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Abstract. Pairwise dot product-based self-attention is key to the success
of transformers which achieve state-of-the-art performance across a variety
of applications in language and vision, but are costly to compute. However,
it has been shown that most attention scores and keys in transformers are
redundant and can be removed without loss of accuracy. In this paper, we
develop a novel probabilistic framework for pruning attention scores and
keys in transformers. We first formulate an admixture model of attention
keys whose input data to be clustered are attention queries. We show that
attention scores in self-attention correspond to the posterior distribution
of this model when attention keys admit a uniform prior distribution. We
then relax this uniform prior constraint and let the model learn these
priors from data, resulting in a new Finite Admixture of Keys (FiAK).
The learned priors in FiAK are used for pruning away redundant attention
scores and keys in the baseline transformers, improving the diversity of
attention patterns that the models capture. We corroborate the efficiency
of transformers pruned with FiAK on practical tasks including ImageNet
object classification, COCO object detection, and WikiText-103 language
modeling. Our experiments demonstrate that transformers pruned with
FiAK yield similar or even better accuracy than the baseline dense
transformers while being much more efficient in terms of memory and
computational cost.

Keywords: pruning, transformer, admixture models

1 Introduction
Transformers [21] have been becoming the method of choice in computer

vision and machine learning [1,4,7,19]. Thanks to their ability to learn from
unlabeled data and from different data modalities, transformers have achieved
state-of-the-art performance on a wide range of tasks and applications, including
image recognition, object detection, and language modeling [17,6,14]. At the core
of transformers is the self-attention mechanism, which captures the contextual
representation of the input sequence by allowing each token in the input sequence
to pay attention to other tokens [21,3]. The capability of self-attention to at-
tain diverse syntactic and semantic representations accounts for the success of
transformers [18,10].

Self-Attention. Given an input X = [x1, . . . ,xN ]⊤ ∈ RN×Dx of N feature

vectors, the self-attention transforms it into sequence V̂ = [v̂1, . . . , v̂N ]⊤ ∈
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Fig. 1. Our Finite Admixture of Keys (FiAK) models the distribution of the queries
qi in self-attention by an admixture model whose cluster components center around
the attention keys kj , i.e. p(qi) =

∑N
j=1 πijN (qi |kj , σ

2
j I), i, j = 1, . . . , N . The prior

distributions πij in the admixture are used to prune redundant attention scores aij =

softmax
(

q⊤
i kj√
D

)
. The scores S(j) =

∑
i |πij | are used to prune redundant keys kj . A

fraction of attention scores aij and keys kj with the smallest |πij | and S(j), respectively,
will be pruned away to save memory and computation.RN×Dv as follows

v̂i =

N∑
j=1

softmax
(q⊤

i kj√
D

)
vj , for i = 1, . . . , N, (1)

where the scalar softmax((q⊤
i kj)/

√
D) can be understood as the attention v̂i

pays to the input feature xj . The vectors qi,kj , and vj are called the query, key,
and value vectors, respectively; these vectors are computed as follows

[q1, q2, . . . , qN ]⊤ := Q = XW⊤
Q ∈ RN×D,

[k1,k2, . . . ,kN ]⊤ := K = XW⊤
K ∈ RN×D,

[v1,v2, . . . ,vN ]⊤ := V = XW⊤
V ∈ RN×Dv ,

(2)

where WQ,WK ∈ RD×Dx , and WV ∈ RDv×Dx are the weight matrices. We can
further write Eqn. 1 into the following compact form

V̂ = softmax
(QK⊤

√
D

)
V = AV, (3)

where the softmax function is applied to each row of the matrix (QK⊤)/
√
D.

For each query vector qi for i = 1, · · · , N , an equivalent form of Eqn. 3 to
compute the output vector v̂i is given by

v̂i =

N∑
j=1

softmax
(q⊤

i kj√
D

)
vj :=

N∑
j=1

aijvj . (4)

The matrix A ∈ RN×N and its component aij for i, j = 1, · · · , N are the
attention matrix and attention scores, respectively. Eqn. 3 is also called the
“scaled dot-product attention” or “softmax attention”. The attention matrix A
after training captures the contextual representation of each token.

Despite the success of transformers in capturing the contextual representa-
tion of tokens in the input sequence, it has been shown that the contextual
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representation learned by the self-attention are redundant and many attention
scores and keys explain the same patterns and are not needed [16,22,2]. Such
redundancy wastes memory and computation during both training and inference
while limiting the model’s capacity, posing a challenge to scale up transformers
to large-scale tasks.

Contribution. We propose a novel probabilistic model for self-attention,
namely the Finite Admixture of Keys (FiAK), that allows pruning attention
scores and keys using the prior distributions of attention keys. FiAK models the
query distribution p(qi) as an admixture of Gaussian distributions N (qi |kj , σ

2
j I)

centering around the attention keys kj , i, j = 1, . . . , N . Our admixture approach
uses different mixture models to represent the queries qi and thus helps increase
the diversity of attention patterns. Since these mixture models share the same
set of component distributions N (qi |kj , σ

2
j I), FiAK is efficient. The prior distri-

butions of attention keys in FiAK are then used to prune redundant attention
scores and keys to improve the memory and computational cost of the model. An
illustration of FiAK and our pruning scheme is given in Fig. 1. Our contribution
is three-fold:

1. We develop FiAK, a new finite admixture of keys for self-attention that allows
key sharing to diversify attention patterns while guaranteeing the model’s
efficiency.

2. We design a probabilistic framework for pruning transformers that employs
the prior distributions of keys in FiAK to remove redundant attention scores
and keys.

3. We demonstrate the advantages of our FiAK-based pruning on ImageNet
object classification, COCO object detection, and WikiText-103 language
modeling tasks.

2 A Finite Admixture of Keys

In this section, we first review the connection between attention scores in
self-attention with the posterior distributions from a Gaussian mixture model
(GMM) in [?]. We then extend this GMM into a finite admixture of keys (FiAK).

2.1 Background: Attention Scores are Posterior Distributions from a
GMM

Given a query qi ∈ Q and a key kj ∈ K, let t be a K-dimensional binary
random variable having a 1-of-K representation in which a particular element tj
is equal to 1 and all other elements are equal to 0. The distribution p(qi|tj = 1)
is the likelihood of the query qi belongs to the j-th cluster centering around the
key kj . In particular, let 1 be an identity matrix and πj be the prior distribution
p(tj = 1), the distribution p(qi) is given by the following GMM:

p(qi) =

N∑
j=1

πjp(qi|tj = 1) =

N∑
j=1

πjN (qi |kj , σ
2
j1), (5)
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Following Eqn. 5, the posterior p(tj = 1|qi) captures how much the query qi
matches the key kj and is computed by

p(tj = 1|qi) =
πjN (qi |kj , σ

2
j )∑

j′ πj′N (qi |kj′ , σ2
j′)

=
πj exp

[
−
(
∥qi∥2 + ∥kj∥2

)
/2σ2

j

]
exp

(
q⊤
i kj/σ

2
j

)
∑

j′ πj′ exp
[
− (∥qi∥2 + ∥kj′∥2) /2σ2

j′

]
exp

(
q⊤
i kj′/σ2

j′

) .
Assuming that the query qi and the key kj are normalized, the prior πj is uniform,
and let σ2

j = σ2, j = 1, 2, . . . ,K, the posterior p(tj = 1|qi) can then be written
in the following form

p(tj = 1|qi) =
exp

(
q⊤
i kj/σ

2
)∑

j′ exp
(
q⊤
i kj′/σ2

) = softmax
(
q⊤
i kj/σ

2
)
.

The equation above becomes Eqn. (4) of the attention score aij when σ2 =
√
D.

Thus, under right assumptions, the attention score aij between the query qi and
the key kj in a self-attention layer of a transformer plays the role of the posterior
distribution p(tj = 1|qi).
2.2 FiAK: A Finite Admixture of Keys

We extend the GMM of keys for self-attention in Eqn. 5 into a finite admixture
of keys so that the attention score aij can capture more diverse attention patterns
and provide a probabilistic framework for pruning transformers.

Finite Admixture Models A finite mixture distribution of N components for
a random array X ∈ RM×D is given by

xi ∼
N∑
j=1

pjf(x; θj),

N∑
j=1

pj = 1, pj ≥ 0, (6)

where xi ∈ RD is the i-th row of X randomly sampled from the mixture distri-
bution. f is a chosen probability measure, such as a Gaussian distribution as in
Eqn. 5, p = {p1, . . . , pN} are mixture weights that correspond to the prior πj ,
and θj denotes the parameter values for the k-th component.

A finite admixture models (FAM) is a generalization of a FMM, in which
rows xi, i = 1, . . . ,M , are drawn from different mixture distributions that share
N components f(x; θj), j = 1, . . . , N with different mixture weights

xi ∼
N∑
j=1

pijf(x; θj),

N∑
j=1

pij = 1, pij ≥ 0. (7)

Comparing to FMM, FAM has better representation capacity thanks to
its flexibility in choosing the mixture components. Since all components are
shared between mixtures in FAM, FAM is efficient in term of the model size and
computational cost for sampling samples from the model.
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Algorithm 1 Attention Score Pruning via FiAK

Hyperparameter 0 < k < 1: k fraction of the attention scores aij to be pruned.
Step 1 Incorporate parameters πij into the self-attentions.
Step 2 Train the transformer with the additional parameters πij until convergence.
Step 3 Prune k fraction of the attention scores aij whose learned coefficients |π̂ij |
are the smallest.
Step 4 Set the remaining π̂ij = 1, which corresponds to uniform prior, and finetune
the pruned network.

Finite Admixture of Keys We propose the finite admixture of keys (FiAK)
for the queries in self-attention. In Eqn. 7, let the function f(x; θj) = p(qi|tj =
1) = N (qi |kj , σ

2
j I) and pij = πij = pi(tj = 1) where πij = pi(tj = 1) is the

prior distribution p(tj = 1) of the mixture corresponding to the query qi. FiAK
is defined as:

Definition 1 (Finite Admixture of Keys). Given a set of queries qi andkeys kj in self-attention, i, j = 1, . . . , N , the queries qi admit a finite admixture
of keys if qi are sampled from the following finite admixture model:

qi ∼ =

N∑
j=1

πijN (qi |kj , σ
2
j I),

N∑
j=1

πij = 1, πij ≥ 0. (8)

3 Prior-based Pruning via FiAK
Using the prior πij in FiAK, we propose two novel pruning methods: 1)

attention score pruning via FiAK and 2) mixed pruning via FiAK. For comparison
with the GMM of keys in Section 2.1, we also derive 3) key pruning via GMM.
In all of our proposed methods, attention scores and keys with the smallest
importance weights, i.e. |π̂ij |, Ŝ(j), and |π̂j | in Algorithm 1, 2, and 3 are pruned
away.

Attention Score Pruning. The magnitude of the prior, |πij |, in FiAK
implies how much the key kj is needed to explain the query qi. These priors
act as importance weights of the keys kj given the query qi and can be used to
prune away the attention score aij , thus saving memory and computation when
computing the self-attention (see Algorithm 1).

Mixed Pruning. To further reduce the computational complexity of the
model, we introduce mixed pruning via FiAK in Algorithm 2. In addition to
pruning the attention score aij , we derive the importance weights of the keys kj

and remove the pairs (kj ,vj) whose importance weights are the smallest. This
strategy enables the pruned model to save computation not only at the attention
calculation step, but also removes the key vector kj and the value vector vj , as
well as other computations related to these vectors in Eqn. 4.

Key Pruning. We introduce key pruning via GMM (Algorithm 3), which
uses the learned prior |πj | in the GMM defined by Eqn. 5 as importance weights
to prune the pairs (kj ,vj).

Finetuning the Pruned Network. FiAK introduces additional priors
πij to capture the importance of the attention score aij . After pruning, those
extra parameters can be removed by setting them to 1, which corresponds to
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Algorithm 2 Mixed Pruning via FiAK

Hyperparameters 0 < k1, k2 < 1: k1 fraction of the total attention scores aij to be
pruned; k2 fraction of pairs (key, value) to be pruned.
Step 1 and Step 2 Same as Step 1 and Step 2 of Algorithm 1.
Step 3 Calculate the importance score Ŝ(j) of each pair (kj ,vj):

Ŝ(j) =
∑
i

|π̂ij |, or
1

N − j + 1

∑
i

|π̂ij | for autoregressive tasks.

Then prune k2 fraction of the pairs (kj ,vj) with the smallest scores Ŝ(j).
Step 4 Prune k̂1 fraction of the remain unpruned aij whose corresponding |π̂ij | are
the smallest k̂1 = 1 − 1−k1

1−k2
.

Step 5 Follow Step 4 of Algorithm 1.

Algorithm 3 Key Pruning via GMM

Hyperparameter 0 < k < 1: k fraction of the keys to be pruned.
Step 1 Incorporate parameters πj into the self-attentions.
Step 2 Train the transformer with the additional parameters πj until convergence.
Step 3 Prune k fraction of the key-value pairs (kj,vj), whose corresponding learned
mixing-coefficients |π̂j | are the smallest.
Step 4 Set the remaining π̂j = 1, i.e. uniform prior, and finetune the pruned network.

using uniform priors. The network is then finetuned for more epochs to obtain
competitive accuracy compared to the dense baseline network.

4 Experimental Results

We empirically corroborate the advantages of the models pruned via our
proposed FiAK-based pruning methods over the dense baseline model on the
ImageNet object classification task. We refer to tranformers that use FiAK-based
attention defined by Eqn. 8 as FiAKformer and transformers that use GMM-based
attention defined by Eqn. 5 as GMMformer.

Model and setting. We use the DeiT-tiny model [20] with 12 layers and
4 attention heads per layer. The model dimension is 192. To train the models,
we follow the same setting and configuration as for the baseline [20], with the
initialization of the learnable priors πij and πj set to be 1√

N
and 1

N , respectively,

where N is the input sequence’s length.

Results. Pruned models from attention score and mixed pruning via FiAK
attain much better accuracy than the DeiT-tiny baseline while being significantly
more efficient (See Table 1). Attention score pruning via FiAK at different
pruning fractions k = 50%, 60% and 70% result in the highest accuracies. In
particular, at the pruning fractions k = 50% and 60%, we observe substantial
accuracy improvement over the dense baseline (1.33% and 1.44% in top-1 accuracy,
respectively). These two pruned models also outperform the dense FiAKformer.
On the other hand, mixed pruning with the same attention score pruning fraction,
k1 = 70% and different key pruning fractions, k2 = 15% and 20%, gain better
accuracy compared to the baseline while obtaining the most computation and
memory reduction (See Fig. 2). Table 1 also shows the advantage of the FiAK-



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV

#6563
ECCV

#6563

ECCV-22 submission ID 6563 7

Table 1. Top-1 and top-5 accuracy (%) of the pruned models from the attention score
and mixed pruning via FiAK on the Imagenet dataset compared to the dense baseline
DeiT-tiny [20].

Method Top-1 Acc Top-5 Acc

Baseline DeiT-tiny 72.23 91.13

GMMformer 72.96 91.64
Key pruning k = 30% 71.57 90.80

FiAKformer 73.50 91.90
Attention-score pruningk = 50% 73.56 91.95
Attention-score pruning k = 60% 73.67 91.91
Attention-score pruning k = 70% 73.09 91.57
Mixed pruning k1 = 70%, k2 = 15% 72.78 91.38
Mixed pruning k1 = 70%, k2 = 20% 72.25 91.14

Table 2. Comparison to other pruning methods on Imagenet task.

Method FLOPS reduced (%) Acc-1 (%)

DeiT-tiny 0.00 72.23

Head pruning [16] 23.69 68.59
S2V iTE [?] 23.69 70.12
Attention-score pruning k = 70% 8.50 73.09
Mixed pruning k1 = 70%, k2 = 20% 13.00 72.25

Mixed pruning k1 = 70%, k2 = 20% 22.76 72.24
+ S2V iTE [?]

based pruning over the GMM-based pruning and validate the need of using
admixture to model the self-attention and design its effective pruning schemes.

Comparison to Other Pruning Methods. We compare our FiAK-based
pruning schemes with other pruning methods for transformers on the ImageNet
task (see Table 2 below). Compared to the head pruning [16] and S2V iTE [?],
our schemes prune the model less but increase its accuracy. Combining with
the S2V iTE [?], mixed FiAK pruning can increase the FLOPs reduction up to
22.76% while maintaining similar advantage in accuracy on the ImageNet task.

Other Tasks: Language Modeling on WikiText-103. To examine
the effectiveness of our pruning methods across different data modalities, we
experiment with the word-level language modeling task on WikiText-103 [15]. We
summarize our results in Table 3. Same as the vision tasks above, attention score
pruning via FiAK and mixed pruning via FiAK yield more efficient language
models with competitive or even better performance than the dense baseline.

Efficiency Analysis. We investigate the improvement in efficiency of
transformers pruned via FiAK-based and GMM-based approach over the baseline.
In particular, we analyze the computation and memory complexity of the pruned
models trained for the ImageNet object classification task. We summarize our
results in Fig. 2. We observe that the efficiency advantage of models pruned
via FiAK over the baseline model grows with the sequence length. FiAK-based
pruning also wins in real time. On the ImageNet task, the latency for the dense
baseline and our attention-score pruned FiAKformer, k = 70%, are 508 and 649
images/second (on GPU) and 76 and 95 images/second (on CPU), respectively.
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Table 3. Test perplexity of pruned FiAKformer for the language modeling task on
Wikitext-103 dataset.

Method Perplexity (PPL)

Baseline softmax transformer 34.29

FiAKformer 33.69
Attention score pruning 40% 33.88
Attention score pruning 50% 34.28
Mixed pruning k1 = 40%, k2 = 10% 34.21

Sequence Length

￼￼ 

FL
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S
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io

Key pruning via GMM 30% Attention score pruning 
via FiAK 70%

Mixed pruning via FiAK 
70% attention scores, 20% keys
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(A) (B) (D)(C)
Attention Only Model Attention Only Model

Sequence Length

Fig. 2. FLOPS and memory ratios at inference between the models pruned with
FiAK/GMM-based schemes and the Deit-tiny baseline.

5 Related Work
It has been shown that most of the neurons and heads in the pre-trained

transformer are redundant and can be pruned when applied on a downstream
task [5,16,8]. Works in pruning transformers can be categorized into two groups:
1) head pruning and 2) token pruning. An early work in head pruning calculates
the head sensitivity to decide to prun a head or not [16]. [23] employs layerwise
relevance propagation to decide the head importance. The head importance
can also be learned in a data-driven manner as in [13]. For token pruning, [9]
computes a token’s importance score as average attention score of other tokens to
that token. A dropout-based approach that stochastically determines a sequence
length at each layer has also been used to prune redundant tokens [11]. [12] learns
an attention mask for token pruning adaptively. Our FiAK-based approach is
complementary to these methods.

6 Concluding Remarks
In this paper, we propose FiAK, a novel finite admixture of keys for self-

attention, that model the distribution of queries qi in self-attention as an ad-
mixture of Gaussian distributions N (qi |kj , σ

2
j I) whose centers are the attention

keys kj , i, j = 1, . . . , N . Using the prior distributions of the attention keys in
FiAK, we propose a probabilistic pruning framework to remove redundant at-
tention scores and keys in transformers. We verify that models pruned by our
FiAK-based pruning methods improve the memory and computational cost over
the baseline dense transformers while achieving comparable or better accuracy.
Admixture models are equivalent to Latent Dirichlet Allocation (LDA) models
under a uniform Dirichlet prior. Extending FiAK into an LDA-based framework
for pruning transformers is an interesting research direction.
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Supplement to “A Probabilistic Framework
for Pruning Transformers via a Finite Admixture of Keys”

In this appendix, we include experimental details, additional experiments/visual-
ization of pruning via FiAK, and the detailed derivation of the computational
saving in Table ??. We also provide code to reproduce our results in a separate
folder in the supplementary material.

A Experiment details
In this section, we provide model and training details of our experiments in

Section 4.

A.1 Object classification on Imagenet

Our baseline for the object classification task is the DeiT-tiny, a 4-head dense
softmax transformer with 12 layers. In this baseline, the model dimension is of
size 192, the feed-forward layer is of size 768, and the patch size is 16, which is
equivalent to the sequence length of 197. Our FiAKformers and GMMformers have
the same architecture configuration as the baseline with additional parameters
πij and πj as in Eqn.8 and 5, respectively.

All models are trained for 300 epochs, and the pruned models are fine-tuned
on the Imagenet dataset for additional 100 epochs, using 4 A100 GPUs, 40 GB
each, with batch size of 256. The initial learning rates for training and fine-tuning
are 5× 10−4 and 5× 10−5, respectively.

A.2 Object Detection on COCO

The pretrained baseline for the object detection task is the Swin-Transformer-
tiny provided at https://github.com/SwinTransformer/Swin-Transformer-Object-
Detection. All models have 12 attention layers with windows of size 7, which is
equivalent to the sequence length of 49 patches per window.

The pruned models are fine-tuned for 12 epochs, using 8 A100 GPUs, 40GB
each, with the initial learning rate is 10−4. The weights are updated by an
AdamW optimizer with the weight decay coefficient of 0.05.

A.3 Language Modeling on WikiText-103

For the language modeling task, we use the dense softmax transformer as our
baseline. For all experiments, we use a transformer model that has 16 layers, 8
heads, feed-forward layer dimension of size 2048, embedding dimension of size 128,
and hidden dimension of size 128. The context length for training and evaluation
is set to 256.

We train our models using 2 A100 GPUs, 40GB each. We set the batch size
to 96 and train our models for 120 epochs. We also apply dropout with dropout
rate 10%. To optimize our models, we use Adam optimizer and Cosine annealing
scheduler with initial learning rate 0.00025.

After the training phase, we prune the resulting models using one of our
pruning schemes. Then, we finetune the pruned models for 30% time of the
training phase, or equivalently 36 epochs.

https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
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Fig. 3. (Left) The magnitude of the priors |πij | learned from the ImageNet object
classification task. (Right) The binary attention score masks from mixed pruning via
FiAK with the pruning fraction k1 = 70% and k2 = 15%. We plot these prior matrices
and pruning masks for all 4 heads in layers {1, 3, 5, 7, 9, 11}.

.
B Additional Results on Visualizing the Pruning Masks

In this section, we provide additional results on visualizing the pruning masks
learned from pruning via FiAK. Figure 3 depicts the pruning mask obtained with
mixed pruning via FiAK for the ImageNet object classification task.

In Figure 4, we provide a detailed visual analysis of the parameters πij learned
from the ImageNet object classification task. We obtained the query-centered
mean values (Left) for each attention head by taking the mean of all πij values
corresponding to the relative difference in position between the key and query.
This results in the aggregation of the pattern learned by πij . We also show
detailed patterns for the first 5 queries and keys (Right). Each cell in the 5× 5
grid corresponds to the pruning mask applied to each query qi. From Figure 4,
we observe that the pruning masks in early layers capture local/short-range
attentions while the pruning masks in later layers capture non-local/long-range
attentions.

C Additional Efficiency Analysis

In this section, we provide additional efficiency analysis for our pruning
methods on the WikiText-103 language modeling task. In particular, we study
the pruned models using attention score pruning via FiAK with the pruning
fraction k = 50%. We compare the FLOPS and memory ratios between the
pruned model and the dense softmax transformer baseline at various sequence
lengths {128, 256, 512, 1024, 2048, 4096}. As shown in Fig. 5, as the sequence
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Fig. 4. (Left) Query-centered mean of the magnitude of the priors |πij | for each head in
layers {1, 3, 5, 7, 9, 11}, learned from the ImageNet task. (Right) The binary pruning
masks of the attention scores for attention score pruning via FiAK with pruning fraction
70%, showing the differences of the pruning masks between layer 1 and layer 11. Pruning
masks in early layers capture local/short-range attentions while those in later layers
capture non-local/long-range attentions.
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Fig. 5. FLOPS and memory ratios at inference time on the WikiText-103 language
modeling task for model pruned using attention score pruning via FiAK with the
pruning fraction k = 50%, compared to the baseline dense softmax transformer model.
For a thorough analysis, we show a comparison at attention block only ((A) and (C))
and for the entire model ((B) and (D)). The advantage of the FiAK-based pruning
grows with the sequence length.

length grows, our pruned model becomes significantly more efficient in both
memory and computations than the baseline.
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D An Analysis on Computational Complexity of the
Pruned Models vs. the Dense Model

In this section, we compare the computational complexity of models pruned
by our pruning methods with the dense softmax baseline. Following the same
notation in Section 3 in the main text, we denote H, Dx, N , and D as the number
of attention heads at each layer, the input dimension, the input length, and the
model/feature dimension, respectively. To simplify the notation and computation,
without loss of generality, we assume that Dv = D, i.e., the values have the same
feature dimension as the queries and the keys. We also do not take the softmax
operator into account. Since the linear projection of the H-head concatenated
outputs is the same for the baseline and our pruned models, its computation is
discarded for simplification.

(i) Dense softmax attention: The computational complexity for an H-head
attention matrix is N2H(4D − 1) +NHD(6Dx − 4).

Explanation: The output of a self-attention block at each head is computed
via the following three steps (See Sec. ??).

– Step 1 Compute the matrices Q, K and V via the linear transformations
WQ, WK , and WV . Since this step needs 3NDDx multiplications and
3ND(Dx − 1) additions, the total computation is 3ND(2Dx − 1).

– Step 2 Calculate QK⊤. This needs N2D multiplications and N2(D − 1)
additions, thus N2(2D − 1) in total.

– Step 3 Compute the product AV. This requires N2D multiplications and
N(N − 1)D additions.

Hence the total amount of computation for an H-head attention is N2H(4D −
1) +NHD(6Dx − 4).

(ii) Computation reduction of attention score pruning via FiAK: Atten-
tion score pruned model via FiAK with the pruning fraction k (See Algo. 1) has
kHN2(2D − 1) less computations than the dense softmax attention.

Explanation: Attention score pruning via FiAK reduces the number of com-
putation at step 2, i.e. calculating QK⊤. Computations in other steps remain
unchanged. Attention score pruned model with fraction of k does not calculate
the dot product of k fraction of (qi,kj) pairs, consequently saving kHN2(2D−1)
computations.

(iii) Computation reduction of mixed pruning via FiAK: Mixed pruned
model via FiAK with the pruning fraction k1, k2 (See Algo. 2) saves
2[(k1 + k2)D − k1]HN2 + (2Dx − 3)k2HDN computations.

Explanation: Similar to attention score pruned model via FiAK, at each at-
tention head, mixed pruned model via FiAK with total pruning fraction k1 saves
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k1N
2(2D − 1) computation at step 2 above, i.e. calculating QK⊤. Additionally,

pruning k2 fraction of (kj ,vj) pairs reduces computation at both step 1 and 3. At
step 1, since matrix K and V accounts for ND(Dx − 1) computations per head
each, pruning k2 fraction of the pairs saves a total of 2k2ND(Dx−1) computations.
Meanwhile cutting off k2 fraction of vj leads to k2[N

2D+N(N − 1)D] computa-
tions for each head. As a result, mixed pruned model via FiAK saves a total of
2[(k1+k2)D−k1]HN2+(2Dx−3)k2HDN computations for an H-head attention.

(iv) Computation reduction of key pruning via GMM: Key pruned
model via GMM with the key pruning fraction k (see Algo. 3) saves a total of
kHN2(4D − 1) + (2Dx − 3)kHDN computations.

Explanation: As in mixed pruned model via FiAK, pruning k fraction of (kj ,vj)
via GMM saves kND(Dx − 1) and k[N2D +N(N − 1)D] computations at step
1 and 3, respectively. Moreover, for each head, pruning k fraction of keys also
saves kHN2(2D − 1) computations at step 2. In total, key pruned model via
GMM needs kHN2(4D−1)+(2Dx−3)kHDN computations less than the dense
softmax baseline.

Notice that the computation reduction is quadratic in the sequence length
N . Therefore, when N is large, i.e. long input sequences, the computational
reduction achieved from using our FiAK-based pruning methods significantly
increases.
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