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Abstract

The sliced Wasserstein (SW) distance has been widely recognized as a statistically effective
and computationally efficient metric between two probability measures. A key component of
the SW distance is the slicing distribution. There are two existing approaches for choosing
this distribution. The first approach is using a fixed prior distribution. The second approach
is optimizing for the best distribution which belongs to a parametric family of distributions
and can maximize the expected distance. However, both approaches have their limitations. A
fixed prior distribution is non-informative in terms of highlighting projecting directions that
can discriminate two general probability measures. Doing optimization for the best distribution
is often expensive and unstable. Moreover, designing the parametric family of the candidate
distribution could be easily misspecified. To address the issues, we propose to design the
slicing distribution as an energy-based distribution that is parameter-free and has the density
proportional to an energy function of the projected one-dimensional Wasserstein distance. We
then derive a novel sliced Wasserstein metric, energy-based sliced Waserstein (EBSW) distance,
and investigate its topological, statistical, and computational properties via importance sampling,
sampling importance resampling, and Markov Chain methods. Finally, we conduct experiments
on point-cloud gradient flow, color transfer, and point-cloud reconstruction to show the favorable
performance of the EBSW.

1 Introduction

The sliced Wasserstein [3] (SW) distance is a sliced probability metric that is derived from the
Wasserstein distance [6, 35] as the base metric. Utilizing the closed-form solution of optimal transport
on one-dimension [35], the SW distance can be computed very efficiently at the time complexity
of O(n log n) and the space complexity of O(n) when dealing with two probability measures that
have at most n supports. Moreover, the sample complexity of the SW is only O(n−1/2) [24, 34]
which indicates that it does not suffer from the curse of dimensionality in statistical inference.
Therefore, the SW distance has been applied to various domains of applications including point-
cloud applications e.g., reconstruction, registration, generation, and upsampling [29, 39], generative
models [9], domain adaptation [20], clustering [19], gradient flows [21, 2], approximate Bayesian
computation [23], variational inference [45], and many other tasks.

The SW distance can be defined as the expectation of the one-dimensional Wasserstein distance
between two projected probability measures. The randomness comes from a random projecting
direction which is used to project two original probability measures to one dimension. The probability
distribution of the random projecting direction is referred to as the slicing distribution. Therefore, a
central task that decides the effectiveness of the SW in downstream applications is designing slicing
distribution. The conventional sliced Wasserstein distance [3] simply takes the uniform distribution
over the unit-hypersphere as the slicing distribution. Despite being easy to sample from, the
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uniform distribution is not able to differentiate between informative and non-informative projecting
distributions in terms of discriminating two interested probability measures through projection [8].
To avoid a flat prior distribution like the uniform distribution, a different approach tries to find
the best slicing distribution that can maximize the expectation. This distribution is found inside a
parametric family of distribution over the unit-hypersphere [28, 30]. However, searching for the best
slicing distribution often requires an iterative procedure which is often computationally expensive
and unstable. Moreover, choosing the family for the slicing distribution is challenging since the
number of distributions over the unit-hypersphere is limited. Widely used and explicit spherical
distributions such as von Mises-Fisher distribution [15, 30] might be misspecified while implicit
distributions [28] are expensive, hard to adapt to downstream applications, and uninterpretable.

In this paper, we aim to develop new choices of slicing distributions that are both discriminative in
comparing two given probability measures and do not require optimization. Motivated by energy-
based models [22, 14], we model the slicing distribution by an unnormalized density function which
gives a higher density for a more discriminative projecting direction. To induce that property,
the density function at a projecting direction is designed to be proportional to the value of the
one-dimensional Wasserstein distance between the two corresponding projected probability measures.

Contribution. In summary, our contributions are three-fold:

1. We propose a new class of slicing distribution, named energy-based slicing distribution, which has
the density function proportional to the value of the projected one-dimensional Wasserstein distance.
We further control the flexibility of the slicing distribution by applying an energy function e.g., the
polynomial function, and the exponential function, to the projected Wasserstein value. By using
the energy-based slicing distribution, we derive a novel metric on the space of probability measures,
named energy-based sliced Wasserstein (EBSW) distance.

2. We derive theoretical properties of the proposed EBSW including topological properties, statistical
properties, and computational properties. For topological properties, we first prove that the EBSW
is a valid metric on the space of probability measures. After that, we show that the weak convergence
of probability measures is equivalent to the convergence of probability measures under the EBSW
distance. Moreover, we develop the connection of the EBSW to existing sliced Wasserstein variants
and the Wasserstein distance. We show that the EBSW is the first non-optimization variant
that is an upper bound of the sliced Wasserstein distance. For the statistical properties, we first
derive the sample complexity of the EBSW which indicates that it does not suffer from the curse of
dimensionality. For computational properties, we propose importance sampling, sampling importance
resampling, and Markov Chain Monte Carlo methods to derive empirical estimations of the EBSW.
Moreover, we discuss the time complexities and memory complexities of the corresponding estimations.
Finally, we discuss the statistical properties of estimations including unbiasedness and variance.

3. We apply the EBSW to various tasks including gradient flows, color transfer, and point-cloud
applications. According to the experimental result, the EBSW performs better than existing
projection-selection sliced Wasserstein variants including the conventional sliced Wasserstein [3]
(SW), max sliced Wasserstein [8] (Max-SW), and distributional sliced Wasserstein (DSW) [28, 30].
More importantly, the importance sampling estimation of the EBSW is as efficient and easy to
implement as the conventional SW, i.e., its implementation can be obtained by adding one to two
lines of code.

Organization. The remainder of the paper is organized as follows. We first review the background
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on the sliced Wasserstein distance and its projection-selection variants in Section 2. We then define
the energy-based sliced Wasserstein distance, derive their theoretical properties, and discuss its
computational methods in Section 3. Section 4 contains experiments on gradient flows, color transfer,
and point-cloud applications. We conclude the paper in Section 5. Finally, we defer the proofs of
key results, related works, and additional materials in the Appendices.

Notations. For any d ≥ 2, we denote Sd−1 := {θ ∈ Rd | ||θ||22 = 1} and U(Sd−1) as the unit hyper-
sphere and its corresponding uniform distribution . We denote P(X ) as the set of all probability
measures on the set X . For p ≥ 1, Pp(X ) is the set of all probability measures on the set X that have
finite p-moments. For any two sequences an and bn, the notation an = O(bn) means that an ≤ Cbn
for all n ≥ 1, where C is some universal constant. We denote θ♯µ is the push-forward measures of µ
through the function f : Rd → R that is f(x) = θ⊤x. For a vector X ∈ Rdm, X := (x1, . . . , xm), PX
denotes the empirical measures 1

m

∑m
i=1 δxi .

2 Background

In this section, we first review the definitions of the Wasserstein distance and its projection-selection
variants including max sliced Wasserstein distance and distributional sliced Wasserstein distance.

Sliced Wasserstein. The definition of sliced Wasserstein (SW) distance [3] between two probability

measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd) is: SWp(µ, ν) =
(
Eθ∼U(Sd−1)W

p
p(θ♯µ, θ♯ν)

) 1
p
, where the

Wasserstein distance has a closed form which is Wp
p(θ♯µ, θ♯ν) =

∫ 1
0 |F−1

θ♯µ(z)−F−1
θ♯ν(z)|

pdz where Fθ♯µ
and Fθν are the cumulative distribution function (CDF) of θ♯µ and θ♯ν respectively. However, the
expectation in the definition of the SW distance is intractable to compute. Therefore, the Monte

Carlo scheme is employed to approximate the value: ŜWp(µ, ν;L) =
(

1
L

∑L
l=1 Wp

p(θl♯µ, θl♯ν)
) 1
p
,

where θ1, . . . , θL
i.i.d∼ U(Sd−1) and are referred to as projecting directions. The pushfoward measures

θ1♯µ, . . . , θL♯µ are called projections of µ (similar to ν). The number of Monte Carlo samples L
is often referred to as the number of projections. When µ and ν are discrete measures that have
at most n supports, the time complexity and memory complexity of the SW are O(Ln log n) and
O(L(d+n)) respectively. It is worth noting that ŜW

p

p(µ, ν;L) is an unbiased estimation of SWp
p(µ, ν),

however, ŜWp(µ, ν;L) is only asymptotically unbiased estimation of SWp(µ, ν). Namely, we have
ŜWp(µ, ν;L) → SWp(µ, ν) when L→ ∞ (law of large numbers).

Distributional sliced Wasserstein. As discussed, using the uniform distribution over projecting
directions is not suitable for two general probability measures. A natural extension is to replace
the uniform distribution with a "better" distribution on the unit-hypersphere. Distributional
sliced Wasserstein [28] suggests searching this distribution in a parametric family of distributions
by maximizing the expected distance. The definition of distributional sliced Wasserstein (DSW)
distance [28] between two probability measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd) is: DSWp(µ, ν) =

maxψ∈Ψ

(
Eθ∼σψ(θ))W

p
p(θ♯µ, θ♯ν)

) 1
p
, where σψ(θ) ∈ P(Sd−1), e.g., von Mises-Fisher [15] distribution

with unknown location parameter σψ(θ) := vMF(θ|ϵ, κ), ψ = ϵ [30]. After using T ≥ 1 (projected)
stochastic (sub)-gradient ascent iterations to obtain an estimation of the parameter ψ̂T , Monte Carlo
samples θ1, . . . , θL

i.i.d∼ σψ̂T (θ) are used to approximate the value of the DSW. Interestingly, the
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metricity DSW holds for non-optimal ψ̂T as long as σψ̂T (θ) are continuous on Sd−1 e.g., vMF with
κ < ∞ [29]. In addition, the unbiasedness property of the DSW is the same as the SW, namely,
when L→ ∞, the empirical estimation of the DSW converges to the true value. The time complexity
and space complexity of the DSW are O(LTn log n) and O(L(d+ n)) in turn without counting the
complexities of sampling from σψ̂T (θ). We refer to Appendix B.1 for more details, e.g., equations,
algorithms, and discussion.

Max sliced Wasserstein. By letting the concentration parameter κ→ ∞, the vMF distribution
degenerates to the Dirac distribution vMF(θ|ϵ, κ) → δϵ, we obtain the max sliced Wasserstein
distance [8]. The definition of max sliced Wasserstein (Max-SW) distance between two probability
measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd) is: Max-SWp(µ, ν) = maxθ∈Sd−1 Wp(θ♯µ, θ♯ν). Similar to the
DSW, the Max-SW is often computed by using T ≥ 1 iterations of (projected) (sub)-gradient ascent
to obtain an estimation of the "max" projecting direction θ̂T . After that, the estimated value of
the Max-SW is Wp(θ̂T ♯µ, θ̂T ♯ν). The time complexity and space complexity of the Max-SW are
O(Tn log n) and O(d+n). It is worth noting that the Max-SW is only a metric at the global optimum
θ⋆, hence, we cannot guarantee the metricity of the Max-SW due to the non-convex optimization [34]
problem even when T → ∞. Therefore, the performance of Max-SW is often unstable in practice [26].
We refer the reader to Appendix B.1 for more details e.g., equations, algorithms, and discussions
about the Max-SW.

3 Energy-Based Sliced Wasserstein Distance

From the background, we observe that using a fixed slicing distribution e.g., in the SW, is computa-
tionally efficient but might be not effective. In contrast, using optimization-based slicing distributions
is computationally expensive e.g., in the DSW, and is unstable e.g., in the Max-SW. Therefore, we
address previous issues by introducing a novel sliced Wasserstein variant that uses optimization-free
slicing distribution which can highlight the difference between two comparing probability measures.

3.1 Energy-Based Slicing Distribution

We first start with the key contribution which is the energy-based slicing distribution.

Definition 1. For any p ≥ 1, dimension d ≥ 1, an energy function f : [0,∞) → Θ ⊂ (0,∞) and two
probability measures µ ∈ Pp(Rd) and ν ∈ Rd, the energy-based slicing distribution σµ,ν(θ) supported
on Sd−1 is defined as follow:

σµ,ν(θ; f) ∝ f(Wp
p(θ♯µ, θ♯ν)) :=

f(Wp
p(θ♯µ, θ♯ν))∫

Sd−1 f(Wp
p(θ♯µ, θ♯ν))dθ

, (1)

where the image of f is in the open interval (0,∞) is for making σµ,ν(θ) continuous on Sd−1

In contrast to the approach of the DSW which creates the dependence between the slicing distribution
and two input probability measures via optimization, the energy-based slicing distribution obtains
the dependence by exploiting the value of the projected Wasserstein distance between two input
probability measures at each support.

Monotonically increasing energy functions: Similar to previous works, we again assume that
"A higher value of projected Wasserstein distance, a better projecting direction". Therefore, it is
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natural to use a monotonically increasing function for the energy function f . We consider the
following two functions: the exponential function: fe(x) = ex, and the shifted polynomial function:
fq(x) = xq + ε with q, ε > 0. The shifted constant ε helps to avoid the slicing distribution undefined
when two input measures are equal. In a greater detail, when µ = ν, we have Wp

p(θ♯µ, θ♯ν) = 0

for all θ ∈ Sd−1 due to the identity property of the Wasserstein distance. Hence, σµ,ν(θ; f) ∝ 0 for
θ ∈ Sd−1 and f(x) = xq (q > 0). Therefore, the slicing distribution σµ,ν(θ; f) is undefined due to an
invalid density function. In practice, it is able to set ε = 0 since we rarely deal with two coinciding
measures.

Other energy functions: We can choose any positive function for energy function f and it will
result in a valid slicing distribution. However, it is necessary to come up with an assumption for the
choice of the function. Since there is no existing other assumption for the importance of projecting
direction, we will leave the investigation of non-increasing energy function f to future works.

Example 1. Let µ = N (m, v21I) and ν = N (m, v22I)) are two location-scale Gaussian distributions
with the same means, we have their projections are θ♯µ = N (θ⊤m, v21) and θ♯ν = N (θ⊤m, v22). Based
on the closed form of the Wasserstein distance between two Gaussians [10], we have W2

2(θ♯µ, θ♯ν) =
(v1 − v2)

2 for all θ ∈ Sd−1 which leads to σµ,ν(θ; f) = U(Sd−1) for definitions of energy function f in
Definition 1.

Example 1 gives a special case where we can have the closed form of the slicing function.

Applications to other sliced probability metrics and mutual information: In this paper,
we focus on comparing choices of slicing distribution in the basic form of the SW distance. The
proposed energy-based slicing distribution can be adapted to other variants of the SW that are
not about designing slicing distribution e.g., non-linear projecting [18], hierarchical projecting [32],
orthogonal projecting directions [37], sequential projecting directions [31], and so on. Moreover, the
energy-based slicing approach can be applied to other sliced probability metrics e.g., sliced score
matching [40], and sliced mutual information [12].

3.2 Definitions, Topological, and Statistical Properties of Energy Based Sliced
Wasserstein

With the definition of energy-based slicing distribution in Definition 1, we now are able to define the
energy-based sliced Wasserstein (EBSW) distance.

Definition 2. For any p ≥ 1, dimension d ≥ 1, two probability measures µ ∈ Pp(Rd) and ν ∈ Rd,
the energy function f : [0,∞) → (0,∞), and the energy-based slicing distribution σµ,ν(θ; f), the
energy-based sliced Wasserstein (EBSW) distance is defined as follows:

EBSWp(µ, ν; f) =
(
Eθ∼σµ,ν(θ;f)

[
Wp
p(θ♯µ, θ♯ν)

]) 1
p . (2)

We now derive some theoretical properties of the EBSW distance.

Topological Properties. We first investigate the metricity of the EBSW distance.

Theorem 1. For any p ≥ 1, the energy-based sliced Wasserstein EBSWp is a semi-metric in the
probability space on Rd, namely it satisfies non-negativity, symmetry, and identity.

5



Next, we establish the connections among the EBSW, the SW, the Max-SW, and the Wasserstein.

Proposition 1. (a) For any p ≥ 1 and increasing energy function f , we find that SWp(µ, ν) ≤
EBSWp(µ, ν; f). The equality holds when f(x) = c for some positive constant c for all x ∈ [0,∞).

(b) For any p ≥ 1 and energy function f , we have EBSWp(µ, ν; f) ≤ Max-SWp(µ, ν) ≤Wp(µ, ν).

Proof of Proposition 1 is in Appendix A.2. The results of Proposition 1 indicate that for increasing
energy function f , the EBSW is lower bounded by the SW while it is upper bounded by the Max-SW.
It is worth noting that the EBSW is the first variant that changes the slicing distribution while still
being an upper bound of the SW.

Theorem 2. For any p ≥ 1 and energy function f , the convergence of probability measures under
the energy-based sliced Wasserstein distance EBSWp(·, ·; f) implies weak convergence of probability
measures and vice versa.

Theorem 2 implies that for any sequence of probability measures (µk)k∈N and µ in Pp(Rd),
limk→+∞ EBSWp(µk, µ; f) = 0 if and only if for any continuous and bounded function f : Rd → R,
limk→+∞

∫
f dµk =

∫
f dµ. The proof of Theorem 2 is in Appendix A.3.

Statistical Properties. From Proposition 1, we derive the sample complexity of the EBSW.

Proposition 2. Let X1, X2, . . . , Xn be i.i.d. samples from the probability measure µ being supported
on compact set of Rd. We denote the empirical measure µn = 1

n

∑n
i=1 δXi . Then, for any p ≥ 1 and

energy function f , there exists a universal constant C > 0 such that

E[EBSWp(µn, µ; f)] ≤ C
√

(d+ 1) log n/n,

where the outer expectation is taken with respect to the data X1, X2, . . . , Xn.

The proof of Proposition 2 is given in Appendix A.4. From this proposition, we can say that the
EBSW does not suffer from the curse of dimensionality. We will discuss other statistical properties
of approximating the EBSW in the next section.

3.3 Computational Methods and Computational Properties

Calculating the expectation with respect to the slicing distribution σµ,ν(θ; f) is intractable. Therefore,
we propose some Monte Carlo estimation methods to approximate the value of the EBSW distance.

3.3.1 Importance Sampling

The most simple and computationally efficient method that can be used is importance sampling
(IS) [17]. The idea is to utilize an efficient-sampling proposal distribution σ0(θ) ∈ P(Sd−1) to provide
Monte Carlo samples. After that, we use the density ratio between the original slicing distribution
and the proposal distribution to weight samples. We can rewrite the EBSW distance as:

EBSWp(µ, ν; f) =

(
Eθ∼σ0(θ)

[
Wp

p(θ♯µ, θ♯ν)wµ,ν,σ0,f (θ)
]

Eθ∼σ0(θ) [wµ,ν,σ0,f (θ)]

) 1
p

, (3)
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where σ0(θ) ∈ P(Sd−1) is the proposal distribution, and wµ,ν,σ0,f (θ) =
f(Wp

p(θ♯µ,θ♯ν))
σ0(θ)

is the importance
weighted function. The detailed derivation is given in Appendix B.2. Let θ1, . . . , θL be i.i.d samples
from σ0(θ), the importance sampling estimator of the EBSW (IS-EBSW) is: ̂IS-EBSWp(µ, ν; f, L) =(

1
L

∑L
l=1

[
Wp

p(θl♯µ, θl♯ν)ŵµ,ν,σ0,f (θl)
]) 1

p
, where ŵµ,ν,σ0,f (θl) =

ŵµ,ν,σ0,f (θl)∑L
l′=1 ŵµ,ν,σ0,f (θl′ )

is the normalized

importance weights. When we choose σ0(θ) = U(Sd−1) = Γ(d/2)

2πd/2
(a constant of θ), hence, we can

replace wµ,ν,σ0(θl) with f(Wp
p(θl♯µ, θl♯ν)). When we choose the energy function f(x) = ex, computing

the normalized importance weights ŵµ,ν,σ0,f (θl) =
wµ,ν,σ0,f (θl)∑L
i=1 wµ,ν,σ0,f (θi)

is equivalent to computing the

Softmax function.

Computational algorithms and complexities. The computational algorithm of IS-EBSW can
be derived from the algorithm of the SW distance by adding only one to two lines of code for
computing the importance weights. For a better comparison, we give algorithms for computing
the SW distance and the EBSW distance in Algorithm 1 and Algorithm 4 in Appendix B.1 and
Appendix B.2 respectively. When µ and ν are two discrete measures that have at most n supports,
the time complexity and the space complexity of the IS-EBSW distance are O(Ln log n+ Lnd) and
O(L(n+ d)) which are the same as the SW.

Unbiasedness. The IS approximation is asymptotically unbiased for EBSWp
p(µ, ν; f). However,

having a biased estimation is not severe since the unbiasedness cannot be preserved after taking
the p-rooth (p > 1) like in the case of the SW distance. Therefore, an unbiased estimation of
EBSWp

p(µ, ν; f) is not very vital. Moreover, we can show that ̂IS-EBSW
p

p(µ, ν; f, L) is an unbiased
estimation of the power p of a valid distance. We refer the reader to Appendix B.2 for the detailed
definition and properties of the distance. From this insight, it is safe to use the IS-EBSW in practice.

Gradient Estimation. In statistical inference, we might want to estimate the gradient ∇ϕEBSWp(µϕ, ν; f)
for doing minimum distance estimator [43]. Therefore, we derive the gradient estimator of the EBSW
with importance sampling in B.2.

3.3.2 Sampling Importance Resampling and Markov Chain Monte Carlo

The second approach is to somehow sample from the slicing distribution σµ,ν(θ; f). For exam-
ple, when we have θ1, . . . , θL are approximately distributed following σµ,ν(θ; f), we can take(

1
L

∑L
l=1 Wp

p(θl♯µ, θl♯ν)
) 1
p as the approximated value of the EBSW. Here, we consider two fa-

mous approaches in statistics: Sampling Importance Resampling [13] (SIR) and Markov Chain
Monte Carlo (MCMC). For MCMC, we utilize two variants of the Metropolis-Hasting algorithm:
independent Metropolis-Hasting (IMH) and random walk Metropolis-Hasting (RMH).

Sampling Importance Resampling. Similar to importance sampling in Section 3.3.1, the SIR
uses a proposal distribution σ0(θ) to obtain L samples θ′1, . . . , θ′L and the corresponding normalized
importance weights ŵµ,ν,σ0,f (θ′l) =

wµ,ν,σ0,f (θ
′
l)∑L

i=1 wµ,ν,σ0,f (θ
′
i)

. After that, the SIR creates the resampling

distribution which is a Categorical distribution q̂(θ) =
∑L

l=1 ŵµ,ν,σ0,f (θl)δθ′l . Finally, the SIR draws

L samples θ1, . . . , θL
i.i.d∼ q̂(θ). We denote the SIR estimation of the EBSW distance as SIR-EBSW.

Markov Chain Monte Carlo. MCMC creates a Markov chain that has the stationary distribution
as the target distribution. The most famous way to construct such a Markov chain is through the
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Metropolis-Hastings algorithm. Let the starting sample follow a prior distribution θ1 ∼ σ0(θ) ∈
P(Sd−1), a transition distribution σt(θt|θt−1) ∈ P(Sd−1) for any timestep t > 1 is used to sample a
candidate θ′t. After that, the new sample θt is set to θ′t with the probability α and is set to θt−1 with
the probability 1−α with α = min

(
1,

σµ,ν(θ′t;f)
σµ,ν(θt−1;f)

σt(θt−1|θ′t)
σt(θ′t|θt−1)

)
= min

(
1,

f(Wp
p(θ

′
t♯µ,θ

′
t♯ν)))

f(Wp
p(θt−1♯µ,θt−1♯ν)))

σt(θt−1|θ′t)
σt(θ′t|θt−1)

)
.

In theory, T should be large enough to help the Markov chain to mix to the stationary distribution
and the first M < T samples are often dropped as burn-in samples. However, for keeping the
computational complexity the same as the previous computational methods, we set T = L and
M = 0. The first choice of transition distribution is σt(θt|θt−1) = U(Sd−1) which leads to independent
Metropolis-Hasting (IMH). The second choice is σt(θt|θt−1) = vMF(θt|θt−1, κ) (the von Mises-Fisher
distribution [15] with location θt−1) which leads to random walk Metropolis-Hasting (RMH). Since
both above transition distributions are symmetric σt(θt|θt−1) = σt(θt−1|θt), the acceptance probability
turns into α = min

(
1,

f(Wp
p(θ

′
t♯µ,θ

′
t♯ν)))

f(Wp
p(θt−1♯µ,θt−1♯ν)))

)
which means that the acceptance probability equals 1

and θ′t is always accepted as θt if it can increase the energy function. We refer to the IMH estimation
and the RMH estimation of the EBSW distance as IMH-EBSW and RMH-EBSW in turn.

Computational algorithms and complexities. We refer the reader to Algorithm 5, Algorithm 6,
and Algorithm 7 in Appendix B.3 for the detailed algorithms of the SIR-EBSW, the IMH-EBSW, and
the RMH-EBSW. Without counting the complexity of the sampling algorithm, the time complexity
and the space complexity of both the SIR and the MCMC estimation of EBSW are O(Ln log n+Lnd)
and O(L(n+ d)) which are the same as the IS-EBSW and the SW distance. However, the practical
computational time and memory of the SIR and the MCMC estimation depend on the efficiency of
implementing the sampling algorithm e.g., resampling and acceptance-rejection.

Unbiasedness. The SIR and the MCMC sampling do not give an unbiased estimation for
EBSWp

p(µ, ν; f). However, they are also unbiased estimations of the power p of a valid distance. We
refer to Appendix B.3 for detailed definitions and properties of the distance. Therefore, it is safe to
use the approximation from the SIR and the MCMC.

Gradient Estimation: In the IS estimation, the expectation is with respect to the proposal
distribution σ0(θ) that does not depend on two input measures µϕ. In the SIR estimation and
the MCMC estimation, the expectation is with respect to the slicing distribution σµϕ,ν(θ, f) that
depends on µϕ. Therefore, the log-derivative trick (Reinforce) should be used to derive the gradient
estimation. We give the detailed derivation in Appendix B.3. However, the log-derivative trick is
often unstable in practice. A simpler solution is to create the slicing distribution from an independent
copy of µϕ. In particular, we denote µϕ′ is the independent copy of µϕ with ϕ′ equals ϕ in terms
of value. Therefore, we can obtain the slicing distribution σµϕ′ ,ν(θ; f) that does not depend on µϕ.
This approach still gives the same value of distance, we refer to Appendix B.3 for a more careful
discussion.

4 Experiments

In this section, we first visualize the shape of the energy-based slicing distribution in a simple case.
After that, we focus on showing the favorable performance of the EBSW compared to the other sliced
Wasserstein variants in point-cloud gradient flows, color transfer, and deep point-cloud reconstruction.
In experiments, we denote EBSW-e for the exponential energy function i.e., f(x) = ex, and EBSW-1
for the identity energy function i.e., f(x) = x. We use p = 2 for all sliced Wasserstein variants.
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Figure 1: Visualization of the true and the sampled energy-based slicing distributions, the optimal vMF distribution
from the v-DSW, and the max projecting direction from the Max-SW.

4.1 Visualization of energy-based slicing distribution

We visualize the shape of the energy-based slicing distribution in two dimensions in Figure 1. In
particular, we consider comparing two empirical distributions in the left-most figure (taken from [11]).
We utilize the SIR, the IMH, and the RMH to obtain 104 Monte Carlo samples from the energy-based
slicing distribution. For the IMH and the RHM, we burn in the 104 samples. After that, we use the
von Mises kernel density estimation to obtain the density function. We also present the ground-truth
density of the energy-based slicing distribution by uniform discretizing the unit-sphere. Moreover,
we also show the optimal vMF distribution from the DSW (tuning κ ∈ {1, 5, 10, 50, 100}) and the
"max" projecting direction from the Max-SW (T = 100, step size 0.1). The middle figure is according
to the energy function f1(x) = x and the right-most figure is according to the energy function
fe(x) = ex. From the figures, we observe that all sampling methods can approximate well the true
slicing distribution. In contrast, the vMF distribution from v-DSW is misspecified to approximate
the energy distribution, and the "max" projecting direction from the Max-SW can capture only one
mode. We also observe that the exponential energy function makes the density more concentrated
around the modes than the identity energy function (polynomial of degree 1).

4.2 Point-Cloud Gradient Flows

We model a distribution µ(t) flowing with time t along the gradient flow of a loss functional µ(t) →
D(µ(t), ν) that drives it towards a target distribution ν [38] where D is our sliced Wasserstein variants.
We consider discrete flows, namely. we set ν = 1

n

∑n
i=1 δYi as a fixed empirical target distribution

and the model distribution µ(t) = 1
n

∑n
i=1 δXi(t). Here, the model distribution is parameterized by

a time-varying point cloud X(t) = (Xi(t))
n
i=1 ∈

(
Rd
)n. Starting from an initial condition at time

t = 0, we integrate the ordinary differential equation Ẋ(t) = −n∇X(t)

[
D
(
1
n

∑n
i=1 δXi(t), ν

)]
for each

iteration. We choose µ(0) and ν are two point-cloud shapes in ShapeNet Core-55 dataset [5]. After
that, we solve the flows by using the Euler scheme with 500 iterations and step size 0.0001.

Quantitative Results. We show the Wasserstein-2 distance between µ(t) and ν
(t ∈ {0, 100, 200, 300, 400, 500}) and the computational time of the SW variants in Table 1. Here, we
set L = 100 for SW, and EBSW variants. For the Max-SW we set T = 100, and report the best
result for the step size for finding the max projecting direction in {0.001, 0.01, 0.1}. For the v-DSW,
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Figure 2: Gradient flows from the SW, the Max-SW, the v-DSW, and the IS-EBSW-e in turn.

Table 1: Summary of Wasserstein-2 scores (multiplied by 104) from three different runs, computational time in
second (s) to reach step 500 of different sliced Wasserstein variants in gradient flows.

Distances Step 0 (W2 ↓) Step 100 (W2 ↓) Step 200 (W2 ↓) Step 300 (W2 ↓) Step 400(W2 ↓) Step 500 (W2 ↓) Time (s ↓)

SW 2048.29± 0.0 986.93± 9.55 350.66± 5.32 99.69± 1.85 27.03± 0.65 9.41± 0.27 17.06± 0.45
Max-SW 2048.29± 0.0 506.56± 9.28 93.54± 3.39 22.2± 0.79 9.62± 0.22 6.83± 0.22 28.38± 0.05
v-DSW 2048.29± 0.0 649.33± 8.77 127.4± 5.06 29.44± 1.25 10.95± 1.0 5.68± 0.56 21.2± 0.02
IS-EBSW-e 2048.29± 0.0 419.09± 2.64 71.02± 0.46 18.2± 0.05 6.9± 0.08 3.3± 0.08 17.63± 0.02

we report the best result for (L, T ) ∈ {(10, 10), (50, 2), (2, 50)}, κ ∈ {1, 10, 50}, and the learning rate
for finding the location in {0.001, 0.01, 0.1}. We observe that the IS-EBSW-e helps to drive the flow
to converge faster than baselines. More importantly, the computational time of the IS-EBSW-e is
approximately the same as the SW and is faster than both the Max-SW and the v-DSW. We report
more detailed experiments with other EBSW variants and different settings of hyperparameters
(L, T ) in Table 3 in Appendix C.1. From the additional experiments, we see that the EBSW-e
variants give lower Wasserstein-2 distances than the baseline with the same scaling of complexity
(same L/T ). Despite having comparable performance, the SIR-EBSW-e, the IMH-EBSW-e, and the
RMH-EBSW-e (κ = 10) are slower than the IS-EBSW-e variant. Also, we see that the EBSW-e
variants are better than the EBSW-1 variants. We refer to Table 4 for comparing gradient estimators
of the EBSW.

Qualitative Results. We show the point-cloud flows of the SW, the Max-SW, the v-DSW, and the
IS-EBSW-e, in Figure 2. The flows from the SIR-EBSW-e, the IMG-EBSW-e, and the RMH-EBSW-e
are added in Figure 4 in the Appendix C.1. From the figure, the transitions of the flows from the
EBSW-e variants are smoother to the target than other baselines.

4.3 Color Transfer

We build a gradient flow that starts from the empirical distribution over the color palette (RGB)
of the source image to the empirical distribution over the color palette (RGB) of the target image.
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Source SW 85.04(s), W2 = 412.76 Max-SW 126.06(s), W2 = 460.82 v-DSW 92.41(s), W2 = 340.92 IS-EBSW-e 86.7(s), W2 = 264.95 Target

Figure 3: The figures show the source image, the target image, the transferred images from sliced Wasserstein
variants, the corresponding Wasserstein-2 distances to the target color palette, and the computational time.

Table 2: Reconstruction errors from three different runs of autoencoders trained by different distances. The sliced
Wasserstein distance and the Wasserstein distance are multiplied by 100.

Distance Epoch 20 Epoch 100 Epoch 200

SW2(↓) W2(↓) SW2 (↓) W2(↓) SW2 (↓) W2(↓)

SW 2.97± 0.14 12.67± 0.18 2.29± 0.04 10.63± 0.05 2.15± 0.04 9.97± 0.08
Max-SW 2.91± 0.06 12.33± 0.05 2.24± 0.05 10.40± 0.06 2.14± 0.10 9.84± 0.12
v-DSW 2.84± 0.02 12.64± 0.02 2.21± 0.01 10.52± 0.04 2.07± 0.09 9.81± 0.05
IS-EBSW-e 2.68± 0.03 11.90± 0.04 2.18± 0.04 10.27± 0.01 2.04± 0.09 9.69± 0.14

Since the value of the color palette is in the set {0, . . . , 255}3, we must do an additional rounding
step at the final step of the Euler scheme with 2000 steps and step size 0.0001.

Results. We use the same setting for the SW variants as in the previous section. We show both
transferred images, corresponding computational times, and Wasserstein-2 distances in Figure 3. We
observe the same phenomenon as in the previous section, namely, the IS-EBSW-e variants perform
the best in terms of changing the color of the source image to the target in the Wasserstein-2 metric
while the computational time is only slightly higher. Moreover, the transferred image from the
IS-EBSW-e is visually more similar to the target image in color than other baselines, namely, it has
a less orange color. We refer to Figure 5 in Appendix C.2 for additional experiments including the
results for the SIR-EBSW-e, the IMH-EBSW-e, the RMH-EBSW-e, the results for the identity energy
function, the results for changing hyperparamters (L, T ), and the results for comparing gradient
estimators. Overall, we observe similar phenomenons as in the previous gradient flow section.

4.4 Deep Point-Cloud Reconstruction

We follow [33] to train point-cloud autoencoders with sliced Wasserstein distances on the ShapeNet
Core-55 dataset [5]. In short, we aim to estimate an autoencoder that contains an encoder fϕ
that maps a point cloud X ∈ Rnd to a latent code z ∈ Rh, and a decoder gψ that maps the latent
code z to a reconstructed point cloud X̃ ∈ Rnd. We want to have the pair fϕ and gψ such that
X̃ = gψ(fϕ(X)) ≈ X for all X ∼ p(X) which is our data distribution. To do that, we solve the
following optimization problem: minϕ,γ EX∼p(X)[S(PX , Pgγ(fϕ(X)))], where S is a sliced Wasserstein
variant, and PX denotes the empirical distribution over the point cloud X. The backbone for the
autoencoder is a variant of Point-Net [36] with an embedding size of 256. We train the autoencoder
for 200 epochs using an SGD optimizer with an initial learning rate of 1e-3, a batch size of 128, a
momentum of 0.9, and a weight decay of 5e-4. We give more detail in Appendix C.3

Quantitative Results. We evaluate the trained autoencoders on a different dataset: ModelNet40
dataset [44] using two distances: sliced Wasserstein distance (L = 1000), and the Wasserstein
distance. We follow the same hyper-parameters settings as the previous sections and show the
reconstruction errors at epochs 20, 100, and 200 from the SW, the Max-SW, the DSW, and the
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IS-EBSW-e in Table 2. The reconstruction errors are the average of corresponding distances on all
point-clouds. From the table, we observe that the IS-EBSW-e can help to train the autoencoder
faster in terms of the Wasserstein distance and the sliced Wasserstein distance. We refer to Table 5
in Appendix C.3 for similar ablation studies as in the previous sections including the results for the
SIR-EBSW-e, the IMH-EBSW-e, the RMH-EBSW-e, the results for the identity energy function,
the results for changing hyperparameters (L, T ), and the results for comparing gradient estimators.

Qualitative Results. We show some ground-truth point-clouds ModelNet40 and their corresponding
reconstructed point-clouds from different models (L = 100) at epochs 200 and 20 in Figure 6- 7
respectively. Overall, the qualitative results are visually consistent with the quantitative results.

5 Conclusion

We have presented a new variant of sliced Wasserstein distance, named energy-based sliced Wasserstein
(EBSW) distance. The key ingredient of the EBSW is the energy-based slicing distribution which
has a density at a projecting direction proportional to an increasing function of the one-dimensional
Wasserstein value of that direction. We provide theoretical properties of the EBSW including the
topological properties, and statistical properties. Moreover, we propose to compute the EBSW with
three different techniques including importance sampling, sampling importance resampling, and
Markov Chain Monte Carlo. Also, we discuss the computational properties of different techniques.
Finally, we demonstrate the favorable performance of the EBSW compared to existing projecting
directions selection sliced Wasserstein variants by conducting experiments on point-cloud gradient
flows, color transfer, and deep point-cloud reconstruction.
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Supplement to “Energy-Based Sliced Wasserstein Distance"

We first provide skipped proofs in the main text in Appendix A. We then provide additional materials
including additional background, detailed algorithms, and discussion in Appendix B. Additional
experimental results in point-cloud gradient flows, color transfer, and deep point-cloud reconstruction
in Appendix C. Finally, we report the computational infrastructure in Appendix D.

A Proofs

A.1 Proof of Theorem 1

Non-negativity and Symmetry. the non-negativity and symmetry properties of the EBSW follow
directly by the non-negativity and symmetry of the Wasserstein distance since it is an expectation
of the one-dimensional Wasserstein distance.

Identity. We need to show that EBSWp(µ, ν; f) = 0 if and only if µ = ν. First, from the definition
of EBSW, we obtain directly µ = ν implies EBSWp(µ, ν; f) = 0. For the reverse direction, we use
the same proof technique in [4]. If EBSWp(µ, ν; f) = 0, we have

∫
Sd−1 Wp (θ♯µ, θ♯ν) dσµ,ν(θ; f) = 0.

Hence, we have Wp(θ♯µ, θ♯ν) = 0 for σµ,ν(θ; f)-almost surely θ ∈ Sd−1. Since σµ,ν(θ; f) is continuous,
we have Wp(θ♯µ, θ♯ν) = 0 for all θ ∈ Sd−1 . From the identity property of the Wasserstein distance,
we obtain θ♯µ = θ♯ν for σµ,ν(θ; f)-a.e θ ∈ Sd−1. Therefore, for any t ∈ R and θ ∈ Sd−1, we have:

F [µ](tθ) =

∫
Rd
e−it⟨θ,x⟩dµ(x) =

∫
R
e−itzdθ♯µ(z) = F [θ♯µ](t)

= F [θ♯ν](t) =

∫
R
e−itzdθ♯ν(z) =

∫
Rd
e−it⟨θ,x⟩dν(x) = F [ν](tθ),

where F [γ](w) =
∫
Rd′ e

−i⟨w,x⟩dγ(x) denotes the Fourier transform of γ ∈ P(Rd′). By the injectivity
of the Fourier transform, we obtain µ = ν which concludes the proof.

A.2 Proof of Proposition 1

(a) We first provide the proof for the inequality SWp(µ, ν) ≤ EBSWp(µ, ν; f). It is equivalent to
prove that

Eθ∼U(Sd−1)

[
Wp

p(θ♯µ, θ♯ν)
]
≤ Eθ∼σµ,ν(θ;f)

[
Wp

p(θ♯µ, θ♯ν)
]
.

From the law of large number, it is sufficient to demonstrate that

1

L

L∑
i=1

W p
p (θi♯µ, θi♯ν) ≤

L∑
i=1

W p
p (θi♯µ, θi♯ν)f(W

p
p (θi♯µ, θi♯ν))∑L

i=1 f(W
p
p (θi♯µ, θi♯ν))

, (4)

for any L ≥ 1 and θ1, . . . , θL
i.i.d.∼ U(Sd−1). To ease the presentation, we denote ai =W p

p (θi♯µ, θi♯ν)
and bi = f(W p

p (θi♯µ, θi♯ν)) for all 1 ≤ i ≤ L. The inequality equation 4 becomes:

1

L
(

L∑
i=1

ai)(
L∑
i=1

bi) ≤
L∑
i=1

aibi. (5)
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We prove the inequality equation 5 via an induction argument. It is clear that this inequality
holds when L = 1. We assume that this inequality holds for any L. We now verify that the
inequality equation 5 also holds for L+1. Without loss of generality, we assume that a1 ≤ a2 ≤ . . . ≤
aL ≤ aL+1. Since the function f is an increasing function, it indicates that b1 ≤ b2 ≤ . . . ≤ bL ≤ bL+1.
Applying the induction hypothesis for a1, . . . , aL and b1, . . . , bL, we find that

(
L∑
i=1

ai)(
L∑
i=1

bi) ≤ L
L∑
i=1

aibi.

This inequality leads to

(

L+1∑
i=1

ai)(

L+1∑
i=1

bi) ≤ L

L∑
i=1

aibi + (

L∑
i=1

ai)bL+1 + (

L∑
i=1

bi)aL+1 + aL+1bL+1

Therefore, to obtain the conclusion of the hypothesis for L+ 1, it is sufficient to demonstrate that

L

L∑
i=1

aibi + (

L∑
i=1

ai)bL+1 + (

L∑
i=1

bi)aL+1 + aL+1bL+1 ≤ (L+ 1)(

L+1∑
i=1

aibi),

which is equivalent to show that

(
L∑
i=1

ai)bL+1 + (
L∑
i=1

bi)aL+1 ≤
L∑
i=1

aibi + LaL+1bL+1. (6)

Since aL+1 ≥ ai and bL+1 ≥ bi for all 1 ≤ i ≤ L, we have (aL+1 − ai)(bL+1 − bi) ≥ 0, which is
equivalent to aL+1bL+1 + aibi ≥ aL+1bi + bL+1ai for all 1 ≤ i ≤ L. By taking the sum of these
inequalities over i from 1 to L, we obtain the conclusion of inequality equation 6. Therefore, we
obtain the conclusion of the induction argument for L+1, which indicates that inequality equation 5
holds for all L. As a consequence, we obtain the inequality SWp(µ, ν) ≤ EBSWp(µ, ν; f).

(b) We recall the definition of the Max-SW:

Max-SWp(µ, ν) = max
θ∈Sd−1

Wp(θ♯µ, θ♯ν).

Since Sd−1 is compact and the function θ →Wp(θ♯µ, θ♯ν) is continuous, we have
θ⋆ = argmaxθ∈Sd−1Wp(θ♯µ, θ♯ν). From Definition 2, for any p ≥ 1, dimension d ≥ 1, energy-function
f , and µ, ν ∈ Pp(Rd) we have:

EBSWp(µ, ν) =
(
Eθ∼σµ,ν(θ;f))

[
W p
p (θ♯µ, θ♯ν)

]) 1
p

≤
(
Eθ∼σµ,ν(θ;f))

[
W p
p (θ

⋆♯µ, θ⋆♯ν)
]) 1

p =W p
p (θ

∗♯µ, θ∗♯ν) = Max-SWp(µ, ν).
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Furthermore, by applying the Cauchy-Schwartz inequality, we have:

Max-SWp
p(µ, ν) = max

θ∈Sd−1

(
inf

π∈Π(µ,ν)

∫
Rd

∣∣∣θ⊤x− θ⊤y
∣∣∣p dπ(x, y))

≤ max
θ∈Sd−1

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

∥θ∥p∥x− y∥pdπ(x, y)
)

= inf
π∈Π(µ,ν)

∫
Rd×Rd

∥θ∥p∥x− y∥pdπ(x, y)

= inf
π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥pdπ(x, y)

=W p
p (µ, ν),

after taking the p-rooth, we completes the proof.

A.3 Proof of Theorem 2

We aim to show that for any sequence of probability measures (µk)k∈N and µ in Pp(Rd),
limk→+∞ EBSWp(µk, µ; f) = 0 if and only if for any continuous and bounded function f : Rd → R,
limk→+∞

∫
f dµk =

∫
f dµ. We follow the proof techniques in [25]. We first state the following

lemma.

Lemma 1. For any p ≥ 1, energy function f , and dimension d ≥ 1, a sequence of probability
measures (µk)k∈N satisfies limk→+∞ EBSWp(µk, µ; f) = 0 with µ in Pp(Rd), there exists an increasing
function ϕ : N → N such that the subsequence

(
µϕ(k)

)
k∈N converges weakly to µ.

Proof. Since limk→+∞ EBSWp(µk, µ; f) = 0, we have limk→∞
∫
Sd−1 Wp (θ♯µk, θ♯µ) dσµ,ν(θ; f) = 0.

From Theorem 2.2.5 in [1], there exists an increasing function ϕ : N → N such that
limk→∞ Wp(θ♯µϕ(k), θ♯ν) = 0 for σµ,ν(θ; f)-a.e θ ∈ Sd−1. From [41], the Wasserstein distance of order
p implies weak convergence in Pp(Rd), hence,

(
θ♯µϕ(k)

)
k∈N converges weakly to θ♯µ for σµ,ν(θ; f)-a.e

θ ∈ Sd−1.

Let Φµ =
∫
Rd e

i⟨v,w⟩dµ(w) be the characteristic function of µ ∈ Pp(Rd), the weak convergence implies
the convergence of characteristic function (Theorem 4.3 [16]): limk→∞Φθ♯µϕ(k)(s) = Φθ♯µ(s), ∀s ∈
R, for σµ,ν(θ; f)-a.e θ ∈ Sd−1. Therefore, limk→∞Φµϕ(k)(z) = Φµ(z), for almost most every z ∈ Rd.

We denote fγ(x) = f ∗ gγ(x) =
(
2πγ2

)−d/2 ∫
Rd f(x− z) exp

(
−∥z∥2/

(
2γ2
))

dz for any γ > 0 and a
continuous function f : Rd → R with compact support, and gγ is the density function of N (0, γId).
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Now, we have:∫
Rd
fγ(z)dµϕ(k)(z) =

∫
Rd

∫
Rd
f(w)gγ(z − w)dw dµϕ(k)(z)

=

∫
Rd

∫
Rd
f(w)

(
2πγ2

)−d/2
exp(−||z − w||2/(2γ2))dw dµϕ(k)(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd
f(w)

∫
Rd
ei⟨z−w,x⟩g1/γ(x)dx dw dµϕ(k)(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd
f(w)

∫
Rd
e−i⟨w,x⟩ei⟨z,x⟩g1/γ(x)dx dw dµϕ(k)(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd
f(w)e−i⟨w,x⟩g1/γ(x)

∫
Rd
ei⟨z,x⟩ dµϕ(k)(z)dx dw

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd
f(w)e−i⟨w,x⟩g1/γ(x)Φµϕ(k)(x)dx dw

=
(
2πγ2

)−d/2 ∫
Rd

F [f ](x)g1/γ(x)Φµϕ(k)(x)dx,

where the third equality is because
∫
Rd e

i⟨z−w,x⟩g1/γ(x)dx = exp(−||z − w||2/(2γ2)), and F [f ](w) =∫
Rd′ f(x)e

−i⟨w,x⟩dx denotes the Fourier transform of the bounded function f . Similarly, we have:∫
Rd
fγ(z)dµ(z) =

∫
Rd

∫
Rd
f(w)gγ(z − w)dw dµ(z)

=

∫
Rd

∫
Rd
f(w)

(
2πγ2

)−d/2
exp(−||z − w||2/(2γ2))dw dµ(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd
f(w)

∫
Rd
ei⟨z−w,x⟩g1/γ(x)dx dw dµ(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd
f(w)

∫
Rd
e−i⟨w,x⟩ei⟨z,x⟩g1/γ(x)dx dw dµ(z)

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd
f(w)e−i⟨w,x⟩g1/γ(x)

∫
Rd
ei⟨z,x⟩ dµ(z)dx dw

=
(
2πγ2

)−d/2 ∫
Rd

∫
Rd
f(w)e−i⟨w,x⟩g1/γ(x)Φµ(x)dx dw

=
(
2πγ2

)−d/2 ∫
Rd

F [f ](x)g1/γ(x)Φµ(x)dx.

We know that F [f ] exists and is bounded by
∫
Rd |f(w)|dw < +∞ since f has compact support.

Hence, for any x ∈ Rd and k ∈ R, we have
∣∣∣F [f ](x)g1/γ(x)Φµϕ(k)(x)

∣∣∣ ≤ g1/γ(x)
∫
Rd |f(w)|dw and∣∣F [f ](x)g1/γ(x)Φµ(x)

∣∣ ≤ g1/γ(x)
∫
Rd |f(w)|dw. Using the proved result of limk→∞ Φµϕ(k)(z) = Φµ(z)

and Lebesgue’s Dominated Convergence Therefore, we obtain

lim
k→∞

∫
Rd
fγ(z)dµϕ(k)(z) = lim

k→∞

(
2πγ2

)−d/2 ∫
Rd

F [f ](x)g1/γ(x)Φµϕ(k)(x)dx

=
(
2πγ2

)−d/2 ∫
Rd

F [f ](x)g1/γ(x)Φµϕ(k)(x)dx

=

∫
Rd
fγ(z)dµ(z).
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Moreover, we have:

lim
γ→0

lim sup
k→+∞

∣∣∣∣∫
Rd
f(z)dµϕ(k)(z)−

∫
Rd
f(z)dµ(z)

∣∣∣∣
≤ lim

γ→0
lim sup
k→+∞

[
2 sup
z∈Rd

|f(z)− fγ(z)|+
∣∣∣∣∫

Rd
fγ(z)dµϕ(k)(z)−

∫
Rd
fγ(z)dµ(z)

∣∣∣∣
]

= lim
γ→0

2 sup
z∈Rd

|f(z)− fγ(z)| = 0,

which implies
(
µϕ(k)

)
k∈N converges weakly to µ.

Continuing the proof of Theorem 2, we show that limk→∞ EBSWp(µk, µ; f) = 0 implies (µk)k∈N
converges weakly to µ. Let

(
µϕ(k)

)
k∈N be a sequence such that limk→∞ EBSWp(µk, µ; f) = 0,

we suppose
(
µϕ(k)

)
k∈N does not converge weakly to µ. So, let DP be the Lévy-Prokhorov metric,

limk→∞DP(µk,µ) ̸= 0 that implies there exists ε > 0 and a subsequence
(
µψ(k)

)
k∈N with an increasing

function ψ : N → N such that for any k ∈ N: DP(µψ(k), µ) ≥ ε. Using the Holder inequality with
µ, ν ∈ Pp(Rd), we have:

EBSWp(µ, ν; f) =
(
Eθ∼σµ,ν(θ;f)

[
W p
p (θ♯µ, θ♯ν)

]) 1
p

≥ Eθ∼σµ,ν(θ;f) [Wp (θ♯µ, θ♯ν)]

≥ Eθ∼σµ,ν(θ;f) [W1 (θ♯µ, θ♯ν)]

= EBSW1(µ, ν; f).

Therefore, limk→∞ EBSW1(µψ(k), µ; f) = 0 which implies that there exists s a subsequence
(
µϕ(ψ(k))

)
k∈N

with an increasing function ϕ : N → N such that
(
µϕ(ψ(k))

)
k∈N converges weakly to µ by Lemma 1.

Therefore a contradiction appears, namely, limk→∞ dP
(
µϕ(ψ(k)), µ

)
= 0. Therefore,

limk→∞ EBSWp(µk, µ; f) = 0, (µk)k∈N converges weakly to µ.

We have (θ♯µk)k∈N converges weakly to θ♯µ for any θ ∈ Sd−1 by the continuous mapping theorem.
From [41], the weak convergence implies the convergence under the Wasserstein distance. So, we have
limk→∞Wp(θ♯µk, µ) = 0. Moreover, using the fact that the Wasserstein distance is also bounded,
hence, the bounded convergence theorem implies:

lim
k→∞

EBSWp
p(µk, µ; f) = Eθ∼σµ,ν(θ;f)

[
W p
p (θ♯µk, θ♯µ)

]
= Eθ∼σµ,ν(θ;f) [0] = 0.

Again, usingthe continuous mapping theorem with function x→ x1/p, we have limk→∞ EBSWp(µk, µ; f) →
0. We conclude the proof.

A.4 Proof of Proposition 2

We first show that the following inequality holds

E[Max-SWp(µn, µ)] ≤ C
√
(d+ 1) log n/n
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where C > 0 is some universal constant and the outer expectation is taken with respect to the
random variables X1, . . . , Xn. We now follow the proof technique from Proposition 3 in [27]. Let
F−1
n,θ and F−1

θ be the inverse cumulative distributions of two push-forward measures θ♯µn and θ♯µ.
Using the closed-form expression of the Wasserstein distance in one dimension, we obtain to the
following equations and inequalities:

Max-SWp
p(µn, µ) = max

θ∈Sd−1

∫ 1

0
|F−1
n,θ (u)− F−1

θ (u)|pdu

= max
θ∈Rd:∥θ∥=1

∫ 1

0
|F−1
n,θ (u)− F−1

θ (u)|pdu

≤ diam(X ) max
θ∈Rd:∥θ∥≤1

|Fn,θ(x)− Fθ(x)|p.

where X ⊂ Rd is the compact set of the probability measure µ. We can check that

max
θ∈Rd:∥θ∥≤1

|Fn,θ(x)− Fθ(x)| = sup
A∈B

|µn(A)− µ(A)|,

where B is the set of half-spaces {z ∈ Rd : θ⊤z ≤ x} for all θ ∈ Rd such that ∥θ∥ ≤ 1. We know
that the Vapnik-Chervonenkis (VC) dimension of B is at most d+ 1 [42]. Therefore, using the VC
inequality, we obtain:

sup
B∈B

|µn(B)− µ(B)| ≤
√

32

n
[(d+ 1) log(n+ 1) + log(8/δ)],

with probability at least 1− δ. Therefore, we obtain that

E[Max-SWp(µn, µ)] ≤ C
√
(d+ 1) log n/n,

where C > 0 is some universal constant. Moreover, we have E[EBSWp(µn, µ; f)] ≤ E [Max-SWp(µn, µ)]
from Proposition 1. Therefore, As a consequence, we obtain:

E[EBSWp(µn, µ; f)] ≤ C
√
(d+ 1) log n/n,

which completes the proof.

B Additional Materials

B.1 Additional Background

Sliced Wasserstein. When two probability measures are empirical probability measures on n
supports: µ = 1

n

∑n
i=1 δxi and ν = 1

n

∑n
i=1 δyi , the SW distance can be computed by sorting projected

supports. In particular, we have θ♯µ = 1
n

∑n
i=1 δθ⊤xi , θ♯ν = 1

n

∑n
i=1 δθ⊤yi , and Wp

p(θ♯µ, θ♯ν) =
1
n

∑n
i=1(θ

⊤x(i) − θ⊤y(i))
p where θ⊤x(i) is the ordered projected supports. We provide the pseudo-

code for computing the SW in Algorithm 1.

Max sliced Wasserstein. The Max-SW is often computed by the projected gradient ascent. The
sub-gradient is used when the one-dimensional optimal matching is not unique e.g., in discrete cases.
We provide the projected (sub)-gradient ascent algorithm for computing the Max-SW in Algorithm 2.
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Algorithm 1 Computational algorithm of the SW distance
Input: Probability measures µ and ν, p ≥ 1, and the number of projections L.
for l = 1 to L do

Sample θl ∼ U(Sd−1)
Compute vl = Wp(θl♯µ, θl♯ν)

end for

Compute ŜW p(µ, ν;L) =
(

1
L

∑L
l=1 vl

) 1
p

Return: ŜW p(µ, ν;L)

Algorithm 2 Computational algorithm of the Max-SW distance
Input: Probability measures µ and ν, p ≥ 1, the number of iterations T , and the step size η.
Sample θ̂0 ∼ U(Sd−1)
for t = 1 to T do

Compute θ̂t = θ̂t−1 + η∇θ̂t−1
Wp(θ̂t−1♯µ, θ̂t−1♯ν)

Compute θ̂t = θ̂t
||θ̂t||2

end for
Compute M̂ax-SWp(µ, ν;T ) = Wp(θ̂T ♯µ, θ̂T ♯ν)

Return: M̂ax-SWp(µ, ν;T )

Compared to the SW, the Max-SW needs two hyperparameters which are the number of iterations
T and the step size η. Moreover, the empirical estimation of the Max-SW might not converge to the
Max-SW when T → ∞.

Distributional sliced Wasserstein. To solve the optimization of the DSW, we need to use the
stochastic (sub)-gradient ascent algorithm. In particular, we first need to estimate the gradient

∇ψ

(
Eθ∼σψ(θ)W

p
p(θ♯µ, θ♯ν)

) 1
p :

∇ψ

(
Eθ∼σψ(θ)W

p
p(θ♯µ, θ♯ν)

) 1
p
=

1

p

(
Eθ∼σψ(θ)W

p
p(θ♯µ, θ♯ν)

) 1−p
p ∇ψEθ∼σψ(θ)W

p
p(θ♯µ, θ♯ν).

To estimate the gradient ∇ψEθ∼σψ(θ)W
p
p(θ♯µ, θ♯ν), we need to use reparameterization trick for σψ(θ)

e.g., the vMF distribution. After using the reparameterization trick, we can approximate the gradient
∇ψEθ∼σψ(θ)W

p
p(θ♯µ, θ♯ν) =

1
L

∑l
l=1∇ψWp

p(θl,ψ♯µ, θl,ψ♯ν) where θ1,ψ, . . . , θL,ψ are i.i.d reparameter-
ized samples from σψ(θ). Similarly, we approximiate Eθ∼σψ(θ)W

p
p(θ♯µ, θ♯ν) =

1
L

∑L
l=1 Wp

p(θl♯µ, θl♯ν)
. We refer to the details in the following papers [7, 30]. We review the algorithm for computing the
DSW in Algorithm 3. Compared to the SW, the DSW needs three hyperparameters i.e., the number
of projections L, the number of iterations T , and the step size η.

Minimum Distance Estimator and Gradient Estimation. In statistical inference, we are given
the empirical samples X1, . . . , Xn from the interested distribution ν. Since we do not know the form of
ν, we might want to find an alternative representation. In particular, we want to find the best member
µϕ in a family of distribution parameterized by ϕ ∈ Φ. To do that, we want to minimize the distance
between µϕ and the empirical distribution νn = 1

n

∑n
i=1 δXi . This framework is named the minimum

distance estimator [43]: minϕ∈ΦD(µϕ, νn), where D is a discrepancy between two distributions. The

23



gradient ascent algorithm is often used to solve the problem. To do so, we need to compute the
gradient ∇ϕD(µϕ, νn). When using sliced Wasserstein distances, the gradient ∇ϕD(µϕ, νn) is often
approximated by a stochastic gradient since the SW distances involve an intractable expectation. In
previous SW variants, the expectation does not depend on ϕ, hence, we can use directly the Leibniz
rule to exchange the gradient and the expectation, then perform the Monte Carlo approximation. In
particular, we have ∇ϕEθ∼σ(θ)[Wp

p(θ♯µ, θ♯ν)] = Eθ∼σ(θ)[∇ϕWp
p(θ♯µ, θ♯ν)] ≈ 1

L

∑L
l=1∇ϕWp

p(θl♯µ, θl♯ν)

for θ1, . . . , θL
i.i.d∼ σ(θ).

B.2 Importance Sampling

Derivation. We first provide the derivation of the importance sampling estimation of EBSW. From
the definition of the EBSW, we have:

EBSWp(µ, ν; f) =
(
Eθ∼σµ,ν(θ;f)

[
Wp

p(θ♯µ, θ♯ν)
]) 1

p

=

(∫
Sd−1 Wp

p(θ♯µ, θ♯ν)f(W
p
p(θ♯µ, θ♯ν))dθ∫

Sd−1 f(Wp
p(θ♯µ, θ♯ν))dθ

) 1
p

=

∫Sd−1 Wp
p(θ♯µ, θ♯ν)

f(Wp
p(θ♯µ,θ♯ν))
σ0(θ)

σ0(θ)dθ∫
Sd−1

f(Wp
p(θ♯µ,θ♯ν))
σ0(θ)

σ0(θ)dθ

 1
p

=

Eθ∼σ0(θ)
[
Wp

p(θ♯µ, θ♯ν)
f(Wp

p(θ♯µ,θ♯ν))
σ0(θ)

]
Eθ∼σ0(θ)

[
f(Wp

p(θ♯µ,θ♯ν))
σ0(θ)

]


1
p

=

(
Eθ∼σ0(θ)

[
Wp

p(θ♯µ, θ♯ν)wµ,ν,σ0(θ)
]

Eθ∼σ0(θ) [wµ,ν,σ0(θ)]

) 1
p

.

Algorithms. We provide the algorithm for the IS estimation of the EBSW in Algorithm 4. Compared
to the algorithm of the SW in Algorithm 1, the IS-EBSW can be obtained by only adding one or
two lines of code in practice. Therefore, the computation of the IS-EBSW is as fast as the SW while
being more meaningful.

Gradient Estimators. Let µϕ be parameterized by ϕ, we derive now the gradient estimator
∇ϕEBSWp(µ, ν; f) through importance sampling. We have:

∇ϕEBSWp(µϕ, ν; f) =
1

p

(
Eθ∼σ0(θ)

[
Wp

p(θ♯µϕ, θ♯ν)wµϕ,ν,σ0,f (θ)
]

Eθ∼σ0(θ)
[
wµϕ,ν,σ0,f (θ)

] ) 1−p
p

∇ϕ

Eθ∼σ0(θ)
[
Wp

p(θ♯µϕ, θ♯ν)wµϕ,ν,σ0,f (θ)
]

Eθ∼σ0(θ)
[
wµϕ,ν,σ0,f (θ)

] .

We denote A(ϕ) = Eθ∼σ0(θ)
[
Wp

p(θ♯µϕ, θ♯ν)wµϕ,ν,σ0,f (θ)
]
, B(ϕ) = Eθ∼σ0(θ)

[
wµϕ,ν,σ0,f (θ)

]
, we have

∇ϕ
A(ϕ)

B(ϕ)
=
B(ϕ)∇ϕA(ϕ)−A(ϕ)∇ϕB(ϕ)

B2(ϕ)
.
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Algorithm 3 Computational algorithm of the DSW distance
Input: Probability measures µ and ν, p ≥ 1, the number of projections L, the number of iterations
T , and the step size η.
Initialize ψ̂0

for t = 1 to T do
∇ψ = 0
for l = 1 to L do

Sample θl,ψ ∼ σψ̂t−1(θ)
via reparameterization.

Compute θ̂t = θ̂t
||θ̂t||2

end for

Compute ψ̂t = ψ̂t−1 + η 1
p

(
1
L

∑L
l=1 Wp

p(θl,ψ♯µ, θl,ψ♯ν)
) 1−p

p 1
L

∑l
l=1∇ψWp

p(θl,ψ♯µ, θl,ψ♯ν))

end for
for l = 1 to L do

Sample θl ∼ σψ̂T (θ) via reparameterization.
end for

Compute D̂SWp(µ, ν;T, L) =
(

1
L

∑L
l=1 Wp

p(θl♯µ, θl♯ν)
) 1
p

Return: D̂SWp(µ, ν;T, L)

Algorithm 4 Computational algorithm of the IS-EBSW distance
Input: Probability measures µ and ν, p ≥ 1, the number of projections L, the energy function f .
for l = 1 to L do

Sample θl ∼ U(Sd−1)
Compute vl = Wp(θl♯µ, θl♯ν)
Compute wl = f(Wp(θl♯µ, θl♯ν))

end for

Compute ̂IS-EBSWp(µ, ν;L, f) =
(

1
L

∑L
l=1 vl

wl∑L
i=1 wi

) 1
p

Return: ̂IS-EBSWp(µ, ν;L, f)

Using Monte Carlo samples θ1, . . . , θL ∼ σ0(θ) after using the Lebnitz rule to exchange the differen-
tiation and the expectation, we obtain:

(
Eθ∼σ0(θ)

[
Wp

p(θ♯µϕ, θ♯ν)wµϕ,ν,σ0,f (θ)
]

Eθ∼σ0(θ)
[
wµϕ,ν,σ0,f (θ)

] ) 1−p
p

≈

(
1
L

∑L
l=1

[
Wp

p(θl♯µϕ, θl♯ν)wµϕ,ν,σ0,f (θl)
]

1
L

∑L
l=1

[
wµϕ,ν,σ0,f (θl)

] ) 1−p
p

,

∇ϕA(ϕ) ≈
1

L

L∑
l=1

∇ϕ

(
Wp

p(θl♯µϕ, θl♯ν)wµϕ,ν,σ0,f (θ)
)
,

∇ϕB(ϕ) ≈ 1

L

L∑
l=1

∇ϕwµϕ,ν,σ0,f (θ),

which yields the gradient estimation. If we construct the slicing distribution by using a copy of µϕ
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i.e., µϕ′ with ϕ′ = ϕ in terms of value, the gradient estimator can be derived by:

∇ϕEBSWp(µϕ, ν; f) =
1

p

Eθ∼σ0(θ)
[
Wp

p(θ♯µϕ, θ♯ν)wµϕ′ ,ν,σ0,f (θ)
]

Eθ∼σ0(θ)
[
wµϕ′ ,ν,σ0,f (θ)

]


1−p
p

∇ϕEθ∼σ0(θ)
[
Wp

p(θ♯µϕ, θ♯ν)wµϕ′ ,ν,σ0,f (θ)
]

Eθ∼σ0(θ)
[
wµϕ′ ,ν,σ0,f (θ)

] ,

Using Monte Carlo samples θ1, . . . , θL ∼ σ0(θ) after using the Lebnitz rule to exchange the differen-
tiation and the expectation, we obtain:

Eθ∼σ0(θ)
[
Wp

p(θ♯µϕ, θ♯ν)wµϕ′ ,ν,σ0,f (θ)
]

Eθ∼σ0(θ)
[
wµϕ′ ,ν,σ0,f (θ)

]


1−p
p

≈

 1
L

∑L
l=1

[
Wp

p(θl♯µϕ, θl♯ν)wµϕ′ ,ν,σ0,f (θl)
]

1
L

∑L
l=1

[
wµϕ′ ,ν,σ0,f (θl)

]


1−p
p

,

∇ϕEθ∼σ0(θ)
[
Wp

p(θ♯µϕ, θ♯ν)wµϕ′ ,ν,σ0,f (θ)
]
≈ 1

L

L∑
l=1

(
∇ϕWp

p(θl♯µϕ, θl♯ν)
)
wµϕ,ν′,σ0,f (θ),

Eθ∼σ0(θ)
[
wµϕ′ ,ν,σ0,f (θ)

]
≈ 1

L

L∑
l=1

wµϕ′ ,ν,σ0,f (θ).

It is worth noting that using a copy of µϕ does not change the value of the distance. This trick will
show its true benefit when dealing with the SIR, and the MCMC methods. However, we still discuss
it in the IS case for completeness. We refer to the "copy" trick is the "parameter-copy" gradient
estimator while the original one is the conventional estimator.

Importance Weighted sliced Wasserstein distance. Although the IS estimation of the EBSW
is not an unbiased estimation for finite L, it is an unbiased estimation of a valid distance on the space
of probability measures. We refer to the distance as the importance weighted sliced Wasserstein
distance (IWSW) which has the following definition.

Definition 3. For any p ≥ 1, dimension d ≥ 1, energy function f , a continuous proposal distribution
σ0(θ) ∼ P(Sd−1) and two probability measures µ ∈ Pp(Rd) and ν ∈ Rd, the importance weighted
sliced Wasserstein (IWSW) distance is defined as follows:

IWSWp(µ, ν; f) =

(
E

[
1
L

∑L
l=1

[
Wp
p(θl♯µ, θl♯ν)wµ,ν,σ0,f (θl)

]
1
L

∑L
l=1 [wµ,ν,σ0,f (θl)]

]) 1
p

, (7)

where the expectation is with respect to θ1, . . . , θL
i.i.d∼ σ0(θ), and wµ,ν,σ0,f (θ) =

f(Wp
p(θ♯µ,θ♯ν))
σ0(θ)

.

The IWSW is semi-metric, it also does not suffer from the curse of dimensionality, and it induces
weak convergence. The proofs can be derived by following directly the proofs of the EBSW in
Appendix A.1, Apendix A.3, and Appendix A.4. Therefore, using the IS estimation of the EBSW is
as safe as the SW.
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Algorithm 5 Computational algorithm of the SIR-EBSW distance
Input: Probability measures µ and ν, p ≥ 1, the number of projections L, the energy function f .
for l = 1 to L do

Sample θl ∼ U(Sd−1)
Compute wl = f(Wp(θl♯µ, θl♯ν))

end for
for l = 1 to L do

Compute ŵl =
f(Wp(θl♯µ,θl♯ν))∑L
i=1 f(Wp(θi♯µ,θi♯ν))

end for
for l = 1 to L do

Sample θl ∼ Cat(ŵ1, . . . , ŵL)
Compute vl = Wp(θl♯µ, θl♯ν)

end for

Compute ̂SIR-SWp(µ, ν;L, f) =
(

1
L

∑L
l=1 vl

) 1
p

Return: ̂SIR-SWp(µ, ν;L, f)

Algorithm 6 Computational algorithm of the SW distance and the IMH-EBSW distance
Input: Probability measures µ and ν, p ≥ 1, the number of projections L, the energy function f .
Sample θ1 ∼ U(Sd−1)
Compute v1 = Wp(θ1♯µ, θ1♯ν)
for l = 2 to L do

Sample θ′l ∼ U(Sd−1)

Compute α = min
(
1,

f(Wp
p(θ

′
l♯µ,θ

′
l♯ν)))

f(Wp
p(θl−1♯µ,θl−1♯ν)))

)
Sample u ∼ U([0, 1])
if α ≥ u then

Set θl = θ′l
else if α < u then

Set θl = θl−1

end if
vl = Wp(θl♯µ, θl♯ν)

end for

Compute ̂IMH-EBSWp(µ, ν;L, f) =
(

1
L

∑L
l=1 vl

) 1
p

Return: ̂IMH-EBSWp(µ, ν;L)

B.3 Sampling Importance Resampling and Markov Chain Monte Carlo

Algorithms. We first provide the algorithm for computing the EBSW via the SIR, the IMH, and
the RMH in Algorithm 5-7.

Gradient estimators. We derive the reinforce gradient estimator of the EBSW for the SIR, the
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Algorithm 7 Computational algorithm of the SW distance and the RMH-EBSW distance
Input: Probability measures µ and ν, p ≥ 1, the number of projections L, the energy function f ,
the concentration parameter κ.
Sample θ1 ∼ U(Sd−1)
Compute v1 = Wp(θ1♯µ, θ1♯ν)
for l = 2 to L do

Sample θ′l ∼ vMF(θl−1, κ)

Compute α = min
(
1,

f(Wp
p(θ

′
l♯µ,θ

′
l♯ν)))

f(Wp
p(θl−1♯µ,θl−1♯ν)))

)
Sample u ∼ U([0, 1])
if α ≥ u then

Set θl = θ′l
else if α < u then

Set θl = θl−1

end if
vl = Wp(θl♯µ, θl♯ν)

end for

Compute ̂RMH-EBSWp(µ, ν;L, f) =
(

1
L

∑L
l=1 vl

) 1
p

Return: ̂RMH-EBSWp(µ, ν;L)

IMH, and the RHM sampling.

∇ϕEBSWp(µϕ, ν; f) =
1

p

(
Eθ∼σµϕ,ν(θ;f)

[
Wp

p(θ♯µϕ, θ♯ν)
]) 1−p

p ∇ϕEθ∼σµϕ,ν(θ;f)
[
Wp

p(θ♯µϕ, θ♯ν)
]
.

We have:

∇ϕEθ∼σµϕ,ν(θ;f)
[
Wp

p(θ♯µϕ, θ♯ν)
]
= Eθ∼σµϕ,ν;f (θ)

[
Wp

p(θϕ♯µ, θ♯ν)∇ϕ log
(
Wp

p(θ♯µϕ, θ♯ν)σµϕ,ν(θ; f)
)]

and

∇ϕ log
(
Wp

p(θ♯µϕ, θ♯ν)σµϕ,ν(θ; f)
)
= ∇ϕ log(Wp

pθ♯µϕ, θ♯ν)) +∇ϕ log(f(Wp
p(θ♯µϕ, θ♯ν)))

−∇ϕ log

(∫
Sd−1

f(Wp
p(θ♯µϕ, θ♯ν))dθ

)
=

1

Wp
p(θ♯µϕ, θ♯ν))

∇ϕWp
p(θ♯µϕ, θ♯ν)

+
1

f(Wp
p(θ♯µϕ, θ♯ν))

∇ϕf(Wp
p(θ♯µϕ, θ♯ν))

−∇ϕ log

(∫
Sd−1

f(Wp
p(θ♯µϕ, θ♯ν))dθ

)
,
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and

∇ϕ log

(∫
Sd−1

f(Wp
p(θ♯µϕ, θ♯ν))dθ

)
= ∇ϕ log

(
Eθ∼U(Sd−1)

[
f(Wp

p(θ♯µϕ, θ♯ν))
2πd/2

Γ(d/2)

])
= ∇ϕ log

(
Eθ∼U(Sd−1)

[
f(Wp

p(θ♯µϕ, θ♯ν))
])

=
1

Eθ∼U(Sd−1)

[
f(Wp

p(θ♯µϕ, θ♯ν))
]∇ϕEθ∼U(Sd−1)

[
f(Wp

p(θ♯µϕ, θ♯ν)
]
.

Using L Monte Carlo samples from the SIR (or the IMH or the RMH) to approximate the expectation
Eθ∼σµϕ,ν(θ;f), and L samples from U(Sd−1) to approximate the expectation Eθ∼U(Sd−1), we obtain the
gradient estimator of the EBSW. However, the reinforce gradient estimator is unstable in practice,
especially with the energy function fe(x) = ex. Therefore, we propose a more simple gradient
estimator which is

∇ϕEBSWp(µϕ, ν; f) ≈
1

p

(
Eθ∼σµϕ′ ,ν(θ;f)

[
Wp

p(θ♯µϕ, θ♯ν)
]) 1−p

p Eθ∼σµϕ′ ,ν(θ;f)
[
∇ϕWp

p(θ♯µϕ, θ♯ν)
]
.

The key is to use a copy of the parameter ϕ′ for constructing the slicing distribution σµϕ′ ,ν(θ; f),
hence, we can exchange directly the differentiation and the expectation. It is worth noting that
using the copy also affects the gradient estimation, it does not change the value of the distance. We
refer to the "copy" trick is the "parameter-copy" gradient estimator while the original one is the
conventional estimator.

Population distance. The approximated values of p-power EBSW from using the SIR, the IMH,
and the RMH can be all written as 1

L

∑L
l=1 Wp

p(θl♯µ, θl♯ν). Here, the distributions of θ1, . . . , θL are
different. Therefore, they are not an unbiased estimation of the EBSWp

p(µ, ν; f). However, the
population distance of the estimation can be defined as in Definition 4.

Definition 4. For any p ≥ 1, dimension d ≥ 1, energy function f , and two probability measures
µ ∈ Pp(Rd) and ν ∈ Rd, the projected sliced Wasserstein (PSW) distance is defined as follows:

PSWp(µ, ν; f) =

(
E

[
1

L

L∑
l=1

Wp
p(θl♯µ, θ♯ν)

]) 1
p

, (8)

where the expectation is with respect to (θ1, . . . , θL) ∼ σ(θ1, . . . , θL) which is a distribution defined by
the SIR (the IMH or the RHM).

The PSW is a valid metric since it satisfies the triangle inequality in addition to the symmetry, the
non-negativity, and the identity. In particular, given three probability measures µ1, µ2, µ3 ∈ Pp(Rd)
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we have:

PSWp(µ1, µ3) =

(
E(θ1:L)∼σ(θ1:L)

[
1

L

L∑
l=1

W p
p (θl♯µ1, θl♯µ3)

]) 1
p

≤

(
E(θ1:L)∼σ(θ1:L)

[
1

L

L∑
t=1

(Wp (θl♯µ1, θl♯µ2) +Wp (θl♯µ2, θl♯µ3))
p

]) 1
p

≤

(
E(θ1:L)∼σ(θ1:L)

[
1

L

L∑
t=1

W p
p (θl♯µ1, θl♯µ2)

]) 1
p

+

(
E(θ1:L)∼σ(θ1:L)

[
1

L

T∑
l=1

W p
p (θl♯µ2, θl♯µ3)

]) 1
p

= PSWp(µ1, µ2) + PSWp(µ2, µ3),

where the first inequality is due to the triangle inequality of Wasserstein distance and the second
inequality is due to the Minkowski inequality. The PSW also does not suffer from the curse of
dimensionality, and it induces weak convergence. The proofs can be derived by following directly
the proofs of the EBSW in Appendix A.1, Apendix A.3, and Appendix A.4. Therefore, using the
SIR, the IMH, and the RMH estimation of the EBSWs are as safe as the SW.

C Additional Experiments

In this section, we provide additional results for point-cloud gradient flows in Appendix C.1, color
transfer in Appendix C.2, and deep point-cloud reconstruction in Appendix C.3.

C.1 Point-Cloud Gradient Flows

We provide the full experimental results including the IS-EBSW, the SIR-EBSW, the IMH-EBSW,
and the RMH-EBSW with both the exponential energy function and the identity energy function in
Table 3. In the table, we also include the results for the number of projections L = 10. In Table 3,
we use the conventional gradient estimator for the IS-EBSW while the "parameter-copy" estimator
is used for other variants of the EBSW. Therefore, we also provide the ablation studies comparing
the gradient estimators in Table 4 by adding the results for the "parameter-copy" estimator for the
IS-EBSW and the conventional estimator for other variants. Experimental settings are the same as
in the main text.

Quantitative Results. From the two tables, we observe that the IS-EBSW is the best variant of
the EBSW in both performance and computational time. Also, we observe that the exponential
energy function is better than the identity energy function in this application. It is worth noting
that the EBSW variants of all computational methods and energy functions are better than the
baselines in terms of Wasserstein-2 distances at the last epoch. For all sliced Wasserstein variants,
we see that reducing the number of projections leads to worsening performance which is consistent
with previous studies in previous works [27, 26, 18]. In Table 3, the IS-EBSW uses the conventional
gradient estimator while the SIR-EBSW, the IMH-EBSW, and the RMH-EBSW use the "parameter-
copy" estimator. Therefore, we report the IS-EBSW with the "parameter-copy" estimator and the
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Figure 4: Gradient flows from the SW, the Max-SW, the v-DSW, the IS-EBSW-e, the SIR-EBSW-e, the IMH-EBSW-e,
and the RMH-EBSW-e in turn.

SIR-EBSW, the IMH-EBSW, and the RMH-EBSW with the Reinforce estimator (conventional
estimator) in Table 4. From the table, we observe the "parameter-copy" estimator is worse than
the conventional estimator in the case of IS-EBSW. For the SIR-EBSW, the IMH-EBSW, and
the RMH-EBSW, we cannot use the exponential energy function due to the numerically unstable
Reinforce estimator. In the case of the identity energy function, the exponential energy function is
also worse than the "parameter-copy" estimator. Therefore, we recommend to use the IS-EBSW-e
with the conventional gradient estimator.

Qualitative Results. We provide the visualization of the gradient flows from SW (L=100), Max-
SW (T=100), v-DSW (L=10,T=10), and all the EBSW-e variants in Figure 4. Overall, we see
that EBSW-e variants give smoother flows than other baselines. Despite having slightly different
quantitative scores due to the approximation methods, the visualization from the EBSW-e variants
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Table 3: Summary of Wasserstein-2 scores (multiplied by 104) from three different runs, computational time in
second (s) to reach step 500 of different sliced Wasserstein variants in gradient flows.

Distances Step 0 (W2 ↓) Step 100 (W2 ↓) Step 200 (W2 ↓) Step 300 (W2 ↓) Step 400(W2 ↓) Step 500 (W2 ↓) Time (s ↓)

SW L=100 2048.29± 0.0 986.93± 9.55 350.66± 5.32 99.69± 1.85 27.03± 0.65 9.41± 0.27 17.06± 0.45
Max-SW T=100 2048.29± 0.0 506.56± 9.28 93.54± 3.39 22.2± 0.79 9.62± 0.22 6.83± 0.22 28.38± 0.05
v-DSW L*T=100 2048.29± 0.0 649.33± 8.77 127.4± 5.06 29.44± 1.25 10.95± 1.0 5.68± 0.56 21.2± 0.02
IS-EBSW-e L=100 2048.29± 0.0 419.09± 2.64 71.02± 0.46 18.2± 0.05 6.9± 0.08 3.3± 0.08 17.63± 0.02
SIR-EBSW-e L=100 2048.29± 0.0 435.02± 1.1 85.26± 0.11 21.96± 0.12 7.9± 0.22 3.79± 0.17 29.8± 0.04
IMH-EBSW-e L=100 2048.29± 0.0 460.19± 3.46 91.28± 1.19 23.35± 0.52 8.26± 0.26 3.93± 0.14 49.3± 0.54
RMH-EBSW-e L=100 2048.29± 0.0 454.92± 3.25 87.92± 0.69 22.66± 0.46 8.14± 0.31 3.82± 0.24 62.5± 0.09
IS-EBSW-1 L=100 2048.29± 0.0 692.63± 7.21 167.75± 3.12 41.8± 0.93 12.31± 0.27 5.35± 0.1 17.91± 0.28
SIR-EBSW-1 L=100 2048.29± 0.0 704.08± 2.75 169.88± 0.47 41.85± 0.28 12.58± 0.24 5.64± 0.18 30.56± 0.05
IMH-EBSW-1 L=100 2048.29± 0.0 715.97± 4.49 171.42± 1.25 42.05± 0.42 12.6± 0.1 5.63± 0.06 50.01± 0.01
RMH-EBSW-1 L=100 2048.29± 0.0 712.11± 1.64 173.47± 1.49 42.94± 0.4 12.68± 0.15 5.54± 0.09 64.01± 0.08

SW L=10 2048.29± 0.0 988.57± 14.01 351.63± 2.63 101.54± 2.45 28.19± 1.04 10.11± 0.34 3.84± 0.04
Max-SW T=10 2048.29± 0.0 525.72± 7.35 134.8± 4.6 34.07± 0.34 10.77± 0.15 7.36± 0.31 6.55± 0.06
IS-EBSW-e L=10 2048.29± 0.0 519.73± 8.63 92.14± 1.29 23.94± 0.07 9.03± 0.33 4.59± 0.22 5.57± 0.03
SIR-EBSW-e L=10 2048.29± 0.0 508.86± 8.49 104.47± 1.93 28.27± 0.68 10.56± 0.08 5.61± 0.16 6.84± 0.06
IMH-EBSW-e L=10 2048.29± 0.0 621.51± 22.49 131.75± 7.09 34.42± 1.89 11.55± 0.38 5.56± 0.09 8.41± 0.04
RMH-EBSW-e L=10 2048.29± 0.0 642.87± 5.25 135.91± 8.39 36.11± 2.13 12.57± 0.75 5.94± 0.31 9.69± 0.04
IS-EBSW-1 L=10 2048.29± 0.0 713.65± 5.68 177.16± 1.19 45.07± 0.17 13.6± 0.26 6.16± 0.22 5.69± 0.0
SIR-EBSW-1 L=10 2048.29± 0.0 731.4± 9.37 181.28± 5.05 44.99± 1.07 13.59± 0.51 6.68± 0.27 6.9± 0.03
IMH-EBSW-1 L=10 2048.29± 0.0 772.86± 28.09 199.29± 7.02 48.73± 1.69 14.1± 0.49 6.25± 0.35 8.61± 0.02
RMH-EBSW-1 L=10 2048.29± 0.0 810.1± 10.2 212.11± 9.53 54.62± 2.63 15.44± 0.93 6.74± 0.32 9.86± 0.06

Table 4: Summary of Wasserstein-2 scores (multiplied by 104) from three different runs, computational time in
second (s) to reach step 500 of different sliced Wasserstein variants in gradient flows.

Distances Step 0 (W2 ↓) Step 100 (W2 ↓) Step 200 (W2 ↓) Step 300 (W2 ↓) Step 400(W2 ↓) Step 500 (W2 ↓) Time (s ↓)

IS-EBSW-e L=100 (c) 2048.29± 0.0 435.39± 1.82 85.31± 0.44 21.9± 0.09 7.81± 0.06 3.68± 0.07 17.51± 0.01
IS-EBSW-1 L=100 (c) 2048.29± 0.0 711.33± 7.2 170.69± 2.91 42.2± 0.79 12.62± 0.2 5.7± 0.11 17.72± 0.02
SIR-EBSW-1 L=100 2048.29± 0.0 685.87± 8.35 166.39± 2.65 41.52± 0.56 12.29± 0.32 5.56± 0.1 44.51± 0.16
IMH-EBSW-1 L=100 2048.29± 0.0 700.47± 9.13 173.25± 1.26 44.08± 0.52 13.03± 0.18 5.93± 0.2 63.83± 0.02
RMH-EBSW-1 L=100 2048.29± 0.0 711.0± 10.98 175.76± 1.45 44.5± 0.56 13.39± 0.13 6.06± 0.05 77.32± 0.2

IS-EBSW-e L=10 (c) 2048.29± 0.0 524.69± 7.38 107.37± 2.18 28.46± 0.35 10.13± 0.38 4.93± 0.37 5.54± 0.04
IS-EBSW-1 L=10 (c) 2048.29± 0.0 729.53± 6.74 179.35± 1.7 45.03± 0.79 13.32± 0.82 6.15± 0.46 5.7± 0.03
SIR-EBSW-1 L=10 2048.29± 0.0 762.23± 9.66 202.2± 5.23 56.48± 1.55 19.05± 0.83 10.42± 0.53 8.45± 0.02
IMH-EBSW-1 L=10 2048.29± 0.0 762.67± 14.63 200.3± 6.48 54.28± 1.17 18.11± 0.36 9.29± 0.26 10.02± 0.02
RMH-EBSW-1 L=10 2048.29± 0.0 817.92± 23.86 220.66± 2.55 60.15± 1.53 20.0± 0.7 9.8± 0.36 11.35± 0.03

is consistent. Therefore, the energy-based slicing function helps to improve the convergence of the
source point-cloud to the target point-cloud.

C.2 Color Transfer

Similar to the point-cloud gradient flow, we follow the same experimental settings of color transfer
in the main text. We provide the full experimental results including the IS-EBSW, the SIR-EBSW,
the IMH-EBSW, and the RMH-EBSW with both the exponential energy function and the identity
energy function, with both L = 10 and L = 100, and with both gradient estimators in Figure 5.

Results. From the figure, we observe that IMH-EBSW-e gives the best Wasserstein-2 distance
among all EBSW variants. Between the exponential energy function and the identity energy function,
we see that the exponential energy function yields a better result for all EBSW variants. Similar
to the gradient flow, reducing the number of projections to 10 also leads to worse results for all
sliced Wasserstein variants For the gradient estimators, the conventional estimator is preferred for
the IS-EBSW while the "parameter-copy" estimator is preferred for other EBSW variants.
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SIR-EBSW-e 328.69(s), W2 = 277.2 IMH-EBSW-e 287.53(s), W2 = 256.77 RMH-EBSW-e 328.69(s), W2 = 277.2 IS-EBSW-1 86.09(s), W2 = 374.84 IS-EBSW-e (c) 86.3(s), W2 = 270.59 IS-EBSW-1 (c) 86.19(s), W2 = 306.21

SIR-EBSW-1 327.74(s), W2 = 302.79 IMH-EBSW-1 269.62(s), W2 = 309.08 RMH-EBSW-1 327.74(s), W2 = 302.79 SIR-EBSW-1 (c) 252.59(s), W2 = 374.82 IMH-EBSW-1 (c) 355.21(s), W2 = 381.76 RMH-EBSW-1 (c) 427.33(s), W2 = 368.04

Source SW 8.95(s), W2 = 422.73 Max-SW 13.1(s), W2 = 463.5 v-DSW 11.61(s), W2 = 347.38 IS-EBSW-e 9.09(s), W2 = 266.62 Target

Figure 5: The first two rows are with L = 100, (c) denotes the "parameter-copy" (the SIR-EBSW-e, the IMH-EBSW-e,
the RMH-EBSW always use the "parameter-copy" estimator since the conventional estimator is not stable for them),
and the last row is with L = 10.

Table 5: Reconstruction errors of different autoencoders measured by the (sliced) Wasserstein distance (×100). The
results are from three different runs.

Distance Epoch 20 Epoch 100 Epoch 200

SW2(↓) W2(↓) SW2 (↓) W2(↓) SW2 (↓) W2(↓)

SW L=100 2.97± 0.14 12.67± 0.18 2.29± 0.04 10.63± 0.05 2.15± 0.04 9.97± 0.08
Max-SW T=100 2.91± 0.06 12.33± 0.05 2.24± 0.05 10.40± 0.06 2.14± 0.10 9.84± 0.12
v-DSW L*T=100 2.84± 0.02 12.64± 0.02 2.21± 0.01 10.52± 0.04 2.07± 0.09 9.81± 0.05
IS-EBSW-e L=100 2.68± 0.03 11.90± 0.04 2.18± 0.04 10.27± 0.01 2.04± 0.09 9.69± 0.14
SIR-EBSW-e L=100 2.77± 0.01 12.16± 0.04 2.24± 0.04 10.40± 0.01 2.00± 0.03 9.72± 0.04
IMH-EBSW-e L=100 2.75± 0.03 12.15± 0.04 2.19± 0.08 10.39± 0.09 1.99± 0.05 9.72± 0.10
RMH-EBSW-e L=100 2.83± 0.02 12.21± 0.03 2.20± 0.03 10.38± 0.07 2.02± 0.02 9.72± 0.03
IS-EBSW-1 L=100 2.83± 0.01 12.37± 0.01 2.27± 0.06 10.59± 0.07 2.11± 0.04 9.90± 0.02
SIR-EBSW-1 L=100 2.81± 0.02 12.32± 0.03 2.26± 0.08 10.56± 0.14 2.07± 0.01 9.81± 0.08
IMH-EBSW-1 L=100 2.82± 0.01 12.32± 0.02 2.28± 0.11 10.55± 0.13 2.03± 0.02 9.81± 0.02
RMH-EBSW-1 L=100 2.88± 0.04 12.42± 0.06 2.22± 0.07 10.37± 0.06 2.01± 0.02 9.73± 0.02

SW L=10 2.99± 0.12 12.70± 0.16 2.30± 0.01 10.64± 0.04 2.17± 0.06 10.01± 0.09
Max-SW T=10 3.00± 0.07 12.68± 0.05 2.31± 0.08 10.67± 0.06 2.14± 0.04 9.95± 0.05
IS-EBSW-e L=10 2.76± 0.04 12.15± 0.06 2.20± 0.08 10.39± 0.10 2.04± 0.07 9.77± 0.10
SIR-EBSW-e L=10 2.79± 0.03 12.26± 0.05 2.26± 0.08 10.53± 0.09 2.08± 0.11 9.87± 0.16
IMH-EBSW-e L=10 2.82± 0.02 12.33± 0.02 2.26± 0.12 10.53± 0.20 2.07± 0.02 9.86± 0.03
RMH-EBSW-e L=10 2.86± 0.04 12.37± 0.03 2.21± 0.01 10.45± 0.05 2.02± 0.02 9.78± 0.01
IS-EBSW-1 L=10 2.84± 0.01 12.43± 0.01 2.28± 0.10 10.63± 0.11 2.10± 0.05 9.91± 0.05
SIR-EBSW-1 L=10 2.84± 0.01 12.38± 0.01 2.28± 0.07 10.59± 0.10 2.07± 0.07 9.88± 0.12
IMH-EBSW-1 L=10 2.82± 0.01 12.36± 0.03 2.28± 0.08 10.52± 0.05 2.08± 0.06 9.86± 0.09
RMH-EBSW-1 L=10 2.89± 0.04 12.47± 0.03 2.21± 0.03 10.45± 0.08 2.03± 0.03 9.80± 0.02

C.3 Deep Point-cloud Reconstruction

We follow the same experimental settings as in the main text. We provide the full experimental
results including the IS-EBSW, the SIR-EBSW, the IMH-EBSW, and the RMH-EBSW with both
the exponential energy function and the identity energy function, with both L = 10 and L = 100 in
Table 5. In Table 5, we use the conventional gradient estimator for the IS-EBSW while other variants
of EBSW use the "parameter-copy" gradient estimator. We also compare gradient estimators for
the EBSW by adding the results for the "parameter-copy" gradient estimator for the IS-EBSW
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Table 6: Reconstruction errors of different autoencoders measured by the (sliced) Wasserstein distance (×100). We
use (c) for the "parameter-copy" gradient estimator. The results are from three different runs.

Distance Epoch 20 Epoch 100 Epoch 200

SW2(↓) W2(↓) SW2 (↓) W2(↓) SW2 (↓) W2(↓)

IS-EBSW-e L=100 (c) 2.74± 0.04 12.14± 0.12 2.22± 0.07 10.42± 0.05 2.07± 0.01 9.77± 0.07
IS-EBSW-1 L=100 (c) 2.83± 0.01 12.34± 0.03 2.30± 0.05 10.60± 0.09 2.05± 0.07 9.83± 0.11
SIR-EBSW-1 L=100 2.80± 0.02 12.29± 0.01 2.21± 0.05 10.46± 0.08 2.04± 0.02 9.81± 0.07
IMH-EBSW-1 L=100 2.96± 0.05 12.67± 0.08 2.35± 0.05 10.82± 0.07 2.20± 0.11 10.20± 0.16
RMH-EBSW-1 L=100 3.00± 0.06 12.67± 0.10 2.27± 0.02 10.66± 0.06 2.15± 0.05 10.11± 0.11

IS-EBSW-e L=10 (c) 2.77± 0.01 12.22± 0.04 2.28± 0.09 10.63± 0.11 2.07± 0.07 9.80± 0.15
IS-EBSW-1 L=10 (c) 2.86± 0.02 12.42± 0.02 2.24± 0.08 10.52± 0.13 2.05± 0.04 9.84± 0.10
SIR-EBSW-1 L=10 2.87± 0.02 12.43± 0.08 2.36± 0.11 10.67± 0.19 2.08± 0.10 9.88± 0.14
IMH-EBSW-1 L=10 2.98± 0.02 12.65± 0.04 2.35± 0.05 10.84± 0.06 2.21± 0.11 10.22± 0.11
RMH-EBSW-1 L=10 3.01± 0.04 12.82± 0.05 2.37± 0.03 10.87± 0.03 2.11± 0.02 10.13± 0.06

(denoted as (c)), and the conventional gradient estimator for the SIR-EBSW, the IMH-EBSW, and
the RMH-EBSW in Table 6.

Quantitative Results. From the two tables, we observe that the IS-EBSW-e performs the best
for both settings of the number of projections L = 10 and L = 100 in terms of the Wasserstein-2
reconstruction errors. For the SW reconstruction error, it is only slightly worse than the SIR-EBSW-e
at epoch 200. Comparing the exponential energy function and the identity energy function, we
observe that the exponential function is better in both settings of the number of projections. For
the same number of projections, the EBSW variants with both types of energy function give lower
errors than the baseline including the SW, the Max-SW, and the v-DSW. For all sliced Wasserstein
variants, a higher value of the number of projections gives better results. For the gradient estimator
of the EBSW, we see that the conventional gradient estimator is preferred for the IS-EBSW while
the "parameter-copy" estimator is preferred for other EBSW variants.

Qualitative Results. We show some ground-truth point-clouds ModelNet40 and their corresponding
reconstructed point-clouds from different models (L = 100) at epochs 200 and 20 in Figure 6- 7
respectively. From the top to the bottom is the ground truth, the SW, the Max-SW, the v-DSW,
the IS-EBSW-e, the SIR-EBSW-e, the IMH-EBSW-e, and the RMH-EBSW-e.

D Computational Infrastructure

For the point-cloud gradient flows and the color transfer, we use a Macbook Pro M1 for conducting
experiments. For deep point-cloud reconstruction, experiments are run on a single NVIDIA V100
GPU.
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Figure 6: From the top to the bottom is the ground truth, the reconstructed point-clouds at epoch 200 of the SW,
the Max-SW, the v-DSW, the IS-EBSW-e, the SIR-EBSW-e, the IMH-EBSW-e, and the RMH-EBSW-e respectively.

35



Figure 7: From the top to the bottom is the ground truth, the reconstructed point-clouds at epoch 20 of the SW,
the Max-SW, the v-DSW, the IS-EBSW-e, the SIR-EBSW-e, the IMH-EBSW-e, and the RMH-EBSW-e respectively.
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