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Abstract

Transformers with multi-head self-attention have achieved remarkable success in1

sequence modeling and beyond. However, they suffer from high computational and2

memory complexities for computing the attention matrix at each head. Recently, it3

has been shown that those attention matrices lie on a low-dimensional manifold4

and, thus, are redundant. We propose the Transformer with a Finite Admixture of5

Shared Heads (FiSHformers), a novel class of efficient and flexible transformers6

that allow the sharing of attention matrices between attention heads. At the core7

of FiSHformer is a novel finite admixture model of shared heads (FiSH) that8

samples attention matrices from a set of global attention matrices. The number9

of global attention matrices is much smaller than the number of local attention10

matrices generated. FiSHformers directly learn these global attention matrices11

rather than the local ones as in other transformers, thus significantly improving12

the computational and memory efficiency of the model. We empirically verify13

the advantages of the FiSHformer over the baseline transformers in a wide range14

of practical applications including language modeling, machine translation, and15

image classification. On the WikiText-103, IWSLT’14 De-En and WMT’14 En-16

De, FiSHformers use much fewer floating-point operations per second (FLOPs),17

memory, and parameters compared to the baseline transformers.18

1 Introduction19

Transformers have become the state-of-the-art model for solving many challenging problems in20

natural language processing [70, 1, 17, 75, 21, 10, 32, 56] and computer vision [19, 63, 22, 68].21

Transformers learn from unlabeled data effectively and take advantage of the pre-trained models on22

downstream tasks that involve different data modalities with limited supervision [54, 55, 21, 77, 40].23

The success of transformer is credited to the multi-head self-attention (MHA) mechanism as their24

fundamental building block. For each token in the sequence, self-attention in transformers aggregates25

information from other tokens by computing a weighted average of their feature representations with26

a weight proportional to a similarity score between the representations. This attention mechanism27

allows arbitrary input-dependent interaction between tokens in the sequence where a token can28

pay attention to other tokens and attain a contextual representation [6, 70, 35]. Multi-head self-29

attention captures multiple such contextual representations, one at each head, thereby increasing the30

representation capacity of the self-attention. It has been argued that the representation capacity of the31

attention mechanism [67] and its flexibility in capturing diverse syntactic and semantic relationships32

[67, 71, 15, 72, 30] account for the impressive performance of transformers in practice.33

1.1 Background: Self-Attention34

For a given input sequence X := [x1, · · · ,xN ]⊤ ∈ RN×Dx of N feature vectors, self-attention35

transforms X into the output sequence H in the following two steps:36
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Figure 1: Our proposed finite admixture model of shared heads (FiSH) vs. the standard multi-head
(MHA) attention. FiSH samples local attention matrices from a finite admixture of global attention
matrices. Compared to MHA, FiSH is more efficient, saving computation and memory (See Fig. 3
and Section 4).

Step 1. The input sequence X is projected into the query matrix Q, the key matrix K, and the value
matrix V via three linear transformations

Q = XW⊤
Q;K = XW⊤

K ;V = XW⊤
V ,

where WQ,WK ∈ RD×Dx , and WV ∈ RDv×Dx are the weight matrices. We denote Q :=37

[q1, · · · , qN ]⊤,K := [k1, · · · ,kN ]⊤, and V := [v1, · · · ,vN ]⊤, where the vectors qi,ki,vi for38

i = 1, · · · , N are the query, key, and value vectors, respectively.39

Step 2. The output sequence H := [h1, · · · ,hN ]⊤ is then computed as follows40

H = softmax
(QK⊤

√
D

)
V := softmax(

A√
D
)V, (1)

where the softmax function is applied to each row of the matrix A = (QK⊤). This matrix A ∈41

RN×N and its component aij for i, j = 1, · · · , N are called the attention matrix and attention scores,42

respectively. For each query vector qi for i = 1, · · · , N , an equivalent form of Eqn. (1) to compute43

the output vector hi is given by44

hi =

N∑
j=1

softmax
(
q⊤
i kj/

√
D
)
vj . (2)

The self-attention computed by Eqn. (1) and (2) is called the scaled dot-product or softmax attention.45

In our paper, we call a transformer that uses this attention the softmax transformer. The structure46

that the attention matrix A learns from training determines the ability of the self-attention to capture47

contextual representation for each token.48

Multi-head Attention (MHA) Each output sequence H forms an attention head. In MHA, multiple49

heads are concatenated to compute the final output. Let H be the number of heads and WO ∈50

RHD×HD be the projection matrix for the output. The multi-head attention is defined as51

MultiHead({H}Hi=1) = Concat(H1, . . . ,HH)WO. (3)

1.2 Eigenvalue Analysis of the Attention Matrices52
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Figure 2: (Left) Histogram of the top 50 eigen values
and (Middle, Right) cumulative sum of eigen values of
the layer-average attention scores covariance matrix.

The multi-head mechanism allows transformers53

to capture more diverse attention patterns and54

increase the capacity of the model. However,55

in many practical tasks, transformers learn re-56

dundant heads [44, 73], whose learned attention57

matrices lie on a low-dimensional manifold [8].58

To confirm this claim, in Figure 2, we follow59

the eigenvalue analysis in [8] and investigate the60

eigenvalues of the covariance matrix of vector-61

ized attention matrices aggregated over each layer of a transformer model trained on the WikiText-10362
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dataset for language modeling. We observe that this covariance matrix is low rank with top 20063

(1.2%) eigenvalues capturing more than 90% of the energy. This result verifies that the variability of64

learned attention matrices in transformers can be explained by a relatively small number of principal65

components, and those attention matrices lie on a low-dimensional manifold. Therefore, in multi-head66

attention, the effective number of heads is much smaller than the actual number of heads, and a more67

effective way to compute multi-head attention is needed to improve the efficiency of transformers.68

1.3 Contribution69

Leveraging the idea of the finite admixture model (FAM) [52, 9], we propose a new class of70

efficient transformer architectures, namely the Transformer with a Finite Admixture of Shared71

Heads (FiSHformer). At the core of FiSHformer is to sample local attention matrices from an72

admixture of a small number of global attention matrices. This sharing mechanism between heads73

helps reduce the computational complexity and the model size compared to the MHA softmax74

transformer. Our contribution is three-fold:75

1. We construct an admixture model for shared attention matrices between heads and propose76

FiSHformer, a novel class of transformers that take advantage of this admixture model to77

efficiently compute multi-head attention.78

2. We introduce a nonlinearity mapping from global heads to local heads into FiSH and79

propose the Generalized FiSHformer (GFiSHformer). We then explore different possibilities80

to design FiSHformer and GFiSHformer.81

3. We empirically verify that FiSHformer and GFiSHformer achieve similar or even better82

accuracy but with much less computational cost in terms of FLOPs and smaller model83

complexity measured by the number of parameters. The advantages of our methods grow84

with the model/feature dimension D and the input sequence length N .85

We also show that FiSHformer-based models help reduce head redundancy in our experiments.86

Organization: We structure this paper as follows: In Section 2, we develop a finite admixture model87

of shared heads and then present our FiSHformer and its extensions. In Section 2.5, we analyze the88

reduction in model complexity and computational cost from FiSH. In Section 3 and 4, we validate89

and empirically analyze the efficiency and accuracy of FiSHformer, as well as conducting ablation90

studies on the model. We discuss related works in Section 5. The paper ends up with concluding91

remarks. More results and details are provided in the Appendix.92

2 Transformer with a Finite Admixture of Shared Heads93

We first review the finite admixture model (FAM) and derive a FAM of shared heads for the multi-head94

self-attention. We then define Transformer with a Finite Admixture of Shared Heads (FiSHformer).95

2.1 A Probabilistic Viewpoint of Attention Matrices96

Let Aj denote the attention matrix at the jth head, j = 1, 2, . . . ,H . From a probabilistic viewpoint,97

to have diversity among A1, . . . ,AH , we can assume that Aj comes from a distribution Pj for98

all j. Since the distributions P1, . . . ,PH can have complex forms and be difficult to compute, our99

approach is to consider approximated distributions of Pj and these approximated distributions have100

simple forms. A natural choice for each of these approximated distributions is via a finite mixture of101

Gaussian distributions, which can be summarized in the following lemma below.102

Lemma 1. Assume that P ∈ RD′
is a probability distribution supported on some compact set and103

admits differentiable and bounded density estimation p. Then, for any scale parameter σ > 0 and104

for any ϵ > 0, there exists universal constant C and M ≤ (C log(1/ϵ))D
′

such that we can find105

a mixture of M components
∑M

i=1 piN (θi, σ
2ID′) where p1, . . . , pK are weight parameters and106

θ1, . . . , θK are location parameters that satisfy the following inequality107

sup
x∈Rd

|p(x)−
M∑
i=1

piϕ(x|θi, σ2ID′)| ≤ ϵ,

where ϕ(.|θ, σ2I) is Gaussian density function with location parameter θ and covariance matrix108

σ2ID′ .109

The proof of Lemma 1 is in Appendix E. In light of Lemma 1, for each scale parameter110

σ > 0 and for each distribution Pj , we can find the corresponding number of components Mj ,111
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weight parameters p1j , . . . , pMjj , and location parameters θ1j , . . . , θMjj such that the mixtures112

P′
j =

∑Mj

i=1 pijN (θij , σ
2ID′) can approximate the distribution Pj up to a given accuracy ϵ. How-113

ever, these approximations still involve
∏H

j=1 Mj number of location parameters, which can be114

computationally expensive. To overcome this issue, we assume that M1 = M2 = . . . = MH and115

the location parameters (θ1j , . . . , θMjj) = (θ1, . . . , θM ) for all j, i.e., these approximated mixtures116

share a similar set of location parameters. This sharing information of location parameters has a deep117

connection to finite admixture models, which we are going to elaborate in the next sections.118

2.1.1 Background119

Finite admixture models (FAM) are extensions of finite mixture models (FMMs), which served as a120

workhorse in stochastic modeling. A finite mixture distribution of M components for a random array121

X ∈ RN×J is given by122

xj ∼
M∑
k=1

pkf(x; θk),

M∑
k=1

pk = 1, pk ≥ 0, (4)

where xj ∈ RN is the j-th row of X randomly sampled from the mixture distribution, f is a chosen123

probability measure, such as a Gaussian distribution, p = {p1, p2, . . . , pM} are mixture weights, and124

θk denotes the parameter values for the k-th component.125

A FAM is a generalization of a FMM where rows xj , j = 1, . . . ,H , are drawn from different mixture126

distributions that share the components f(x; θk), k = 1, . . . ,M but with different mixture weights127

xj ∼
M∑
k=1

pkjf(x; θk),

M∑
k=1

pkj = 1, pkj ≥ 0. (5)

2.2 Multi-head as a Finite Admixture Model of Shared Heads (FiSH)128

As demonstrated in Section 2.1, we propose a Finite Admixture Model of Shared Heads (FiSH), in129

which Aj follows finite admixture distribution of M components given by130

Aj ∼
M∑
k=1

pkjf(A; θk),

M∑
k=1

pkj = 1, pkj ≥ 0. (6)

Here M < H and f(A; θk) are chosen probability measures. In particular, we choose f(A; θk) to be131

Gaussian distributions N (A;Gk,Σk), where Gk = QkKk
⊤ and Σk = σ2

kI are the cluster means132

and coveriances, respectively. FiSH is then defined as follows:133

Definition 1 (Finite Admixture Model of Shared Heads). The multi-head attention admits a finite134

admixture model of shared heads if the attention matrices Aj at the jth head are sampled from the135

following finite admixture model:136

Aj ∼
M∑
k=1

pkjN (A; QkKk
⊤, σ2

kI),

M∑
k=1

pkj = 1, pkj ≥ 0. (7)

In FiSH defined in Def. 1, we call {Gk = QkKk
⊤}k=1,...,M global attention matrices and137

{Aj}j=1,...,H local attention matrices. FiSH computes M global attention matrices Gk, and H local138

attention matrices Aj are sampled from FiSH as in Eqn. 7 with M < H .139

Remark 1 (FiSH vs. Baseline MHA). The baseline MHA with H heads need to compute H , e.g.140

H = 8, attention matrices, each of which requires O(N2) computational costs where N is the length141

of the input sequence. In contrast, FiSH only need to compute M < H , e.g. M = 2, global attention142

matrices, each of which also requires O(N2) computational and memory costs. Then FiSH combines143

those global attention matrices to form a FAM from which H , e.g. H = 8, local attention matrices144

are sampled as in Eqn. 7. This second step of sampling local attention matrices from a set of global145

attention matrices in FiSH requires very few computations. Thus, FiSH is more efficient than MHA.146

Remark 2 (Connection to Topic Models). FiSH can be interpreted as a Probabilistic Latent Se-147

mantic Analysis (pLSA) model for topic modeling. Considering the document d that contains the148

word w whose topic is c, pLSA models the occurrence of the word w in the document d as a mixture149

of conditionally independent Multinomial distributions p(w|d) =
∑

c p(c|d)p(w|c). Comparing150

this pLSA with Eqn. 7 of FiSH, we can associate the mixture weights pkj and the distribution151
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N (A; QkKk
⊤, σ2

kI) in FiSH with the distributions p(c|d) and p(w|c) in pLSA, respectively. There-152

fore, it can be interpreted that the global attention matrices in FiSH play the role of topics, and the153

local attention matrices in FiSH are words sampled from those topics. It is interesting to note that154

pLSA is equivalent to the famous Latent Dirichlet Allocation model under a uniform Dirichlet prior155

on the per-document topic distribution p(c|d).156

2.3 Transformer with a Finite Admixture of Shared Heads157

FiSHformers are transformers that use FiSH instead of MHA. FiSH, as defined in Def. 1, is not158

differentiable, which poses a difficulty in training FiSHformers. Applying the reparameterization159

trick [36], the attention matrices Aj can be written in a differentiable form as follows:160

Aj =

M∑
k=1

pkj(QkKk
⊤ + σk ⊙ ϵj), ϵj ∼ N (0, I),

M∑
k=1

pkj = 1, pkj ≥ 0. (8)

FiSHformers use the formulation of local attention heads in Eqn. 8 to implement FiSH.161

Transformer with a Hard Finite Admixture of Shared Heads (Hard FiSHformer) Hard FiSH-162

former takes the zero-noise limit of Eqn. 8 to reduce the computational cost. The attention matrices163

Aj in Hard FiSHformer are then calculated as164

Aj =

M∑
k=1

pkjQkKk
⊤,

M∑
k=1

pkj = 1, pkj ≥ 0. (9)

Remark 3 (Discriminative Relaxation). To take the advantage of learning from data, the convex165

combination condition of pkj , i.e.
∑M

k=1 pkj = 1, pkj ≥ 0, can be relaxed, and those mixing166

coefficients are made learnable parameters that are learned from data during training167

Remark 4 (Transformers with a Mixture of Shared Heads). A transformer with a mixture of shared168

heads (MiSHformer) can be used to reduce the amount of computation with the cost of accuracy169

reduction. MiSH is a special case of FiSH when the mixture weights pkj are the same for all j. The170

local attention matrices Aj in MiSHformer are given by171

Aj =

M∑
k=1

pk(QkKk
⊤ + σk ⊙ ϵj), ϵj ∼ N (0, I),

M∑
k=1

pk = 1, pk ≥ 0. (10)

An empirical comparison between FiSHformer and MiSHformer is provided in Section 4.172

2.4 Transformer with a Generalized Finite Admixture of Shared Heads173

In order to increase the representation capacity of attention heads, we follow a common approach in174

learning representation by replacing the linear mapping in Eqn. 8 and 9 by a nonlinear mapping such175

as a neural network with the rectified linear units (ReLU). The Transformer with a Generalized Finite176

Admixture of Shared Heads (GFiSHformer) is then formulated as177

Aj =

M∑
k=1

ϕ(pkj(QkKk
⊤ + σk ⊙ ϵj)), ϵ ∼ N (0, I),

where ϕ is a nonlinear mapping and pkj are relaxed to be learnable parameters. Similarly, we178

formulate local attention matrices Aj in the Transformer with a Generalized Hard Finite Admixture179

of Shared Heads (Hard GFiSHformer) as Aj =
∑M

k=1 ϕ(pkjQkKk
⊤).180

2.5 Reduction in Model Complexity and Computational Cost from FiSH181

Compared to its H-head MHA counterpart, a FiSH attention of M global heads and H local heads182

saves [2(H − M)D − 2MH)]N2 + 2(H − M)D(2Dx − 1)N FLOPs in a forward pass and183

2(H −M)DDx −HM −M parameters. Detailed derivations are provided in Appendix D.184

3 Experimental Results185

In this section, we empirically study the advantages of FiSHformer on various tasks and benchmarks,186

including language modeling on WikiText-103 (Section 3.1), machine translation on IWSLT’ 14187

De-En and WMT’14 (Section 3.2), and image classification on ImageNet (Section 3.3). We aim to188

show that: (i) FiSHformers improve the efficiency and accuracy upon the MHA baseline; (ii) FiSH189

is a universal method that can be applied on state-of-the-art transformer models to improve their190
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Figure 3: (Left) Training (A) and Inference (B) FLOP ratios between a 2-global-head GFiSHformers with
8-head MHA baselines across different model dimensions D and sequence lengths N trained on the WikiText-
103 language modeling task. (Right) Number of parameters (C) and GPU memory usage at test time (D)
ratios between 2-global-head GFiSHformers with 8-head MHA baselines across different model dimensions D.
2-global-head GFiSHformers are significantly more efficient than the baseline as D and N increase, indicating
the benefits of our method for long-range and large-scale tasks.

Table 1: Perplexity (PPL) on WikiText-103 compared to the baselines.

Method Valid PPL Test PPL

Softmax 8 heads 33.15 34.29
Softmax 4 heads 34.80 35.85

Hard FiSHformer 4 global heads 33.10 34.11
Hard FiSHformer 2 global heads 34.14 35.24

FiSHformer 4 global heads 33.15 34.16
FiSHformer 2 global heads 34.01 34.96

Hard GFiSHformer 4 global heads 32.70 33.75
Hard GFiSHformer 2 global heads 33.31 34.63

GFiSHformer 4 global heads 32.68 33.71
GFiSHformer 2 global heads 33.21 34.48

performance on large-scale applications. In Section 4, we also show that FiSH helps reduce the191

redundancy between attention heads.192

We compare FiSHformers, Hard FiSHformers, GFiSHformers, and Hard GFiSHformers with the193

baseline MHA softmax transformers. In our experiments, we apply the discriminative relaxation194

explained in Remark 3 on our FiSHformers to make the mixture weights pkj learnable parameters.195

For GFiSHformers/Hard GFiSHformers, we choose the nonlinear mapping ϕ to be a ReLU followed196

by a linear neural network. All of our results are averaged over 5 runs with different seeds. More197

details on datasets, models, and training are provided in Appendix A.198

3.1 WikiText-103 Language Modeling199

Models and baselines We compare the 2 and 4-global-head FiSHformers with the 8-head softmax200

transformers [70]. Each model has 16 layers, and our training follows the setting from [61].201

Results Perplexity: Table 3.1 demonstrates that our 2/4-global-head (G)FiSHformers and their202

hard versions obtain comparable or better PPLs than the corresponding 8 head MHA baseline on203

WikiText-103. Interestingly, the 2-global-head (G)FiSHformers perform on par with the 8-head204

baseline even though only 2 global attention matrices are used to span all local attention matrices,205

indicating that the attention matrices in MHA are indeed redundant and the representation capacity of206

local attention matrices in (G)FiSH, though being generated from only 2 global bases, is comparable207

to those in the 8-head MHA.208

Efficiency: In Fig. 3A and 3B, we presents the reduction ratio of train and test FLOPS, respectively,209

of our 2-global-head GFiSHformer vs. the baseline 8-head MHA transformer as functions of model210

dimension D and sequence length N . In Fig. 3C and 3D, we show the reduction ratio of model211

size and GPU memory usage at test time, respectively, of our 2-global-head GFiSHformer vs. the212

same baseline. We observe that the efficiency advantage of GFiSHformer over the baseline grows213

with D and N , making it more suitable and superior for large-scale applications. Note that the214

model size in terms of the number of parameters does not depend on the sequence length N , and215

from our experiments, we observe that the GPU memory usage reduction ratio is almost the same216
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Table 2: Machine translation BLEU scores of
2-global-head (G)FiSHformers compared to the 4-
head baseline on the IWSLT14 De-En dataset. Our
methods perform on par or better than the baseline
while being more efficient.

Method BLEU score

Softmax 4 heads 34.42

Hard Fishformer 2 global heads 34.31
FiSHformer 2 global heads 34.38
Hard GFiSHformer 2 global heads 34.54
GFiSHformer 2 global heads 34.71

Table 3: Machine translation BLEU scores of
2-global-head (G)FiSH + linear transformers com-
pared to the 4-head baseline linear on the IWSLT14
De-En benchmark. Our methods significantly out-
perform the linear baseline.

Method BLEU score

Linear 4 heads 28.22

Hard LFiSHformer 2 global heads 30.24
LFiSHformer 2 global heads 29.63
Hard GLFiSHformer 2 global heads 29.20
GLFiSHformer 2 global heads 29.46

for different sequence lengths. More efficiency analysis results on this language modeling task are217

provided in Section 4 and Appendix C. Also, Figure 5 in Appendix B.2 shows the train and test218

PPL of (G)FiSHformers and the MHA softmax transformers. In our experiment, 4-global-head219

GFiSHformers obtain the best validation PPL.220

3.2 Machine Translation221

In this section, we examine the performance of (G)FiSHformer on the neural machine translation222

task, an important task in natural language processing in which the sequence lengths of the input are223

not the same. We first compare (G)FiSHformers with the baselines MHA softmax transformers on224

the IWSLT’ 14 De-En [11] and then scale up our experiments to the WMT’14 En-De [42]. On these225

tasks, we calculate the BLEU scores for evaluation.226

Models and baselines For the IWSLT’ 14 De-En task, we compare 2-global-heads (G)FiSHformers227

with the baseline 4-head softmax transformer. Each model consists of 12 layers, 6 layers for an228

encoder and the other 6 layers for a decoder. Our experiments follow the setting on fairseq. For the229

WMT’14 En-De task, we use similar models as in the IWSLT’ 14 De-En task. However, we compare230

(G)FiSHformers of 8 and 4 global heads with the 16-head MHA softmax baseline. Our training and231

model setting are the same as those in [48].232

Results As shown in Table 2 and 4, (G)FiSHformers outperform or at least are on par with the baseline233

MHA softmax transformers. Again, these results indicate rich representations of the local attention234

matrices generated by (G)FiSH. Furthermore, (G)FiSHformer outperforming Hard (G)FiSHformer235

in all settings suggests the positive value of adding noise into the models to turn them into a proper236

probabilistic model. Nevertheless, it is worth noticing that Hard (G)FiSHformer is more efficient237

than (G)FiSHformer. Fig. 4 in Appendix B.1 summarizes the advantage in efficiency of 2-global-238

head GFiSHformer over the 4-head baseline on the IWSLT’ 14 De-En task. These advantages of239

GFiSHformer grow with the model dimension D.240

3.3 Image Classification on ImageNet241

The advantages of (G)FiSHformers also hold across different data modalities. To illustrate this point,242

in this section, we apply (G)FiSH to Swin transformer [41], a state-of-the-art vision transformer243

architecture, for the image classification task on the ImageNet dataset [20]. The baseline Swin-T244

we use has a total of 12 layers, across 4 stages of transformer blocks with 3, 6, 12, and 24 heads245

each. Our GFiSH Swin-T uses 6 and 12 global attention heads at the last two stages. The model and246

training follow the settings in [41]. We summarize our results in Table 5. Our GFiSHformer is only247

slightly more efficient than the baseline in this case because the sequence length N per window for248

this task is small, i.e. N = 49. However, like with the previous language tasks and as pointed by249

formula of computational cost and model complexity reduction in Section 2.5, these advantages grow250

with larger D and N .251

3.4 FiSHformer is more effective than other methods for head-redundancy reduction252

To futher demonstrate the effectiveness of our method, we compare FiSHformers against the head-253

redundancy reduction method in [16] on the WMT’14 machine translation task. [16] proposes the254

adaptively sparse transformer (AST), reducing redundancy within each head by zeroing out low-255

attention scores. In comparison, the results further confirm the effectiveness of our method since the256

BLEU score of FiSHformer and GFiSHformer are 27.26 and 27.67, respectively, better than that of257

AST, which is 26.93. All models share the same architecture, with 12 transformer layers, 6 encoder,258

and 6 decoder layers. Our FiSHformers have 4 global heads and 8 local heads per layer while 8259

attention heads are used in each AST layer.260
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Table 4: BLEU scores of (G)FiSHformers, with
various numbers of shared heads compared to the
16-head baseline on the WMT’14 En-De machine
translation. Our methods obtain comparable/better
results than the baseline while being more efficient.

Method BLEU score

Softmax 16 heads 29.38

Hard FiSHformer 8 global heads 29.32
FiSHformer 8 global heads 29.57
Hard GFiSHformer 8 global heads 29.27
GFiSHformer 8 global heads 29.42

Hard GFiSHformer 4 global heads 28.97
GFiSHformer 4 global heads 29.34

Table 5: ImageNet Image Classification accuracy
scores, FLOPs, and number of parameters on Swin
Transformer, comparing between baseline Swin-T
and our GFiSH Swin-T. Baseline results from [41]
are provided in parentheses. The Swin-T baseline
uses 12 and 24 attention heads in the last two stages
while our GFiSH Swin-T uses only 6 and 12 global
attention heads in the last two stages.

Method Acc Acc FLOPs Params
top-1 top-5 (109)

Softmax-12/24 81.20 95.50 4618.24 28.3M

Hard-GFiSH-6/12 81.11 95.44 4372.48 26.2M

3.5 Beyond Multi-Head Softmax Transformers261

We show that (G)FiSH can be applied on top of many transformer architectures to improve their262

performance including the linear transformers [34] and the SoTA transformer with noisy back-263

translation [24]. More results of combining (G)FiSH with efficient transformers are in the Appendix.264

Applying (G)FiSH on Linear Transformers Linear transformers [34] is a class of efficient trans-265

formers that linearize the softmax kernel in Eqns. 1 and 2 when computing attention matrices. We266

apply (G)FiSH on linear transformers trained for the IWSLT14 De-En machine translation task and267

summarize the results in Table 3. The empirical results verify that applying (G)FiSH using only268

2-global heads on a 4-head linear transformer improves the accuracy of the baseline model.269

(G)FiSH Improves the State-of-the-Art Noisy Back-Translation We apply an 8-global-head270

Hard GFiSH on the transformers trained with noisy back-translation [24] for the WMT’14 En-De271

translation task and obtain the BLEU score of 33.45. This result is comparable to the SoTA result of272

33.52 from the transformers trained with noisy back-translation but our model is more efficient.273

4 Empirical Analysis274

We study models trained for the WikiText-103 language modeling task in this section.275

Efficiency Analysis In this section, we further investigate the efficiency reduction of 2-global-head276

GFiSHformers over the 8-head baseline as a function of the number of heads in Fig. 7 and 8 and277

compare the efficiency of our FiSH-based models in Fig. 6. Fig. 6, 7, 8 and details on our setting278

are provided in Appendix C. From Fig. 7 and 8, we observe that when using fewer number of279

global heads, GFiSHformers achieve significantly more computation reduction (in both training and280

inference). Furthermore, Fig. 6 shows that the efficiency measures, i.e. FLOPs, model size, and GPU281

memory usage, of all FiSH-based models we study in this paper follow similar patterns.282

FiSHformer Helps Reducing Head Redundancy We show that (G)FiSHformers attain more283

significant distances between heads than the baseline. Thus, our models capture more diverse patterns284

across heads than the baseline. For a given pre-trained model, we compute the pair-wise L2 distances285

between heads in the same layer. We show the layer-average mean and variance of distances between286

heads in GFiSHformers compared with those in the MHA softmax baselines in Table 6. We provide287

additional results for Hard GFiSHformers and Hard FiSHformer in Table 10 in the Appendix.288

Eigen Analysis We show that heads in GFiSHformer lie on a higher-dimensional subspace compared289

to those in FiSHformer. This justifies our use of nonlinearity mapping to generate local heads290

from global heads. Using a pre-trained model, we first compute the covariance matrix of the291

vectorized attention scores of the l-th layer: Cl = 1
M ·H

∑M
m=1

∑H
h=1(A

l,h
m )(Al,h

m )⊤. We use spectral292

decomposition to represent Cl in terms of eigenvalues and eigenvectors, namely, Cl =
∑n2

i=1 λiviv
⊤
i .293

Without losing generality, we assume that eigenvalues are sorted in descending order. We illustrate294

the layer-average number of principle components that are needed to explain 95% variance in Table 7.295

Interestingly, Table 7 shows that attention matrices in all of our proposed FiSH-based models lie on296

higher-dimensional subspace than those in the baseline MHA softmax transformers, which indicates297

that our models achieve better representational capacity than the baseline, confirming the advantage298

of (G)FiSH over MHA. Table 11 in the Appendix provide additional results for Hard (G)FiSHformer.299
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Table 6: Layer-Average mean and variance of L2

distances between heads of models trained for the
WikiText-103 language modeling task.

Method Mean Variance

Softmax 8 heads 1.62 0.66
Linear 8 heads 1.90 0.06

GFiSHformer 2 global heads 2.93 2.62
GFiSHformer 4 global heads 3.59 3.95
GFiSHformer 6 global heads 3.37 2.78

Table 7: Layer-average number of principal com-
ponents for 95% variance explained of the covari-
ance of attention matrices (WikiText-103 models).

Method Mean

Softmax 8 heads 296
Linear 8 heads 436

GFiSHformer 2 global heads 895
GFiSHformer 4 global heads 1408
GFiSHformer 6 global heads 1228

Table 8: Perplexity (PPL) on WikiText-103 of 2-
global-head FiSHformer vs. 2-global-head MiSH-
former compared to the 8-head baseline. MiSH-
former attains worse PPL than FiSHformer.

Method Valid PPL Test PPL

Softmax 8 heads 33.15 34.29

FiSHformer 2 global heads 34.01 34.96
MiSHformer 2 global heads 35.11 36.28

Table 9: Perplexity on WikiText-103 of GFiSH-
former with various number of global heads com-
pared with the 8-head baseline.

Method Valid PPL Test PPL

Softmax 8 heads 33.15 34.29

GFiSHformer 6 global heads 32.80 33.80
GFiSHformer 4 global heads 32.68 33.71
GFiSHformer 2 global heads 33.21 34.48

Admixture vs. Mixture of Heads We compare the transformer with a mixture of heads and the300

transformer with an admixture of heads. We show that the transformer with a mixture of heads yields301

worse accuracy. We summarize our results on the WikiText-103 language modeling task in Table 8.302

Ablation Study on the Effect of the Number of Global Heads on FiSH-based Models We303

investigate the accuracy, efficiency, and representation capacity of FiSH-based models under different304

numbers of global heads on the WikiText-103 language modeling task. Since GFiSH obtains the best305

accuracy on this task, we use GFiSH as a study case in this section and report our results on accuracy306

in Table 9. Ablation results on efficiency are summarized in Fig. 7, 8 in Appendix C, and ablation307

results on representation capacity are provided in Table 6, 7.308

5 Related Work309

Efficient Transformers Efficient transformers have been developed to reduce the quadratic computa-310

tional and memory cost of transformers [57]. A class of efficient transformers are sparse transformers311

which design the attention matrix to have sparse structure [50, 39, 53, 12, 7]. Another class of efficient312

transformers are models that integrate different access patterns for better coverage [12, 31]. These313

access patterns can also be learned from the data [37, 57, 66]. In other works, a side memory module314

is used to access multiple tokens simultaneously [38, 64, 3, 7]. Recently, low-rank and kernelization315

methods have been proposed to improve the computational and memory efficiency of computing316

self-attention [69, 74, 34, 14, 62, 47, 51]. Our (G)FiSHformers are complementary to these methods.317

Redundancy in Transformers Most of the neurons and heads in the pre-trained transformer are318

redundant and can be pruned when applied on downstream tasks [18, 44, 23]. The contextualized319

embeddings in pre-trained networks under this redundancy have also been studied to demonstrate320

that the representations learned within these models are highly anisotropic [45, 25]. Knowledge321

distillation and sparse approximation have also been used to enhance the efficiency of transformers,322

including [60, 65, 73, 59]. Our FiSH-based approach are complementary to these methods323

Mixture Models for Transformers Recently, mixture models have been employed to study and324

enhance transformers. Among these works is switch transformers [26] that uses the routing algorithm325

in Mixture of Experts (MoE) to decrease the communication and computational costs in transform-326

ers.[46] derives a GMM for each attention head. Other works that combine mixture models with327

transformers include [13, 29, 33].328

6 Concluding Remarks329

In this paper, we proposed the FiSHformer, a class of transformers that samples local attention330

matrices from a finite admixture of global attention matrices. FiSHformers and their generalized331

version GFiSHformers attain better computational cost and model complexity than their baseline332

MHA softmax transformer counterparts. Furthermore, (G)FiSHformers help increase the diversity333

between attention heads. It is worth noting that there is no potential negative societal impacts of334

FiSHformers. Also, global attention matrices in FiSHformers currenly do not have any structure, and335

this is a limitation of our model. It is interesting to impose additional structures such as low-rank and336

sparsity into the global attention matrices.337
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Supplement to "Improving Transformer with an Admixture of606

Attention Heads"607

A Experiment Details608

In this section, we provide model and training details for experiments in Section 3. In our experiments,609

we consider the number of global attention matrices as a hyper parameter to finetune. We observe610

that in all of our experiments, choosing the global attention matrices in FiSH to be 1/4 and 1/2 of the611

number attention heads in the original MHA results in models with good accuracy and efficiency. All612

of our experiments are conducted on a server with 4 NVIDIA A100 GPUs.613

A.1 Language Modeling614

Datasets and metrics WikiText-103 consists of articles from Wikipedia and is a dataset with long615

contextual dependencies. The training set is made up of about 28K articles containing 103M running616

words; this corresponds to text blocks of about 3600 words. The validation and test sets are composed617

of 218K and 246K running words, respectively. Each of them contains 60 articles and about 268K618

words. Our experiment follows the standard setting [43, 61] and splits the training data into L-word619

independent long segments. For evaluation, we use a batch size of 1 and go through the text sequence620

with a sliding window of size L. We consider only the last position for computing perplexity (PPL)621

except in the first segment, where all positions are evaluated as in [2, 61].622

A.2 Machine Translation623

Datasets and metrics The dataset IWSLT’14 De-En contains about 170K training sentence pairs,624

7K validation pairs, and 7K test pairs. In this task, the model does the translation from German to625

English. The WMT dataset is a rich-resource English-German machine translation dataset, containing626

about 4.5M training sentence pairs. Validation and test data are from the corresponding newest data.627

The BLEU score [49] is used to measure the performance of the trained model.628

A.3 Image Classification629

Datasets and metrics The ImageNet dataset [58] contains about 1.281M training images and 50K630

validation images, the model learns to predict which one of 1000 classes an image belongs to.631

Our Swin Transformer [41] experiments are based on the public code https://github.com/microsoft/632

Swin-Transformer, we implemented our Hard GFiSH models with the Swin-T version. We add our633

global heads to the last 8 of the total 12 layers of the model, on each layer we set the number of634

global heads to half the number of heads, which are 6 and 12 global heads for layers with 12 and 24635

heads, respectively. Our experiments were conducted on a server with 1 NVIDIA RTX 3090. We set636

the batch size to 128 and the learning rate to 1.25e-4, all models are trained with single precision.637

A.4 Applying (G)FiSH on linear transformers638

Here we provide the detailed implementation of (G)LFiSHformer, i.e. (G)FiSH + linear transformer,639

discussed in Section 3.5 and Table 3 in the main text. The linear transformer reduces the quadratic640

computational cost of self-attention to linear complexity, in terms of the sequence length, by lineariz-641

ing the softmax kernel [34]. We combine (G)FiSHformer with linear transformer by generating the642

global KTV and then sampling the local KTV from the global ones, resulting in the Transformer643

with a Linear Finite Admixture of Shared Heads (LFiSHformer). Similar to (G)FiSHformer, we644

derive four different LFiSH-based transformers: LFiSHformer, Hard LFiSHformer, Generalized645

LFiSHformer (GLFiSHformer), and Hard Generalized LFiSHformer (Hard GLFiSHformer). Our646

LFiSH-variants improve the performance of the linear baseline, as demonstrated in Table 3647

B Additional Experimental Results648

B.1 A Comparison on the Model Efficiency for the IWSLT14 De-En Machine Translation649

Task650

Fig. 4 summarizes the advantage in efficiency of 2-global-head GFiSHformer over the 4-head baseline651

on the IWSLT’ 14 De-En task.652

B.2 Train and validation PPL of models trained for the WikiText-103 language modeling task653

Figure 5 shows the train and valid PPL of 4-global-head FiSH-based models vs . 8-head MHA654

Transformer trained for the WikiText-103 language modeling task.655
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Figure 4: (Left) Training (A) and Inference (B) real time ratios between a 2-global-head GFiSHformers with
4-head MHA baselines across different model dimensions D trained on the IWSLT14 De-En machine translation
task. (Right) GPU memory usage at train time (C) and test time (D) and number of parameters (E) ratios between
2-global-head GFiSHformers with 4-head MHA baselines across different model dimensions D. 2-global-head
GFiSHformers are significantly more efficient than the baseline as D increase, indicating the benefits of our
method for long-range and large-scale tasks. Note that the ratios do not change much when N increase for this
task.

Figure 5: Train and validation PPL of 4-global-head FiSH-based models vs . 8-head MHA Transformer trained
for the WikiText-103 language modeling task.

B.3 More Results to Show that FiSHformer Helps Reducing Head Redundancy656

Table 10 presents the layer-average mean and variance of distances between heads in Hard FiSHform-657

ers and Hard GFiSHformers compared with those in the MHA softmax baselines. Models are trained658

for the WikiText-103 language modeling task.

Table 10: Laver-Average mean and variance of L2 distances between heads

Method Mean Variance

Softmax 8 heads 1.62 0.66

Hard FiSHformer 4 global heads 1.75 1.38
Hard GFiSHformer 2 global heads 2.99 2.79
Hard GFiSHformer 4 global heads 3.58 3.01
Hard GFiSHformer 6 global heads 2.90 1.71

659

B.4 More Results on Eigen Analysis660

Table 11 presents the layer-average number of principle components for 95% variance explained of661

the covariance of attention matrices in Hard FiSHformers and Hard GFiSHformers trained for the662

WikiText-103 language modeling task compared with those in the MHA softmax baselines. Models663

are trained for the WikiText-103 language modeling task.664

C Efficiency Analysis665

In this section, we present the efficiency improvement of (G)FiSHformers over the MHA baseline666

on the WikiText-103 language modeling task. We show that the advantage in the efficiency of667

(G)FiSHformers increases significantly as the model dimension D and sequence length N grows,668
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Table 11: Layer-average number of principle components for 95% variance explained.

Method Mean

Softmax 8 heads 296

Hard FiSHformer 4 global heads 302
Hard GFiSHformer 2 global heads 1161
Hard GFiSHformer 4 global heads 1317
Hard GFiSHformer 6 global heads 1102
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Figure 6: Training (Left) and Inference (Right) FLOPS (B) of 2-global-head FiSHformers, Hard FiSHformers,
GFiSHformers, and Hard GFiSHformer. FiSH-based models have comparable computational costs trained on
the WikiText-103 language modeling task. Here the model size is 1024.

making (G)FiSHformers more suitable and superior for large-scale applications. In our analysis, we669

report the number of FLOPs, the number of model parameters, and memory usage (bytes) as the670

measures of model efficiency.671

Analysis setting We investigate the benefits of our model computation and memory reduction through672

different D ∈ {256, 512, 1024, 2048, 4096} and N ∈ {128, 256, 512, 1024, 2048, 4096, 8192}. For673

the FLOP calculation, we use fvcore. Another notice is that, for model complexity, we distinguish674

between input-embedding parameters and non-embedding parameters. Input-embedding parameters675

are used to represent the inputs before sending them to the model. Non-embedding parameters are676

the parameters of the main model. Since our method aims at reducing the size of the transformer677

model, it is important to compare the reduction in non-embedding parameters. Hence, we report678

both model’s total parameters and non-embedding parameters in this analysis. All measurements are679

calculated when running the model through data of batch size 1.680

FiSH-based models significantly improves computational cost681

GFiSHformer benefits computation in large-scale tasks. By showing the FLOP ratios between 2-682

global-head GFiSHformers with the 8-head MHA baseline across different model dimensions and683

sequence lengths, Figure 3 indicates that our model requires significantly less computation than the684

baseline. Especially for both training and inference, this substantially grows with the increases of D685

and N (up to more than 30 % reduction), which makes our method more preferable for long-range686

and large-scale tasks.687

FiSH-based variants share comparable advantages in computation saving. For further analysis, we688

compare the FLOP of FiSHformers, Hard FiSHformers, GFiSHformers, and Hard GFiSHformer.689

Figure 6 shows that given a D, when N is increased, FiSH-based models have comparable training690

and inference computation (FLOP). Since we have shown that GFiSHformer benefits computation,691

the FLOP comparison among FiSH-based models further confirms that our methods have a substantial692

advantage in computational saving.693

GFiSHformer computation efficiency rapidly increases as the number of global heads decreases We694

compare the computational-cost reduction of GFiSHformer as the global heads vary. Figure 7 shows695

the FLOP ratio of GFiSHformer with 2/4/6-global-head versus the 8-head baseline for a given D696

and various sequence lengths. As the number of heads decreases, GFiSHformers achieve significant697

computation reduction (in both training and inference) (Figure 7).698
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Figure 8: Number-of-parameter ratio (Left) and the memory ratio (at test time) (Right) between the GFiSH-
formers and the 8-head MHA Transformer trained on the WikiText-103 language modeling task. Our method
achieve significant reduction in memory cost and model complexity over the baseline as we scale up the model
dimension, D ∈ {256, 512, 1024, 2048 to 4096}. Here, the sequence length is 1024, and the number of global
heads is chosen to be 2, 4 and 6.

(G)FiSHformers improves memory usage and model complexity In addition to the computational699

saving, our method achieves significant benefits in memory cost (at test time) and model complexity700

(total/non-embedding parameters) over the baseline. Following the computation analysis, we first701

present the advantage of the GFISHformers compared to the 8-head MHA Transformer. Figure 8702

shows the number-of-parameter-ratio (Left) and the memory-ratio (Right) of the GFiSHformers with703

2/4/6 global heads and the 8-head baseline. At a fixed sequence length N = 1024, as we scale up704

the model dimensions, our method becomes significantly more beneficial than MHA Transformer,705

indicating the advantage of GFiSHformer in large-scale applications.706

Secondly, we show that FiSH-based models are comparable in model size and memory saving, which707

further indicates that all variants of FiSHformers benefit space complexity. Figure 6 shows that708

2-head FiSHformers, Hard FiSHformers, GFiSHformers, and Hard GFiSHformer have a comparative709

number of total/non-embedding parameters and memory usage at different model dimensions, for a710

given sequence length.711

Finally, we examine the model space complexity of a Fishformer variant as the number of global712

heads vary. Figure 8 shows a significant increase in total (Left) /non-embedding parameters (Middle)713

and memory usage (Right) reduction of 2/6/8-global heads GFiSHformers, as we increase D. While714

only having the fewest heads, 2-head GFiSHformer is the most efficient model (lowest metric ratio715

with the 8-head MHA baseline) and achieves comparable performance with the baseline, for model716

dimension, and sequence length are 128 and 256 respectively, as indicated in Table 3.1717
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D An Analysis on the Computational Complexity and the Number of718

Parameters in FiSH and the Softmax Attention719

In this section, we compare the computational complexity and the number of parameters in the FiSH720

with M global attention heads and H local attention heads to the H-head baseline MHA softmax721

transformer. Following the same notation in Section 1.1 in the main text, we let Dx, N , and D be the722

input dimension, the input length, and the model/feature dimension, respectively. To simplify the723

computation, we also do not take the softmax operator into account.724

D.1 Computational Complexity725

(i) Softmax H-head attention: The number of computations needed to compute attention matrices726

in a softmax H-head attention is N2H(2D − 1) + 2NHD(2Dx − 1).727

Explanation: To calculate the query matrix Q and the key matrix K in Step 1 in Section 1.1 at728

each head, we need 2NDDx multiplications and 2ND(Dx − 1) additions. In total, these need729

2ND(2Dx − 1) computations. Next, to compute the product QK⊤ in Eqn. (1), we need N2D730

multiplications and N2(D − 1) additions. In total, computing an attention matrix in Eqn. (1) at731

each head requires 2ND(2Dx − 1) + N2D + N2(D − 1) = N2(2D − 1) + 2ND(2Dx − 1)732

computations. The total computation needed to compute attention matrices at H heads is then733

N2H(2D − 1) + 2NHD(2Dx − 1).734

(ii) FiSH with M global attention heads and H local attention heads: The number of computations735

needed to compute attention matrices in a FiSH with M global attention heads and H local attention736

heads is [2(D +H)M −H]N2 + 2NMD(2Dx − 1).737

Explanation: Similar to the above derivation, M global attention matrices need N2M(2D − 1) +738

2NMD(2Dx − 1) computations. The H local attention matrices need H(MN2 + (M − 1)N2) =739

H(2M − 1)N2. There are also MN2 computations needed to add noise to M global attention740

matrices. Thus, the number of computations needed to compute attention matrices in a FiSH with741

M global attention heads and H local attention heads is N2M(2D − 1) + 2NMD(2Dx − 1) +742

H(2M − 1)N2 +MN2 = [2(D +H)M −H]N2 + 2NMD(2Dx − 1).743

Soft-max H-head attention versus FiSH with M global attention heads and H local attention
heads: Given the results in (i) and (ii), when compared to the baseline softmax H-head attention, our
FiSH with M global attention heads and H local attention heads saves

[2(H −M)D − 2MH)]N2 + 2(H −M)D(2Dx − 1)N

computations in a forward pass. When N is large, this difference is significant.744

D.2 The Number of Parameters745

(iii) Softmax H-head attention: The number of parameters needed to compute the attention matrices746

in a softmax H-head attention is 2HDDx.747

Explanation: 2HDDx parameters is from the linear projects to calculate the query matrix Q and the748

key matrix K in Step 1 in Section 1.1.749

(iv) FiSH with M global attention heads and H local attention heads: The number of parameters750

in a FiSH with M global attention heads and H local attention heads is 2MDDx +HM +M .751

Explanation: 2MDDx parameters is from the linear projects to calculate M query matrices Q752

and M key matrices K, which are used to compute M global attention matrices. The extra HM753

parameters is from the linear mapping for computing H local attention matrices from M global754

attention matrices, and the extra M parameters are the M {σk}Mk=1 for M global heads.755

Softmax H-head attention versus FiSH with M global attention heads and H local attention756

heads: Given the results in (iii) and (iv), when compared to the baseline softmax H-head attention, our757

FiSH with M global attention heads and H local attention heads saves 2(H −M)DDx −HM −M758

parameters. When D is large, this saving is significant.759

E Proofs760

In this appendix, we provide proof for Lemma 1.761
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E.1 Proof of Lemma 1762

We denote763

pG(x) :=

∫
f(x− θ)dG(θ) =

∫
ϕ(x|θ, σ2I)dG(θ),

for all x ∈ Rd where f(x) = 1
(
√
2πσ)d

exp
(
−∥x∥2

2σ2

)
for given σ > 0. From the work of [4], the764

space of Gaussian mixtures is dense in the space of continuous probability measures. Therefore, we765

can find probability distribution G1 such that766

sup
x∈Rd

|p(x)− pG1
(x)| ≤ ϵ

2
. (11)

To obtain the conclusion of the lemma, it is sufficient to prove that we can find a probability measure767

G2 with at most K supports where K ≤ (C log(1/ϵ))d for some universal constant C such that768

sup
x∈Rd

|pG1
(x)− pG2

(x)| ≤ ϵ

2
. (12)

Our technique for proving the above approximation bound relies on Lemma A.1 in [28]. In particular,769

that lemma entails that for any k ≥ 1 there exists a probability distribution G2 with at most (2k− 2)d770

supports such that771 ∫
θαd(G1 −G2)(θ) = 0, (13)

for any α = (α1, α2, . . . , αd) ∈ Nd such that 0 ≤ |α| =
∑d

j=1 αj ≤ 2k − 2, Here, θα =
∏d

j=1 θ
αj

j .772

Now, for any M ≥ 2a
√
d, we have ∥x− θ∥ ≥ ∥x∥−∥θ∥ > M − a

√
d > M/2 as long as ∥x∥ > M773

and θ ∈ [−a, a]d. It indicates that774

sup
∥x∥>M

|pG1(x)− pG2(x)| = sup
∥x∥>M

∣∣∣∣∫ f(x− θ)d(G1 −G2)(θ)

∣∣∣∣
≤ sup

∥x∥>M

∫
1

(
√
2πσ)d

exp

(
−∥x− θ∥2

2σ2

)
d(G1 +G2)(θ)

≤ 2

(
√
2πσ)d

exp

(
−M2

8σ2

)
. (14)

On the other hand, for any k ≥ 1 we also have that775

sup
∥x∥≤M

|pG1(x)− pG2(x)| = sup
∥x∥≤M

∣∣∣∣∫ f(x− θ)d(G1 −G2)(θ)

∣∣∣∣
≤ sup

∥x∥≤M

∣∣∣∣∣∣
∫ f(x− θ)−

k−1∑
j=0

(−1)j∥x− θ∥2j

(
√
2π)dσd+2jj!

 d(G1 −G2)(θ)

∣∣∣∣∣∣ ,
(15)

where the final inequality stems from776 ∫ k−1∑
j=0

(−1)j∥x− θ∥2j

(
√
2π)dσd+2jj!

d(G1 −G2)(θ) = 0,

which is due to Eqn. (13).777

To further bound the right-hand-side (RHS) of Eqn. (15), we use the following inequality:778 ∣∣∣∣∣∣exp(y)−
k−1∑
j=0

(y)j/j!

∣∣∣∣∣∣ ≤ |y|k/k!

for any y ∈ R. Since k! ≥ (k/e)k for any k ≥ 1, the above bound can be rewritten as779 ∣∣∣∣∣∣exp(y)−
k−1∑
j=0

(y)j/j!

∣∣∣∣∣∣ ≤ |ye|k

kk
. (16)
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Further simplification of Eqn. (15) leads to780

sup
∥x∥≤M

|pG1
(x)− pG2

(x)| ≤ sup
∥x∥≤M

∫ ∣∣∣∣∣∣f(x− θ)−
k−1∑
j=0

(−1)j∥x− θ∥2j

(
√
2π)dσd+2jj!

∣∣∣∣∣∣ d(G1 +G2)(θ)

≤ 2 sup
∥x∥≤M,θ∈[−a,a]d

∣∣∣∣∣∣f(x− θ)−
k−1∑
j=0

(−1)j∥x− θ∥2j

(
√
2π)dσd+2jj!

∣∣∣∣∣∣
≤ sup

∥x∥≤M,θ∈[−a,a]d

ek∥x− θ∥2k

σ2k(2k)k
,

where the final inequality is based on an application of inequality (16) with y = −∥x− θ∥2/(2σ2).781

For ∥x∥ ≤ M and θ ∈ [−a, a]d, we have ∥x− θ∥ ≤ ∥x∥+ ∥θ∥ ≤ M + a
√
d. Therefore, we further782

have783

sup
∥x∥≤M

|pG1
(x)− pG2

(x)| ≤ sup
∥x∥≤M,θ∈[−a,a]d

ek∥x− θ∥2k

σ2k(2k)k
≤ ek(M + a

√
d)2k

σ2k(2k)k
.

When M ≥ 2a
√
d, we have M + a

√
d ≤ 3M

2 and the above bound leads to784

sup
∥x∥≤M

|pG1
(x)− pG2

(x)| ≤ (9e)kM2k

(8σ2k)k
. (17)

By choosing M2 = 8σ2 log(1/ϵ′) for some ϵ′ > 0, the bounds in Eqns. (14) and (17) become785

sup
∥x∥≤M

|pG1
(x)− pG2

(x)| ≤ 2

(
√
2πσ)d

ϵ′,

sup
∥x∥>M

|pG1
(x)− pG2

(x)| ≤ (9e)k(log(1/ϵ′))k

kk
. (18)

As long as we choose k = 9e2 log(1/ϵ′) and ϵ′ ≤ 1, we have786

sup
∥x∥>M

|pG1(x)− pG2(x)| ≤ e−k = e−9e2 log(1/ϵ′) = (ϵ′)9e
2

≤ ϵ′. (19)

By choosing ϵ′ = ϵ
2max{ 2

(
√

2πσ)d
,1} , the results from Eqns. (18) and (19) indicate that787

sup
∥x∥≤M

|pG1(x)− pG2(x)| ≤
ϵ

2
, and sup

∥x∥>M

|pG1(x)− pG2(x)| ≤
ϵ

2
.

Therefore, if we choose M = 8σ2 log

(
2max{ 2

(
√

2πσ)d
,1}

ϵ

)
and k = 9e2 log

(
2max{ 2

(
√

2πσ)d
,1}

ϵ

)
, we788

have789

sup
x∈Rd

|pG1
(x)− pG2

(x)| ≤ ϵ

2
.

It indicates that we obtain the conclusion of claim (12) by choosing K = (2k − 2)d ≤790 (
18e2 log

(
2max{ 2

(
√

2πσ)d
,1}

ϵ

))d

. As a consequence, we obtain the conclusion of the lemma.791

F Additional Benchmark Results792

F.1 UEA Time Series Classification793

We compare the accuracy of the GFiSHformer and the baseline softmax transformers trained on the794

UEA Time Series Classification Archive benchmark [5]. In Table 12, we show that GFiSHformers795

perform on par with the baselines. For each classification task in this benchmark, the number of796

GFiSHformer’s global heads is half the number of heads in the baseline softmax transformers. The797

experiment setups and configurations for the baseline and our GFiSHformer are the same as in [76]798

(for the PEMS-SF, SelfRegulationSCP2, UWaveGestureLibrary datasets) and [78] (for other tasks).799
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Table 12: The GFiSHformer vs. the baseline softmax transformer on the UEA Time Series Classification
Archive benchmark [5]. The GFiSHformer performs on par with the baseline while being more efficient. We
also include the reported results from [78] and [76] (in parentheses) in addition to our reproduced results. The
experiment setups and configurations for the baseline and our GFiSHformer are the same as in [76] (for the
PEMS-SF, SelfRegulationSCP2, UWaveGestureLibrary datasets) and [78] (for other tasks).

Dataset/Model Baseline softmax GFishformer

ETHANOLCONCENTRATION 32.08 (33.70) 33.70
FACEDETECTION 68.70 (68.10) 68.57
HANDWRITING 32.08 (30.50) 31.55
HEARTBEAT 75.77 (77.60) 76.10
JAPANESEVOWELS 99.46 (99.40) 99.37
PEMS-SF 82.66 (82.10) 82.66
SELFREGULATIONSCP1 91.46 (92.50) 90.56
SELFREGULATIONSCP2 54.72 (53.90) 54.81
SPOKENARABICDIGITS 99.33 (99.30) 99.34
UWAVEGESTURELIBRARY 84.45 (85.60) 85.01

AVERAGE ACCURACY 72.07 (72.27) 72.17

Table 13: The GFiSHFormer vs. the baseline softmax transformer on the continuous control tasks from D4RL
benchmark [27]. The GFiSHFormer yields comparable results to the baseline while being more efficient. We
also include the reported results from [76] (in parentheses) in addition to our reproduced results.

Environment/Model Baseline softmax GFiSHFormer

MEDIUM-EXPERT

HALFCHEETAH 91.03 (83.80) 90.25
HOPPER 110.30 (104.40) 110.60
WALKER 108.70 (107.70) 108.30

MEDIUM-REPLAY

HOPPER 85.61 (79.70) 85.89

MEDIUM

HALFCHEETAH 42.28 (42.40) 41.35
HOPPER 61.47 (64.20) 63.44
WALKER 68.68 (70.60) 67.07

AVG REWARD 81.19 (79.00) 80.99

F.2 Reinforcement Learning on the D4RL Benchmark800

In Table 13, we report the results of the GFiSHformer and the softmax transformer trained for the801

continuous control tasks from D4RL benchmark [27] to evaluate the model performance on the802

offline reinforcement learning. On average, the 2-global-heads GFiSHformers perform comparably803

with the 4-head transformer baselines. For this benchmark, we follow the architecture and training804

configuration from [76].805
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