂Λij

+
∑

1≤u,v≤d2

∂f

∂Σuv
(x|θ,Σ)

∂[T2(η,Λ)]uv
∂Λij

,

where η = (η1, . . . , ηd1) and Σ = [Σij ] where 1 ≤ i, j ≤ d2. Equation (58) can be
rewritten accordingly as follows that for almost all x

k∑
i=1

αif(x|θi,Σi) + (β′i)
T ∂f

∂θ
(x|θi,Σi) + tr

(
∂f

∂Σ
(x|θi,Σi)T γ′i

)
= 0. (59)

where β′i = ((β′i)
1, . . . , (β′i)

d1), γ′i = [γ′i]
uv , ηi = ((ηi)

1, . . . , (ηi)
d1), Λi = [Λi]

uv ,
βi = (β1

i , . . . , β
d1
i ), γi = [γi]

uv , and for all 1 ≤ j ≤ d1

(β′i)
j =

d1∑
h=1

βhi
∂[T1(η∗i ,Λ

∗
i )]j

∂(ηi)h
+

∑
1≤u,v≤d2

γuvi
∂[T1(η∗i ,Λ

∗
i )]j

∂(Λi)uv
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and for all 1 ≤ j, l ≤ d2

(γ′i)
jl =

d1∑
h=1

βhi
∂[T2(η∗i ,Λ

∗
i )]jl

∂(ηi)h
+

∑
1≤u,v≤d2

γuvi
∂[T2(η∗i ,Λ

∗
i )]jl

∂(Λi)uv
.

Given that {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} is identifiable in the first order, Eq. (59) en-
tails that αi = 0, β′i = 0 ∈ Rd1 , and γ′i = 0 ∈ Rd2×d2 . From the definition of modified
Jacobian matrix J , the equations β′i = 0 and γ′i = 0 are equivalent to system of equa-
tions J(η∗i ,Λ

∗
i )τi = 0, where τTi = (βi, γ

11
i , . . . , γ

1d2
i , γ21

i , . . . ., γ
2d2
i , . . . ., γd21

i , . . . ,

γd2d2i ) ∈ Rd1+d22 . Since |J(η∗i ,Λ
∗
i )| 6= 0, the above system of equations has unique

solution τi = 0 for all 1 ≤ i ≤ k. These results imply that βi = 0 ∈ Rd1 and
γi = 0 ∈ Rd2×d2 . Thus, g is also identifiable in the first order.

“Only if” direction. Assume by contrary that the modified Jacobian matrix J(η,Λ)
is not non-singular for all (η,Λ) ∈ Θ∗ × Ω∗. Then, we can find (η0,Λ0) ∈ Θ∗ × Ω∗

such that J(η0,Λ0) is singular matrix. Choose k = 1 and assume that we can find
α1 ∈ R, β1 ∈ Rd1 , and symmetric matrix γ1 ∈ Rd2×d2 such that:

α1g(x|η0,Λ0) + βT1
∂g

∂η
(x|η0,Λ0) + tr

(
∂g

∂Λ
(x|η0,Λ0)T γ1

)
= 0 for almost all x.

The first-order identifiability of class {g(x|η,Λ), η ∈ Θ∗,Λ ∈ Ω∗} implies that α1 =
0, β1 = 0 ∈ Rd1 , and γ1 = 0 ∈ Rd2×d2 are the only possibility for the above equation
to hold. However, by the same argument as in the first part of the proof, we may rewrite
the above equation as

α1f(x|θ0,Σ0) + (β′1)T
∂f

∂θ
(x|θ0,Σ0) + tr

(
∂f

∂Σ
(x|θ0,Σ0)T γ′1

)
= 0 for almost all x,

where T (η0,Λ0) = (θ0,Σ0), and β′1, γ′1 have the same formula as given above. The
first-order identifiability of {f(x|θ,Σ), θ ∈ Θ,Σ ∈ Ω} implies that β′1 = 0 ∈ Rd1 and
γ′1 = 0 ∈ Rd2×d2 . The last equation leads to the system of equations J(η0,Λ0)τ = 0,
where

τT =
(
β1, γ

11
1 , . . . , γ1d2

1 , γ21
1 , . . . , γ2d2

1 , . . . , γd21
1 , . . . , γd2d21

)
.

However, the non-singularity of matrix J(η0,Λ0) leads to non-uniquesness of the solu-
tion τ of this system of equations. This contradicts with the uniqueness of the solution
α1 = 0, β1 = 0 ∈ Rd1 , and γ1 = 0 ∈ Rd2×d2 . The proof is complete.

PROOF OF COROLLARY 3.3 From Theorem 3.5, the class {g(x|η,Λ), η ∈ Θ∗,
Λ ∈ Ω∗} is identifiable in the first order. From the proof of Theorem 3.1, in order
to achieve the conclusion of our theorem, it remains to verify that g(x|η,Λ) satisfies
conditions (3) and (4). As the first derivative of f in terms of θ and Σ is α-Holder
continuous, f(x|θ,Σ) satisfies conditions (3) and (4) with δ1 = δ2 = α.
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Now, for any η1, η2 ∈ Θ∗, Λ ∈ Ω∗, we have T (η1,Λ) = (θ1,Σ) and T (η2,Λ) =
(θ2,Σ). For any 1 ≤ i ≤ d1, we obtain

∂

∂ηi
(g(x|η1,Λ)− g(x|η2,Λ)) =

d1∑
l=1

∂f

∂θl
(x|θ1,Σ)

∂
[
T1(η1,Λ)

]
l

∂ηi
−

d1∑
l=1

∂f

∂θl
(x|θ2,Σ)

∂
[
T1(η2,Λ)

]
l

∂ηi
+

∑
1≤u,v≤d2

∂f

∂Σuv
(x|θ1,Σ)

∂
[
T2(η1,Λ)

]
uv

∂ηi
−

∑
1≤u,v≤d2

∂f

∂Σuv
(x|θ2,Σ)

∂
[
T2(η2,Λ)

]
uv

∂ηi
.

Notice that,

d1∑
l=1

∂f

∂θl
(x|θ1,Σ)

∂
[
T1(η1,Λ)

]
l

∂ηi
−

d1∑
l=1

∂f

∂θl
(x|θ2,Σ)

∂
[
T1(η2,Λ)

]
l

∂ηi
≤

‖∂f
∂θ

(x|θ1,Σ)− ∂f

∂θ
(x|θ2,Σ)‖ × ‖∂T1

∂ηi
(η1,Λ)‖

+‖∂f
∂θ

(x|θ2,Σ)‖‖∂T1

∂ηi
(η1,Λ)− ∂T1

∂ηi
(η2,Λ)‖

≤ L1‖θ1 − θ2‖α + L2‖η1 − η2‖α,

where L1, L2 are two positive constants from the α-Holder continuity and the bound-
edness of the first derivative of f(x|θ,Σ) and T (η,Λ). Moreover, since T is Lipschitz
continuous, it implies that ‖θ1− θ2‖ . ‖η1− η2‖. Therefore, the above inequality can
be rewritten as

d1∑
l=1

∂f

∂θl
(x|θ1,Σ)

∂
[
T1(η1,Λ)

]
l

∂ηi
−

d1∑
l=1

∂f

∂θl
(x|θ2,Σ)

∂
[
T1(η2,Λ)

]
l

∂ηi
. ‖η1 − η2‖α.

With the similar argument, we get∑
1≤u,v≤d2

∂f

∂Σuv
(x|θ1,Σ)

∂
[
T2(η1,Λ)

]
uv

∂ηi
−

∑
1≤u,v≤d2

∂f

∂Σuv
(x|θ2,Σ)

∂
[
T2(η2,Λ)

]
uv

∂ηi
.

‖η1 − η2‖α.

Thus, for any 1 ≤ i ≤ d1,∣∣∣∣ ∂∂ηi (g(x|η1,Λ)− g(x|η2,Λ))

∣∣∣∣ . ‖η1 − η2‖α.

As a consequence, for any γ1 ∈ Rd1 ,∣∣∣∣γT1 (∂g∂η (x|η1,Σ)− ∂g

∂η
(x|η2,Σ)

)∣∣∣∣ . ‖∂g∂η (x|η1,Σ)− ∂g

∂η
(x|η2,Σ)‖‖γ1‖ .

‖η1 − η2‖α‖γ1‖,
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which means that condition (3) is satisfied by g(x|η,Λ). Likewise, we also can demon-
strate that condition (4) is satisfied by g(x|θ,Λ). Therefore, the conclusion of our corol-
lary is achieved.

PROOF OF THEOREM 3.3 (a) Assume that we have αj , βj , γj ∈ R as 1 ≤ j ≤ k,
k ≥ 1 such that:

k∑
j=1

αjf(x|θj , σj) + βj
∂f

∂θ
(x|θj , σj) + γj

∂f

∂σ
(x|θj , σj) = 0.

Multiply both sides of the above equation with exp(itx) and take the integral in R,
we obtain the following result:

k∑
j=1

[
(α′j + β′j(it))φ(σjt) + γ′jψ(σjt)

]
exp(itθj) = 0, (60)

where α′j = αj −
γj
σj
, β′j = βj , γ

′
j = −γj

σj
, φ(t) =

∫
R

exp(itx)f(x)dx, and

ψ(t) =

∫
R

exp(itx)xf ′(x)dx.

By direct calculation, we obtain φ(t) =
Γ(p+ it)Γ(q − it)

Γ(p)Γ(q)
. Additionally, from the

property of Gamma function and Euler’s reflection formula, as p, q are two positive
integers, we have

Γ(p+ it)Γ(q − it) =



p−1∏
j=1

(p− j + it)
q−1∏
j=1

(q − j − it) πt

sinh(πt)
, if p, q ≥ 2

p−1∏
j=1

(p− j + it)
πt

sinh(πt)
, if p ≥ 2, q = 1

q−1∏
j=1

(q − j − it) πt

sinh(πt)
, if p = 1, q ≥ 2

πt

sinh(πt)
, if p = q = 1

. (61)

From now, we only consider the case p, q ≥ 2 as other cases can be argued in

the same way. Denote
p−1∏
j=1

(p − j + it)
q−1∏
j=1

(q − j − it) =
p+q−2∑
u=0

aut
u. It is clear that

a0 =
p−1∏
j=1

(p− j)
q−1∏
j=1

(q − j) and ap+q−2 = (−1)q−1.ip+q−2 6= 0.

From (61), the characteristic function φ(t) can be rewritten as

φ(t) =

2π exp(πt)(
p+q−2∑
u=0

aut
u+1)

Γ(p)Γ(q)(exp(2πt)− 1)
. (62)
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Additionally, since xf ′(x) and f ′(x) are integrable functions,

ψ(t) =

∫
R

exp(itx)xf ′(x)dx = −i ∂
∂t

∫
R

exp(itx)f ′(x)dx

 = −i ∂
∂t

(itφ(t))

= φ(t) + tφ′(t).

By direct computation, we obtain

ψ(t) =

2π(
p+q−2∑
u=0

au(u+ 2)tu+1) exp(πt)

Γ(p)Γ(q)(exp(2πt)− 1)
−

2π2(
p+q−2∑
u=0

aut
u+2)(exp(2πt) + 1) exp(πt)

Γ(p)Γ(q)(exp(πt)− 1)2
. (63)

Combining (62) and (63), we can rewrite (60) as

k∑
j=1

(α′j + β′j(it))

(
p+q−2∑
u=0

auσ
u+1
j tu+1) exp((πσj + θj)t)

(exp(2πσjt)− 1)
+

γ′j(
p+q−2∑
u=0

au(u+ 2)σu+1
j tu+1) exp((πσj + iθj)t)

(exp(2πσjt)− 1)
−

γ′jπ(
p+q−2∑
u=0

auσ
u+2
j tu+2)(exp(2πσjt) + 1) exp((πσj + iθj)t)

Γ(p)Γ(q)(exp(πθjt)− 1)2
= 0.

Denote t′ = πt, θ′j =
θj
π

, β
′′

j =
β′j
π

, a(j)
u =

auσ
u+1
j

πu+1
, b(j)u =

au(u+ 2)σu+1
j

πu+1
, and

c
(j)
u =

auσ
u+2
j

πu+2
for all 1 ≤ j ≤ k, 0 ≤ u ≤ p + q − 2 and multiply both sides of the

above equation with
k∏
j=1

(exp(2σjt)− 1)2, we can rewrite it as

k∑
j=1

((α′j + β
′′

j (it′))(

p+q−2∑
u=0

a(j)
u (t′)u+1) +

γ′j(

p+q−2∑
u=0

b(j)u (t′)u+1)) exp((σj + iθ′j)t
′)(exp(2σjt

′)− 1)
∏
l 6=j

(exp(2σlt
′)− 1)2 −

πγ′j(

p+q−2∑
u=0

c(j)u (t′)u+2) exp((σj + iθ′j)t
′)(exp(2σjt

′) + 1)
∏
l 6=j

(exp(2σlt
′)− 1)2 = 0. (64)

Without loss of generality, we assume that σ1 ≤ σ2 ≤ ... ≤ σk. Note that, we can

view exp(t′σj)(exp(2σjt
′) − 1)

∏
l 6=j

(exp(2σlt
′)− 1)2 as

mj∑
u=1

d
(j)
u exp(t′e

(j)
u ) where
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e
(j)
1 < e

(j)
2 < ... < e

(j)
mj are just the combinations of σ1, σ2, ..., σk and mj ≥ 1 for all

1 ≤ j ≤ k. Similarly, we can write exp(t′σj)(exp(2σjt
′) + 1)

∏
l 6=j

(exp(2σlt
′)− 1)2

as
nj∑
u=1

k
(j)
u exp(t′h

(j)
u ), where h(j)

1 < ... < h
(j)
nj and nj ≥ 1 for all 1 ≤ j ≤ k.

Direct calculation yields e(j)
mj = h

(j)
nj = 4

∑
l 6=j

σl + 3σj and e(j)
mj = h

(j)
nj = 1 for all

1 ≤ j ≤ k. From the assumption, it is straightforward that e(1)
m1 ≥ e

(2)
m2 ≥ ... ≥ e

(k)
mk .

Additionally, by denoting (α′j+β
′′

j (it′))(
p+q−2∑
u=0

a
(j)
u (t′)u+1)+γ′j(

p+q−2∑
u=0

b
(j)
u (t′)u+1) =

p+q−1∑
u=0

f
(j)
u (t′)u+1, we obtain f (j)

0 = α′ja
(j)
0 + γ′jb

(j)
0 and f (j)

p+q−1 = iβ
′′

j a
(j)
p+q−2 for all

1 ≤ j ≤ k.

By applying the Laplace transformation in both sides of equation (64), we get:

k∑
j=1

p+q−1∑
u=0

f (j)
u

mj∑
u1=1

d
(j)
u1 (u+ 1)!

(s− z(j)
u1 )u+2

−
p+q−2∑
u=0

γ′jπc
(j)
u

nj∑
u1=1

k
(j)
u1 (u+ 2)!

(s− w(j)
u1 )u+3

= 0. (65)

as Res(s) > e
(1)
m1 where z(j)

u1 = iθ′j + e
(j)
u1 as 1 ≤ u1 ≤ mj and w(j)

u1 = iθ′j + h
(j)
u1 as

1 ≤ u1 ≤ nj .

Multiplying both sides of equation (65) with (s−z(1)
m1)p+q+1 and letting s→ z

(1)
m1 , as

e
(j)
u1 < e

(1)
m1 for all (u1, j) 6= (m1, 1) and h(j)

u1 < h
(1)
n1 = e

(1)
m1 for all (u1, j) 6= (n1, 1),

we obtain |f (1)
p+q−1d

(1)
m1 − γ′1πc

(1)
p+q−2k

(1)
n1 | = 0. Since d(1)

m1 = k
(1)
n1 = 1, f (1)

p+q−1 =

iβ
′′

1 a
(1)
p+q−2, c(1)

p+q−2 =
σ1

π
a

(1)
p+q−2, and a(1)

p+q−2 =
ap+q−2σ

p+q−1
1

πp+q−1
6= 0, it implies that

|iβ′′1 − γ′1σ1| = 0 or equivalently β
′′

1 = γ′1 = 0. Likewise, multiplying both sides of
(65) with (s− z(1)

m1)p+q and let s→ z
(1)
m1 , as γ′1 = 0, we obtain f (1)

p+q−2 = 0. Continue

this fashion until we multiply both sides of (65) with (s − z(1)
m1) and let s → z

(1)
m1 to

get f (1)
0 = 0 or equivalently α′1a

(1)
0 = 0. As a(1)

0 = σ1

p−1∏
j=1

(p− j)
q−1∏
j=1

(q − j)/π 6= 0,

it implies that α′1 = 0. Overall, we achieve α′1 = β
′′

1 = γ′1 = 0. Repeat the same
argument until we achieve α′j = β

′′

j = γ′j = 0 for all 1 ≤ j ≤ k or equivalently
αj = βj = γj = 0.

(b) Assume that we can find αj , βj , γj .ηj ∈ R such that

k∑
j=1

αjf(x|θj , σj , λj) + βj
∂f

∂θ
(x|θj , σj , λj) + γj

∂f

∂σ
(x|θj , σj , λj)+

ηj
∂f

∂λ
(x|θj , σj , λj) = 0. (66)
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Applying the moment generating function to both sides of equation (66), we obtain

k∑
j=1

(α′j + β′jt+ γ′jtψ(λj − σjt) + η′jψ(λj − σjt)) exp(θ′jt)Γ(λj − σjt) = 0, (67)

as t < min
1≤j≤k

{
λj
σj

}
whereα′j =

αj − ηjψ(λj)

Γ(λj)
, β′j =

βj + γj log(λj) + ηjσjλ
−1
j

Γ(λj)
, γ′j =

− γj
Γ(λj)

, η′j =
ηj

Γ(λj)
, and θ′j = θj + log(λj)σj as ψ is di-gamma function.

Without loss of generality, we assume that σ1 ≤ σ2 ≤ . . . ≤ σk. We choose i to
be minimum index such that σi = σk. Denote i1 ∈ [i, k] as the index such that θ′i1 =

min
i≤i≤k

{θ′i}. Denote I =
{
i ∈ [i, k] : θ′i = θ′i1

}
. From the formation of θ′j , it implies that

λi are pairwise different as i ∈ I . Choose i2 ∈ I such that λi2 = max
i∈I

λi, i.e λi2 > λi

for all i ∈ I . Divide both sides of equation (67) by tΓ(1− σi2t)ψ(1− σi2t) exp(θ′i2t),

we get that as t <
1

σk

α′i2
tψ(λi2 − σi2t)

+
β′i2

ψ(λi2 − σi2t)
+ γ′i2 +

η′i2
t

+

∑
j 6=i2

α′jΓ(λj − σjt) exp(θ′jt)

tΓ(λi2 − σi2t)ψ(λi2 − σi2t) exp(θ′i2t)
+

βjΓ(λj − σjt) exp(θ′jt)

Γ(λi2 − σi2t)ψ(λi2 − σi2t) exp(θ′i2t)
+

γ′j exp(θ′jt)Γ(λj − σjt)ψ(λj − σjt)
exp(θ′i2t)Γ(λi2 − σi2t)ψ(λi2 − σi2t)

+

η′j exp(θ′jt)Γ(λj − σjt)ψ(λj − σjt)
t exp(θ′i2t)Γ(λi2 − σi2t)ψ(λi2 − σi2t)

= 0. (68)

Note that lim
t→−∞

ψ(λj − σjt)/ψ(λi2 − σi2t) = 1 for all 1 ≤ j ≤ k. Additionally,

when j ∈ I and j 6= i2, as λj < λi2 , we see that Γ(λj−σjt)/Γ(λi2−σi2t)→ 0 as t→
−∞ and exp((θ′j−θ′i2)(t)) = 1. It implies that exp(θ′jt)Γ(λj−σjt)/ exp(θ′i2t)Γ(λi2−
σi2t) → 0 as t → −∞. Since ψ(λi2 − σi2t) → +∞ as t → −∞, if we let t → −∞,
we obtain ∑

j∈I\i2

α′jΓ(λj − σjt) exp(θ′jt)

tΓ(λi2 − σi2t)ψ(λi2 − σi2t) exp(θ′i2t)
+

βjΓ(λj − σjt) exp(θ′jt)

Γ(λi2 − σi2t)ψ(λi2 − σi2t) exp(θ′i2t)
+

γ′j exp(θ′jt)Γ(λj − σjt)ψ(λj − σjt)
exp(θ′i2t)Γ(λi2 − σi2t)ψ(λi2 − σi2t)

+

η′j exp(θ′jt)Γ(λj − σjt)ψ(λj − σjt)
t exp(θ′i2t)Γ(λi2 − σi2t)ψ(λi2 − σi2t)

→ 0. (69)
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Additionally, as j ≥ i and j /∈ I , we have σj = σi2 and θ′j > θ′i2 . Therefore, we obtain
exp((θ′j − θ′i2)t)Γ(λj − σjt)/Γ(λi2 − σi2t) → 0 as t → −∞. As a consequence, if
we let t→ −∞, then ∑

j /∈I,j≥i

α′jΓ(λj − σjt) exp(θ′jt)

tΓ(λi2 − σi2t)ψ(λi2 − σi2t) exp(θ′i2t)
+

βjΓ(λj − σjt) exp(θ′jt)

Γ(λi2 − σi2t)ψ(λi2 − σi2t) exp(θ′i2t)
+

γ′j exp(θ′jt)Γ(λj − σjt)ψ(λj − σjt)
exp(θ′i2t)Γ(λi2 − σi2t)ψ(λi2 − σi2t)

+

η′j exp(θ′jt)Γ(λj − σjt)ψ(λj − σjt)
t exp(θ′i2t)Γ(λi2 − σi2t)ψ(λi2 − σi2t)

→ 0. (70)

Now, as j < i, we have σj < σi2 . Therefore, as Γ(λj − σjt)/Γ(λi2 − σi2t) ∼
(−t)(σi2

−σj)t when t < 0, we get exp((θ′j − θ′i2)t)Γ(λj − σjt)/Γ(λi2 − σi2t)→ 0 as
t→ −∞. As a consequence, if we let t→ −∞, then

∑
j<i

α′jΓ(λj − σjt) exp(θ′jt)

tΓ(λi2 − σi2t)ψ(λi2 − σi2t) exp(θ′i2t)
+

βjΓ(λj − σjt) exp(θ′jt)

Γ(λi2 − σi2t)ψ(λi2 − σi2t) exp(θ′i2t)
+

γ′j exp(θ′jt)Γ(λj − σjt)ψ(λj − σjt)
exp(θ′i2t)Γ(λi2 − σi2t)ψ(λi2 − σi2t)

+

η′j exp(θ′jt)Γ(λj − σjt)ψ(λj − σjt)
t exp(θ′i2t)Γ(λi2 − σi2t)ψ(λi2 − σi2t)

→ 0. (71)

Combining (69), (70), and (71), by letting t → −∞ in (68), we get γ′i2 = 0. With
this result, we divide both sides of (68) by t exp(θ′i2t)Γ(λi2 − σi2t), we obtain that as
t→ −∞

α′i2
t

+ β′i2 +
η′i2ψ(λi2 − σi2t)

t
+
∑
j 6=i2

α′jΓ(λj − σjt) exp(θ′jt)

tΓ(λi2 − σi2t) exp(θ′i2t)
+

βjΓ(λj − σjt) exp(θ′jt)

Γ(λi2 − σi2t) exp(θ′i2t)
+
γ′j exp(θ′jt)Γ(λj − σjt)ψ(λj − σjt)

exp(θ′i2t)Γ(λi2 − σi2t)
+

η′j exp(θ′jt)Γ(λj − σjt)ψ(λj − σjt)
t exp(θ′i2t)Γ(λi2 − σi2t)

= 0.

Using the same argument with the notice that exp((θ′j − θ′i1)t)ψ(λj − σjt)Γ(λj −
σjt)/Γ(λi2 − σi2t) → 0 as t → −∞ for all j 6= i1 and ψ(λi2 − σi2t)/t → 0 as
t → −∞, we obtain β′i2 = 0. Continue in this fashion, we divide both sides of (68)
by ψ(λi2 − σi2t) exp(θ′i2t)Γ(λi2 − σi2t) and exp(θ′i2t)Γ(λi2 − σi2t) respectively and
by letting t → −∞, we get α′i2 = η′i2 = 0. Applying this argument to the remained
indices i, we achieve α′j = β′j = γ′j = η′j = 0 for 1 ≤ j ≤ k or equivalently
αj = βj = γj = ηj = 0 for 1 ≤ j ≤ k.



N. Ho and X. Nguyen/Convergence rates of parameter estimation 60

(c) Assume that we can find αj , βj , γj ∈ R such that

k∑
j=1

αjfX(x|νj , λj) + βj
∂fX
∂ν

(x|νj , λj) + γj
∂fX
∂λ

(x|νj , λj) = 0.

It implies that by the transformation Y = log(X), we still have:

k∑
j=1

αjfY (y|νj , λj) + βj
∂fY
∂ν

(y|νj , λj) + γj
∂fY
∂λ

(y|νj , λj) = 0. (72)

where fY (y) is the density function of Y .

Applying the moment generating function to both sides of (72), we obtain as t >
− min

1≤i≤k
{νi} that

k∑
j=1

αjλ
t
jΓ(

t

νj
+ 1)−

βjtλ
t
j

ν2
j

Γ(
t

νj
+ 1)ψ(

t

νj
+ 1) + γjtλ

t−1
j Γ(

t

νj
+ 1) = 0. (73)

Without loss of generality, assume that ν1 ≤ ν2 ≤ . . . ≤ νk. Denote i as the minimum
index such that νi = ν1 and i1 is index such that λi1 = min

1≤i≤i1
{λi}, which implies that

λi1 < λi for all 1 ≤ i ≤ i. Using the same argument as that of generalized gumbel
density function case, we firstly divide both sides of (73) by tΓ(t/νi1 + 1)ψ(t/νj + 1)
and let t → +∞, we obtain βi1 = 0. Then, with this result, we divide both sides of
(73) by tΓ(t/νj + 1) and let t → +∞, we get γi1 = 0. Finally, divide both sides of
(73) by Γ(t/νj + 1) and let t→ +∞, we achieve αi1 = 0. Repeat the same argument
until we obtain αi = βi = γi = 0 for all 1 ≤ i ≤ k.

(d) The idea of this proof is based on main theorem of [14]. Assume that we can find
αj , βj , γj ∈ R such that

k∑
j=1

αjf(x|µj , κj) + βj
∂f

∂µ
(x|µj , κj) + γj

∂f

∂κ
(x|µj , κj) = 0.

We can rewrite the above equation as for all x ∈ [0, 2π) that

k∑
j=1

[
α′j + β′j sin(x− µj) + γ′j cos(x− µj)

]
exp(κj cos(x− µj)) = 0. (74)

where C(κ) =
1

2πI0(k)
, α′j = C(κj)αj + C ′(κj)γj , β′j = −C(κj)βj , and γ′j =

C(κj)γj for all 1 ≤ j ≤ k.
Since the functions exp(κj(x − µj)), cos(x − µj) exp(κj(x − µj)), and sin(x −

µj) exp(κj(x − µj)) are analytic functions of x, we can extend equation(74) to the
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whole range x ∈ C. Denote x = y + iz, where y, z ∈ R. Direct calculation yields
cos(x − µj) = cos(y − µj) cosh(z) − i sin(y − µj) sinh(z), sin(x − µj) = sin(y −
µj) cosh(z) + i cos(y − µj) sinh(z), and

exp(κj cos(x− µj)) = exp(κj [cos(y − µj) cosh(z)− i sin(y − µj) sinh(z)]).

Therefore, we can rewrite equation (74) as for all y, z ∈ R
k∑
j=1

{{
α′j +

[
β′j cos(y − µj) + γ′j sin(y − µj)

]
cosh(z) −

i

[
β′j sin(y − µj)− γ′j cos(y − µj)

]
sinh(z)

}}
× exp (κj [cos(y − µj) cosh(z)− i sin(y − µj) sinh(z)]) = 0. (75)

As (µj , κj) are pairwise different as 1 ≤ j ≤ k, we can choose at least one y∗ ∈
[0, 2π) such that mj = κj cos(y∗ − µj) are pairwise different as 1 ≤ j ≤ k and
cos(y∗ − µj), sin(y∗ − µj) are all different from 0 for all 1 ≤ j ≤ k. Without loss of
generality, we assume that m1 < m2 < . . . < mk. Multiply both sides of (75) with
exp(−mk + iκk sin(y∗ − µk) sinh(z)), we obtain

α′k + [β′k cos(y∗ − µk) + γ′k sin(y∗ − µk)] cosh(z)− i(β′k sin(y∗ − µk) −

γ′k cos(y∗ − µk)) sinh(z)| =
k−1∑
j=1

|α′j +
[
β′j cos(y∗ − µj) + γ′j sin(y∗ − µj)

]
cosh(z) −

i
[
β′j sin(y∗ − µj)− γ′j cos(y∗ − µj)

]
sinh(z)| × exp((mj −mk) cosh(z)).

Noted that as mj < mk for all 1 ≤ j ≤ k − 1,

lim
z→∞

cosh(z) exp((mj −mk) cosh(z)) = lim
z→∞

sinh(z) exp((mj −mk) cosh(z)) = 0.

Therefore, by letting z →∞ in both sides of the above equation, we obtain

|α′k + [β′k cos(y∗ − µk) + γ′k sin(y∗ − µk)] cosh(z)− i(β′k sin(y∗ − µk)−
γ′k cos(y∗ − µk)) sinh(z)| → 0.

It implies that α′k = 0, β′k cos(y∗ − µk) + γ′k sin(y∗ − µk) = 0, and β′k sin(y∗ −
µk) − γ′k cos(y∗ − µk) = 0. These equations imply α′k = β′k = γ′k = 0. Repeat the
same argument for the remained α′j , β

′
j , γ
′
j as 1 ≤ j ≤ k − 1, we eventually achieve

α′j = γ′j = γ′j = 0 for all 1 ≤ j ≤ k or equivalently αj = βj = γj = 0 for all
1 ≤ j ≤ k.

PROOF OF THEOREM 3.4 (Continue) Here, we present the proof for part (c) and
part (d).
(c) Assume that we can find αi ∈ R, βi ∈ Rd, ηi ∈ Rd, and γi ∈ Rd×d symmetric
matrices such that:

k∑
i=1

αif(x|θi,Σi, λi) + βTi
∂f

∂θ
(x|θi,Σi, λi) + tr((

∂f

∂Σ
(x|θi,Σi, λi))T γi)

+ηTi
∂f

∂λ
(x|θi,Σi, λi) = 0. (76)
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where θi ∈ Rd, Σi ∈ S++
d , and λi ∈ Rd+.

From the formation of f , we have f = fY ∗ fZ , where fY (x|θ,Σ) =
1

|Σ|1/2 g((x−

θ)TΣ−1(x−θ)), g(x) = Cν/(ν+x)(ν+d)/2,Cν = Γ(
ν + d

2
)νν/2/Γ(

ν

2
)πd/2, fZ(x|λ′) =

d∏
i=1

(λ′i)
bi

Γ(bi)
xbi−1
i exp(−λ′ixi).1{xi>0} where b1, . . . , bk ∈ N are fixed number and λ′ ∈

Rd+.

Denote φZ(t|λ) =

∫
Rd

exp(itTx)fZ(x|λ)dx. Multiplying (76) with exp(itTx) and take

the integral in Rd , equation (76) can be rewritten as

k∑
j=1

σZ(t|λj)(αj
∫
Rd

exp(itTx)fY (x|θj ,Σj)dx +

∫
Rd

exp(itTx)βTj
∂fY
∂θ

(x|θj ,Σj)dx+

∫
Rd

exp(itTx) tr((
∂fY
∂Σ

(x|θj ,Σj))T γj)dx) +

∫
Rd

exp(itTx)fY (x|θj ,Σj)dx
∫
Rd

exp(itTx)ηTj
∂fZ
∂λ

(x|λj)dx = 0. (77)

Now, we have∫
Rd

exp(itTx)fY (x|θj ,Σj)dx = CνC1 exp(itT θjA1(||Σ1/2
j t||))

and

k∑
j=1

∫
Rd

(
αjfY (x|θj ,Σj) + βTj

∂fY
∂θ

(x|θj ,Σj) + exp(itTx) tr((
∂fY
∂Σ

(x|θj ,Σj))T γj)
)

× exp(itTx)dx =

k∑
j=1

Cν

[(
α′j + C3 tr(Mj)−

C3t
T tT γjt

tTΣjt
+
iC2(Σ

1/2
j t)Tβ′j
ν + 1

)
A1(||Σ1/2t||)

]

× exp(itT θj) +

[
C2t

T γjt

tTΣjt
A3(||Σ1/2

j t||)
]

exp(itT θj).

where A1(t′) =

∫
R

exp(i|t′|z)
(v + z2)(ν+1)/2

dz, A3(t′) =

∫
R

exp(i|t′|z)z2

(ν + z2)(ν+3)/2
dz for any t′ ∈

R, and α′j = αj−
tr(Σ−1

j γj)

2
, β′j =

ν + d

2
Σ−1/2βj , andMj =

ν + d

2
Σ
−1/2
j γjΣ

−1/2
j .

Denote the following quantities fZl
(xl|λ′l) =

(λ′l)
bl

Γ(bl)
xbl−1
l exp(−λ′lxl).1{xl>0} and
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φZl
(t|λ′l) =

∫
R

exp(itxl)fZl
(xl|λ′l)dxl as λ′l ∈ R, we obtain

φZ(t|λj) =

d∏
l=1

φZl
(xl|λlj) =

d∏
l=1

(λlj)
bl

(λlj − it)bl
,

where λj = (λ1
j , . . . , λ

d
j ).

Additionally, by denoting ηj = (η1
j , . . . , η

d
j )∫

Rd

exp(itTx)ηTj
∂fZ
∂λ

(x|λj)dx =

d∑
l=1

ηlj
∏
u6=l

φZu(tu|λuj )×

×
∫
R

exp(itlxl)
∂fZl

∂λ′l
(x|λlj)dxl

=

d∑
l=1

ηlj
∏
u6=l

φZu
(tu|λuj )

∂φZl

∂λl
(tl|λlj)

= −i
d∑
l=1

ηlj
βl(λ

l
j)
bl−1tl

blj − itl)bl+1

∏
u 6=l

(λuj )bu

(λuj − itu)bu
.

Multiplying both sides of equation (77) with
k∏
j=1

d∏
u=1

(λuj − itu)bu+1, we obtain:

k∑
j=1

[(
ν′j −

C3t
T tT γjt

tTΣjt
+
iC2(Σ

1/2
j t)Tβ′j
ν + 1

)
A1(||Σ1/2t||) +

C2t
T γjt

tTΣjt
A3(||Σ1/2

j t||)
]

exp(itT θj)

d∏
u=1

(λuj )bu(λuj − itu)

×
∏
l 6=j

d∏
u=1

(λul − itu)bu+1 − iC1 exp(itT θj)A1(||Σ1/2
j t||)

×

 d∑
l=1

ηljbl(λ
l
j)
bl−1

∏
u6=l

(λuj )butl
∏
u6=l

(λuj − itu)

∏
l 6=j

d∏
u=1

(λul − itu)bu+1 = 0, (78)

where ν′j = α′j+C3(
d∑
l=1

M j
ll). Using the same argument as that of multivariate general-

ized Gaussian distribution, we can find set D being the union of finite hyperplanes and
cones such that as t′ /∈ D, ((t′)T θ1, (t

′)TΣ1t
′), . . . , ((t′)T θk, (t

′)TΣkt
′) are pairwise

different. Denote t = t1t
′, where t1 ∈ R and t′ /∈ D and θ′j = (t′)T θj , σ2

j = (t′)TΣjt
′.

For all t1 ≥ 0, using the result from multivariate Student’s t-distribution, we can denote

A1(t1) = C ′1 exp(−t1
√
ν)

l1−1∑
u=0

aut
u
1 and A3(t1) = C ′1 exp(−t1

√
ν)

l1∑
u=0

but
u
1 , where
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ν = 2l1 − 1 and a0, al1−1, b0, bl1 6= 0.
We define(

l1−1∑
u=0

aut
u
1

)
d∏

u=1

(λuj )bu(λuj − it′ut1)
∏
l 6=j

d∏
u=1

(λul − it′ut1)bu+1 =

m1∑
u=0

cjut
u
1 ,

where m1 = l1 + d− 2 + (d+
d∑

u=1
bu)(k − 1). Additionally, we define

m1+1∑
u=0

djut
u
1 :=

(
l1∑
u=0

but
u
1

)
d∏

u=1

(λuj )bu(λuj − it′ut1)
∏
l 6=j

d∏
u=1

(λul − it′ut1)bu+1

and

m1+1∑
u=1

ejut
u
1 :=

(
l1−1∑
u=0

aut
u
1

) d∑
l=1

ηljbl(λ
l
j)
bl−1

∏
u6=l

(λuj )but′lt1
∏
u6=l

(λuj − it′ut1)

×
×
∏
l 6=j

d∏
u=1

(λul − it′ut1)bu+1.

Equation (78) can be rewritten as

k∑
j=1

[
(α
′′

j + β
′′

j (it1))

m1∑
u=0

cjut
u
1 + γ

′′

j

m1+1∑
u=0

djut
u
1 − iC1

m1+1∑
u=1

ejut
u
1

]
×

× exp(iθ′jt1 − σj
√
ν) = 0, (79)

whereα
′′

j = α′j+C3 tr(Mj)−
C3(t′)T γjt

′

σ2
j

, β
′′

j =
(Σ

1/2
j t′)Tβ′j
ν + 1

, and γ
′′

j =
C2(t′)T γjt

′

σ2
j

.

Without loss of generality, we assume σ1 ≤ σ2 ≤ . . . ≤ σk. Denote hj = σj
√
ν −

iθ′j and apply Laplace transformation to (79), we obtain that as Re(s) > −σ1
√
ν

k∑
j=1

α
′′

j

m1∑
u=0

cjuu!

(s+ hj)u+1
+ iβ

′′

j

m1+1∑
u=1

cju−1u!

(s+ hj)u+1
+ γ

′′

j

m1+1∑
u=0

djuu!

(s+ hj)u+1
−

iC1

m1∑
u=1

ejuu!

(s+ hj)u+1
= 0. (80)

Using the same argument as that of multivariate Student’s t-distribution, by multiplying
both sides of equation (80) with (s+ h1)m1+2 and let s→ −h1, we obtain |iβ′′1 c1m1

+

γ
′′

1 d
1
m1+1| = 0. Since

c1m1
= (−i)

(d+
d∑

u=0
bu)(k−1)+d

al1−1

d∏
u=1

(λ
′′

1 )bu(t′u)(bu+1)(k−1)+1
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and

d1
m1

= (−i)
(d+

d∑
u=0

bu)(k−1)+d
bl1

d∏
u=1

(λ
′′

1 )bu(t′u)(bu+1)(k−1)+1,

the equation |iβ′′1 c1m1
+ γ

′′

1 d
1
m1+1| = 0 is equivalent to |iβ′′1 al1−1 + γ

′′

1 bl1 | = 0, which
yields that β

′′

1 al1−1 = γ
′′

1 bl1 = 0. As al1−1, bl1 6= 0, we obtain β
′′

1 = γ
′′

1 = 0.

With this result, we multiply two sides of (80) with (s+h1)m1+1 and let s→ −h1,
we obtain |a′′1 c1m1

−iC1e
1
m1
| = 0. Then, we multiply both sides of (80) with (s+h1)m1

and let s → −h1, we get |α′′1 c1m1−1(m1 − 1)! − iC1e
1
m1−1(m1 − 1)!| = 0. Repeat

this argument until we obtain |α′′1 c10| = 0 and |α′′1 c11 − iC1e
1
1| = 0, which implies that

α
′′

1 = 0 as c10 = a0

k∏
l=1

d∏
u=1

(λul )bu+1 6= 0 and e1
1 = 0.

From the formation of e1
1, it yields that

a0

 d∑
l=1

ηl1t
′
lbl(λ

l
1)bl−1

∏
u 6=l

(λu1 )bu+1

∏
l 6=1

d∏
u=1

(λul )bu+1 = 0.

As a0 6= 0, it implies that

d∑
l=1

ηl1t
′
lbl(λ

l
1)bl−1

∏
u6=l

(λu1 )bu+1 = 0.

Denote ηl1bl(λ
l
1)bl−1

∏
u 6=l

(λu1 )bu+1 = ψl1 for all 1 ≤ l ≤ d then we have
d∑
l=1

ψl1t
′
l = 0.

If there is any ψl1 6= 0, by choosing t′ to lie outside that hyperplane, we will not get the

equality
d∑
l=1

ψl1t
′
l = 0. Therefore, ψl1 = 0 for all 1 ≤ l ≤ d, which implies that ηl1 = 0

for all 1 ≤ l ≤ d or equivalently η1 = 0. Repeating the above argument until we obtain
α
′′

j = β
′′

j = γ
′′

j = 0 ∈ R and ηj = 0 ∈ Rd for all 1 ≤ j ≤ k. From the formation of
α
′′

j , β
′′

j , γ
′′

j , using the same argument as that of multivariate Student’s t-distribution, by
choosing t′ appropriately, we will have αj = 0, βj = 0 ∈ Rd, and γj = 0 ∈ Rd×d for
all 1 ≤ j ≤ k.

(d) Assume that we can find αj ∈ R,βj ∈ Rd, symmetric matrices γj ∈ Rd×d,ηj ∈ Rd,
and τj ∈ Rd such that

k∑
j=1

αjf(x|θj ,Σj , aj , bj) + βTj
∂f

∂θ
(x|θj ,Σj , aj , bj) +

tr(
∂f

∂Σ
(x|θj ,Σj , aj , bj)T γj) + ηTj

∂f

∂a
(x|θj ,Σj , aj , bj) +

τTj
∂f

∂b
(x|θj ,Σj , aj , bj) = 0. (81)
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Denote Z =
d∏
j=1

Zj , where Zj ∼ Gamma(aj , bj). Let φZj (tj |aj , bj) to be the moment

generating function of Zj , then φZj
(tj |aj , bj) = b

aj
j /(bj−aj)aj as tj < bj . Therefore,

the moment generating function φZ(t|a, b) of Z is
d∏
j=1

b
aj
j

(bj − tj)aj
as tj < bj for all

1 ≤ j ≤ d.

Multiply both sides of (81) with exp(tTx) and take the integral in Rd,using the
same argument as that of multivariate generalized Gaussian case, we obtain that as
ti < min

1≤j≤k

{
bij
}

for all 1 ≤ i ≤ k

k∑
j=1

(
α′j + (Σ

1/2
j β′j)

T t+ tr(Mj) +
tT γjt

2
+

d∑
l=1

ηlj log

(
blj

blj − tl

)
−

d∑
l=1

τ lj
aljtl

blj(b
l
j − tl)

)
exp(tT θj +

1

2
tTΣjt)

d∏
i=1

(bij)
aij

(bij − ti)a
i
j

= 0.

Multiply both sides of the above equation with
k∏
u=1

d∏
i=1

(biu − ti)a
i
u+1, we can rewrite

it as

k∑
j=1

((α′j + (Σ
1/2
j β′j)

T t+ tr(Mj) +
tT γjt

2
+

d∑
l=1

ηlj log(
blj

blj − tl
))

d∏
i=1

(bij − ti)−
d∑
l=1

τ lja
l
jtl
∏
u 6=l

(buj − tu)) ×

× exp(tT θj +
1

2
tTΣjt)

d∏
i=1

(bij)
aij
∏
u6=j

d∏
i=1

(biu − ti)a
i
u+1 = 0. (82)

Put t = t1t
′ as t1 ∈ R and t′ ∈ Rd+. We can find set D, which is the finite union of hy-

perplanes and cones such that as t′ /∈ D and t′ ∈ Rd+, we get that ((t′)T θ1, (t
′)TΣ1t

′),
. . . , ((t′)T θk, (t

′)TΣkt
′) are pairwise different. Therefore as ti < min

1≤j≤k

{
bij
}

for all

1 ≤ i ≤ k, we get t1 < t∗ = min
1≤j≤k,1≤i≤d

{
bij
t′i

}
. Denote θ′j = tT θj and σ2

j = tTΣjt,
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as t1 < t∗, we can rewrite (82) as follows
k∑
j=1

((α′j + t1(Σ
1/2
j β′j)

T t′ + tr(Mj) + t21
(t′)T γjt

′

2
+

d∑
l=1

ηlj log(
blj

blj − t′lt1
))

d∏
i=1

(bij − t′it1)−
d∑
l=1

τ lja
l
jt
′
lt1
∏
u6=l

(buj − t′ut1)) ×

× exp(θ′jt1 +
σ2
j t

2

2
)

d∏
i=1

(bij)
aij
∏
u6=j

d∏
i=1

(biu − t′it1)a
i
u+1 = 0. (83)

Without loss of generality, we assume that σ1 ≤ σ2 ≤ . . . ≤ σk. By using the same
argument as that of multivariate generalized Gaussian distribution in Theorem (3.4), we
denote i to be minimum index such that σi = σk and ik as the index such that θ′ik =

min
i≤j≤k

{
θ′j
}

. Multiply both sides of (80) with exp(−θ′ikt1 −
σ2
ik
t21

2
) and let t1 → −∞,

using the convergence argument of generalized Gaussian case, we eventually obtain as
t1 → −∞

((α′ik + t1(Σ
1/2
ik
β′ik)T t′ + tr(Mik) + t21

(t′)T γikt
′

2
+

d∑
l=1

ηlik log(
blj

blik − t′lt1
))

d∏
i=1

(biik − t′it1)−
d∑
l=1

τ lika
l
ik
t′lt1

∏
u 6=l

(buik − t′ut1)) ×

×
d∏
i=1

(biik)a
i
ik

∏
u6=ik

d∏
i=1

(biu − t′it1)a
i
u+1 → 0.

Since
d∏
i=1

(biik)a
i
ik

∏
u 6=ik

d∏
i=1

(biu − t′it1)a
i
u+1 → +∞ as t1 → −∞, the above result

implies that as t1 → −∞,

B(t1) = (α′ik + t1(Σ
1/2
ik
β′ik)T t′ + tr(Mik) + t21

(t′)T γikt
′

2
+

d∑
l=1

ηlik log(
blj

blik − t′lt1
))

d∏
i=1

(biik − t′it1)−
d∑
l=1

τ lika
l
ik
t′lt1

∏
u6=l

(buik − t′ut1) → 0. (84)

Note that the highest degree in terms of t1 in B(t1) is d + 2 and its corresponding

coefficient is (−1)d
d∏
i=1

t′i
(t′)T γikt

′

2
. As B(t1) → 0 as t1 → −∞, it implies that

(t′)T γikt
′ = 0, which yields that γik = 0 under appropriate choice of t′. Similarly, the

coefficient of td+1
1 inB(t1) is (−1)d

d∏
i=1

t′i(Σ
1/2
ik
β′ik)T t′. Therefore, (Σ

1/2
ik
β′ik)T t′ = 0,

which implies that β′ik = 0. With these results, from (84), we see that(
d∑
l=1

ηlik log(blik − t′lt1)

)
d∏
i=1

(bik − t′it1)→ 0 as t1 → −∞.
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It follows that ηlik = 0 for all 1 ≤ l ≤ d. Now, the coefficient of t01 in B(t1) is

α′ik

d∏
i=1

biik ; therefore, it implies that α′ik = 0. Last but not least, the coefficient of t1

now is−
d∑
l=1

τ lika
l
ik
t′l
∏
u6=l

buik . Thus, we have
d∑
l=1

τ lika
l
ik
t′l
∏
u6=l

buik = 0. By an appropriate

choice of t′, we obtain τ lik = 0 for all 1 ≤ l ≤ d. Repeat the above argument until we
get α′i = 0, β′i = ηi = τi = 0 ∈ Rd, and γi = 0 ∈ Rd×d, which also yields that
αi = 0, βi = ηi = τi = 0 ∈ Rd, γi = 0 ∈ Rd×d for all 1 ≤ i ≤ k.
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