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Abstract

Principal stratification is a widely used framework for addressing post-randomization
complications. After using principal stratification to define causal effects of interest, re-
searchers are increasingly turning to finite mixture models to estimate these quantities.
Unfortunately, standard estimators of mixture parameters, like the MLE, are known
to exhibit pathological behavior. We study this behavior in a simple but fundamen-
tal example, a two-component Gaussian mixture model in which only the component
means and variances are unknown, and focus on the setting in which the components
are weakly separated. In this case, we show that the asymptotic convergence rate of
the MLE is quite poor, such as O(n−1/6) or even O(n−1/8). We then demonstrate via
theoretical arguments as well as extensive simulations that, in finite samples, the MLE
behaves like a threshold estimator, in the sense that the MLE can give strong evidence
that the means are equal when the truth is otherwise. We also explore the behavior of
the MLE when the MLE is non-zero, showing that it is difficult to estimate both the
sign and magnitude of the means in this case. We provide diagnostics for all of these
pathologies and apply these ideas to re-analyzing two randomized evaluations of job
training programs, JOBS II and Job Corps. Our results suggest that the corresponding
maximum likelihood estimates should be interpreted with caution in these cases.
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1 Introduction

Finite mixture models are notorious for giving pathological results (Redner and Walker,

1984); indeed, Larry Wasserman has called finite mixtures the “Twilight Zone of Statis-

tics” (Wasserman, 2012). Our motivation for this paper is to understand how the pathologi-

cal features of weakly separated finite mixture models affect inference for component means,

especially with respect to estimating causal effects in the principal stratification framework,

an important example of such inference.

Principal stratification is a widely used approach for addressing post-randomization com-

plications, including noncompliance with treatment assignment (Frangakis and Rubin, 2002).

Typically, the goal is to estimate causal effects within partially latent subgroups known as

principal strata. While there are many possible ways to estimate these principal causal

effects, the most common approach is via finite mixture models, treating the unknown prin-

cipal strata as mixture components (Imbens and Rubin, 1997). To date, scores of applied

and methodological papers have relied on finite mixtures to estimate causal effects, both

explicitly and implicitly.

To present our main results, we construct a simple two-parameter model that captures

the essential features of the problem: maximum likelihood estimation for the component

means and variances in a two-component location-scale mixture of Gaussian distributions,

Yi
iid∼ πN(µ0, σ0) + (1− π)N(µ1, σ1), (1.1)

where the mixing proportion, π ∈ (0, 1), is assumed to be known.

While the two-component finite mixture model in (1.1) is a toy example in some set-

tings, it is a fundamental structure in many causal inference problems. For instance, in

the canonical example of noncompliance in a randomized trial (Angrist et al., 1996), indi-

viduals randomly assigned to the treatment group who actually receive the treatment are
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a mixture of Compliers and Always Takers. Assuming that individual outcomes follow a

Normal distribution yields the mixture model in (1.1). Thus understanding the difficulties

of component-specific inference are vital to estimating parametric principal stratification

models.

The asymptotic properties of the MLE for the component means in Equation (1.1) are

well established in two settings. First, when the difference in means, ∆ ≡ µ1 − µ0, is

fixed, the MLE has strong asymptotic guarantees, including consistency and parametric

convergence (Everitt and Hand, 1981; Chen, 2017). Second, when the mixture is degenerate,

i.e., ∆ = 0, the MLE has at most O(n−1/4) convergence (Chen, 1995; Heinrich and Kahn,

2018). This is closely related to the problem of testing the number of components in a finite

mixture (McLachlan and Peel, 2004).

In this paper, we focus on the behavior of the MLE when ∆ is small but not zero. This

“intermediate sample size regime” is an important case in practice and is especially relevant

for principal stratification models. To set the stage, Figure 1 shows the distribution of the

MLE of ∆ for 1000 synthetic data sets generated from Equation (1.1) for two settings. The

sample sizes and mixing proportions match those in our two key principal stratification

examples, JOBS II and Job Corps. The assumed difference in component means is ∆ = 0.5

standard deviations, which is quite large for many social science applications but smaller

than in textbook examples of well-separated components. In both cases, the distribution of

the simulated MLEs is markedly non-Normal. Both distributions have three notable features.

First, there is a large point mass at zero. Second, a considerable portion of simulated MLEs

have the opposite sign from the truth. Finally, simulated MLEs that are non-zero and have

correct sign are not centered at the true value. To emphasize, these features are not due to

model mis-specification: we estimate the MLE using the true model.

2



Difference in Stratum Means (Std. Dev.)

F
re

qu
en

cy

0
50

10
0

15
0

20
0

25
0

30
0

35
0

−1.5 −1 −0.5 0 0.5 1 1.5

(a) JOBS II: N = 132, π = 0.45
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(b) JobCorps: N = 3, 371, π = 0.06

Figure 1. Distribution of ∆̂mle for 1000 fake data sets designed to reflect the JOBS II
and JobCorps studies. Data sets were generated from the two-component homoskedastic
Normal mixture model in Equation (1.1) with ∆ = 0.5 and, respectively, (a) N = 132 and
π = 0.45 and (b) N = 3, 371 and π = 0.06.

1.1 Main contributions of our paper

In this paper, we give theoretical explanations for some of the practical difficulties encoun-

tered in estimation in two component finite mixture models, as shown in Figure (1), and,

based on our findings, suggest guidance for practice.

We first, in Section 2, study the asymptotic properties of the MLE of the two component

model (1.1) in the “intermediate sample size regime” when ∆ → 0 as n → ∞. This frame-

work adequately captures weakly separated mixture components in relation to the sample

size. Even for the basic model (1.1), not much seems to be known about the convergence rate

of the MLE in this regime, especially when σ0 and σ1 are unknown. We first establish the

convergence rate of the MLE, resulting in several interesting findings for the model in (1.1)

when σ0 = σ1. When σ ≡ σ0 = σ1 is known and π 6= 1
2
, the convergence rate can and does

reach O(n−1/6) up to logarithmic factors. This is worse than the rate set for the degenerate
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case where ∆ = 0, suggesting that small but non-zero separations are particularly difficult

to estimate well. In such scenarios, our theoretical results explain the empirically observed

difficulties in estimating ∆ shown in Figure 1. For π = 1
2
, we can only estimate the difference

up to a sign due to identifiability issues. In this case, the convergence rate for estimating

the magnitude of the parameter is a more rapid — yet still slow — O(n−1/4).

When σ is not known the worse-case convergence rate of the MLE remains O(n−1/6) for

the π 6= 1
2

setting but falls to O(n−1/8) for the π = 1
2

setting — an order of magnitude worse

than when σ was assumed known. These results are quite novel and delicate to derive, as

we have to carefully account for the interaction between the location and scale parameters.

Interestingly, the results together show that while the convergence is faster for the symmetric

case than the asymmetric case in the known variance regime, it is slower in the unknown

variance regime.

After presenting our convergence results, we turn to the practical difficulties in estimat-

ing ∆ and formalize the phenomenon of the large point mass at zero shown in Figure 1. We

call this phenomenon pile up. Specifically, we show via a mix of simulations and theoretical

arguments that, in certain intermediate sample size regimes, ∆̂mle = 0 with very high prob-

ability even though ∆ 6= 0. Thus, the MLE behaves like a threshold estimator analogous to

the classic Hodges estimator (see Van der Vaart, 2000). We then show that pile up occurs

when the overall mixture variance is less than the within-component variance. To the best

of our knowledge, we are the first to document this pile-up phenomenon in finite mixtures.

Next, we turn to using higher-order mixture moments for diagnosing pathologies with

the MLE. First, we use these moments to bound the probability of pile up given either the

realized data set or population parameters. We then discuss the classic problem of choosing

the correct mode in a bimodal likelihood and argue that it is particularly difficult here. We

show that this problem corresponds to estimating the sign of ∆ (i.e., the relative ordering

of µ0 and µ1) and demonstrate how to use the third moment of the mixture distribution to
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assess the probability that this occurs. We combine these results with extensive simulations

to show that, across a range of reasonable settings, the sign of the MLE for ∆ is no better

at predicting the true sign than a coin flip.

We finally apply these mixture results to estimating principal stratification models in two

randomized evaluations of job training programs, JOBS II (Vinokur et al., 1995) and Job-

Corps (Schochet et al., 2008). These two examples have been the focus of several prominent

papers using finite mixtures for principal stratification (e.g., Zhang et al., 2009; Mealli and

Pacini, 2013; Frumento et al., 2012) and highlight two main use cases for this framework. For

both data sets, we slightly simplify the problem to isolate the pathologies of the finite mix-

tures. We then assess the observed mixture distributions using the diagnostics we propose

and find that pathologies are quite likely. Consequently, we do not have high confidence in

the quality of the maximum likelihood estimates of ∆̂mle = 0 for JOBS II and an implausibly

large ∆̂mle for JobCorps. Our overall findings suggest that finite mixture models should be

used with caution in settings such as these.

Overall, the implications for parameter estimation in finite mixtures are both novel and

important. In particular, there is a longstanding consensus in finite mixture modeling that

the MLE can behave poorly when components are not well separated (Redner and Walker,

1984). Indeed, several experienced researchers have told us that estimating component-

specific parameters is “hopeless” in the settings we consider. While we agree with this

assessment, we argue that there are no clear guidelines for researchers in practice. In partic-

ular, how do researchers know when components are separated “enough” and what happens

if they are not? This is especially important because, in settings with insufficient information

in the data, the MLE gives a very plausible value of zero rather than ‘NA.’ We believe that

the framework we lay out here is an important next step towards deeper understanding of

these issues.
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Paper plan. Section 2 describes the asymptotic behavior of the MLE under weak sepa-

ration. Section 3 explores the non-asymptotic behavior of the MLE and characterizes pile

up. Section 4 uses the mixture moments for constructing diagnostics for the MLE. Section 5

gives a brief overview of the principal stratification framework and the connection to finite

mixture models as well as an analysis of JOBS II. Section 6 provides additional discussion

on implications for practice and possible research directions. Finally, the supplementary

materials address several points that go beyond the main text, including proofs.

Notation. For any two densities p and q (with respect to Lebesgue measure µ), the vari-

ational distance between p and q is given by V (p, q) = (1/2)
∫
|p− q| dµ. Additionally, the

squared Hellinger distance between p and q is given by h2(p, q) = (1/2)
∫ (

p1/2 − q1/2
)2
dµ.

Furthermore, the expression an & bn is used to denote an ≥ Cbn for some C that is indepen-

dent of n.

1.2 Related literature and previous work

There is a vast literature on inference in finite mixture models, dating back to the seminal

work of Pearson (1894). For thorough reviews, see Everitt and Hand (1981), Redner and

Walker (1984), Titterington et al. (1985), McLachlan and Peel (2004), and McLachlan et al.

(2019). Frühwirth-Schnatter (2006) focuses on the Bayesian paradigm; Lindsay (1995) gives

an overview of moment estimators; and Moitra (2014) discusses relevant results from machine

learning. We briefly highlight several relevant aspects of this literature.

First, there has been extensive research on the asymptotic behavior of finite mixtures

models. Chen (2017) gives a recent, comprehensive review. Much of this literature, however,

is about the problem of testing the order of the finite mixture (see McLachlan and Peel, 2004).

There are several recent papers that instead address estimation. Chen et al. (2014) focuses

on estimating the mixing proportion when components are only weakly separated. Ho and
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Nguyen (2016) gives results for the over-specified location-scale Gaussian mixtures. Gadat

et al. (2016) study the convergence rate of L2-norm estimators for a few settings of two

component models. Finally, Anandkumar et al. (2012); Hardt and Price (2015); Wu and

Yang (2018) explore the asymptotic properties of method of moments estimators in rather

general settings of Gaussian mixtures.

Second, the problem of weak separation is a special case of the weak identification problem

especially common in econometrics. There are many examples of weak identification in other

settings, including the weak instruments problem (Staiger and Stock, 1997) and the moving

average unit root problem, which is the source of the term pile up (Shephard and Harvey,

1990; Andrews and Cheng, 2012). See also Chen et al. (2014).

Finally, although the technical discussion focuses narrowly on finite mixtures, our moti-

vation remains the broader question of inference for causal effects within principal strata. To

date, only a handful of papers have directly addressed the finite sample properties of mix-

tures for causal inference. Griffin et al. (2008) conduct extensive simulations and conclude

that principal stratification models are generally impractical in social science settings. Mat-

tei et al. (2013) caution that univariate mixture models often yield poor results and suggest

jointly estimating effects for multiple outcomes, such as by assuming multivariate Normal-

ity. Mercatanti (2013) proposes an approach for inference with a multimodal likelihood in

the principal stratification setting. Frumento et al. (2016) explore methods for quantifying

uncertainty in principal stratification problems when the likelihood is non-ellipsoidal. See

also Chung et al. (2004), Zhang et al. (2008), Richardson et al. (2011), and Frumento et al.

(2012).
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2 Asymptotic properties of the MLE: Phase transition

In this section, we study the asymptotic behavior of the MLE under two distinct but repre-

sentative settings of model (1.1): first, when the variances σ0 and σ1 are assumed known and

equal; second, when the variances σ0 and σ1 are unknown but assumed to be equal. Over-

all, we demonstrate that worst-case convergence when the components are close together is

generally slow.

2.1 Known variances setting

Motivated by the illustrative simulations in Figure 1, we now explore the properties of the

MLE, ∆̂mle, when ∆ is small but non-zero. In the classical asymptotic regime, where ∆ is

fixed as in Equation (1.1), it is immediate that ∆̂mle has a parametric rate of convergence

in this simple example (see Redner and Walker, 1984; Chen, 1995). However, as shown in

Figure 1a, this asymptotic regime can be a poor approximation to reality when components

only have moderate separation. We therefore consider an asymptotic regime in which ∆n

shrinks as n increases. Our core finding is that, under this regime in which the two com-

ponents are only slightly separated and the variance is known, the convergence rate of the

MLE for the difference in means is quite poor.

Under the assumption that variances are known, we re-parametrize Equation (1.1) and

assume that Yi, i ∈ {1, . . . , n}, are i.i.d. samples from the model:

Yi
iid∼ πN (µ− δn, σ) + (1− π)N (µ+ cδn, σ) , (2.1)

where c := π
1−π and δn ∈ Θ is a free parameter that varies with n. We assume the equal

variance case of σ0 = σ1 = σ for a known σ. Relative to Equation (1.1), µ0 = µ − δn,

µ1 = µ + cδn, ∆ = (1 + c)δn, and µ is the overall mean, EYi = µ. For simplicity, we set
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µ = 0; all of the results in this section are applicable for any µ ∈ R. When µ = 0 then

the δn parameter is both the (negative) location of the first component as well as scaling

of the separation of components ∆; it thus corresponds to both a location and a separation

parameter. We focus on this separation parameter δn for ease of mathematical derivations;

because ∆ from Equation (1.1) is a constant re-scaling of δ, all the asymptotic results equally

apply. We further assume that δn ∈ Θ where Θ is a compact subset of R and 0 ∈ Θ. Finally,

define δ̂mle
n as the MLE for δn for the model in (2.1).

The following result shows the convergence rates of MLE for (2.1) where the variances

are assumed to be known:

Theorem 2.1. For the model (2.1), the following holds for any ε > 0

(a) (Asymmetric regime) When π ∈ (0, 1/2), then

C1(ε)

(
1

n

)1/6

≤ sup
δn∈Θ1,n(ε)

Eδn
(
|δ̂mle
n − δn|

)
≤ C2(ε)

(
log n

n

)1/6

,

where Θ1,n(ε) =
{
δ : |δ| ≤ n−1/6+ε

}
.

(b) (Symmetric regime) When π = 1/2, then

C1(ε)

(
1

n

)1/4

≤ sup
δn∈Θ2,n(ε)

Eδn
(∣∣∣|δ̂mle

n | − |δn|
∣∣∣) ≤ C2(ε)

(
log n

n

)1/4

,

where Θ2,n(ε) =
{
δ : |δ| ≤ n−1/4+ε

}
.

Here, Eδn denotes the expectation taken with respect to the product measure with mixture

density of Y1, . . . , Yn under the model (2.1). Furthermore, C1(ε) and C2(ε) are two positive

constants depending only on ε. Symmetry gives an analogous result for π ∈ (1/2, 1).

The proof of Theorem 2.1 is provided in Appendix G.1. The variance parameter, σ is

subsumed in the constants and does not impact the rates.

9



Prior work (Chen, 1995) has shown that when δn = 0 the rate is of order n−1/4 for the

asymmetric case; the above therefore shows that there exists some δn 6= 0 in a neighborhood

of 0 where convergence is even worse than this degenerate case. In particular, an immediate

consequence of this theorem is that, for π 6= 1/2, there exists a sequence of δn going to 0 at

no more than a n−1/6 rate such that the error of the MLE is also of order n−1/6.

For the symmetric regime we are simply looking at difference in magnitude, not sign.

This is because when π = 1/2 the sign of δn is not identifiable, and we find that

sup
δn∈Θ

Eδn|δ̂mle
n − δn| & n−1/r,

for any r ≥ 2 and for any fixed parameter space Θ. Here, Eδn denotes the expectation taken

with respect to product measure with mixture density of Y1, . . . , Yn under the model (2.1);

see the Appendix G.3 for the proof.

Connections to the Wasserstein metric. The above connects to the Wasserstein met-

ric, which has recently been used to study parameter estimation in mixture models (Nguyen,

2013; Ho and Nguyen, 2016; Heinrich and Kahn, 2018), for additional interpretation of the

results in Theorem 2.1. In particular, let Ĝmle
n denote a probability measure (or equivalently

mixing measure) with two atoms (−δ̂mle
n , cδ̂mle

n ) whose weights are (π, 1− π) and Gn a prob-

ability measure with two atoms (−δn, cδn) whose weights are (π, 1− π), then we can verify

that the results of Theorem 2.1 are equivalent to

C1(ε)n−1/6 ≤ sup
δn∈Θ1,n(ε)

Eδn
(
W3(Ĝmle

n , Gn)
)
� sup

δn∈Θ1,n(ε)

Eδn
(
|δ̂mle
n − δn|

)
≤ C2(ε)

(
log n

n

)1/6

under the asymmetric regime and

C1(ε)n−1/4 ≤ sup
δn∈Θ2,n(ε)

Eδn
(
W2(Ĝmle

n , Gn)
)
� sup

δn∈Θ2,n(ε)

Eδn
(∣∣∣∣∣∣δ̂mle

n

∣∣∣− |δn|∣∣∣) ≤ C2(ε)

(
log n

n

)1/4
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under the symmetric regime.

2.2 Unknown equal variances setting

We now show that our previous results still generally hold when we relax the restriction that

the variances are known. For the unknown equal variances setting, we assume that Y1, . . . , Yn

are i.i.d. samples from a two component location-scale Gaussian mixture with density

Yi
iid∼ πN (µ− δn, σn) + (1− π)N (µ+ cδn, σn) . (2.2)

Here, δn and σn change with the sample size n and converge to some limit points. We assume

σn ∈ Ω, a compact subset of R+. We set the overall mean of µ = 0 for convenience as before;

δn is again a scaling of the gap between the two mixture means. We define (δ̂mle
n , σ̂mle

n ) as

the MLE for the separation and scale parameters for the model in (2.2). Unlike the previous

convergence results with δ̂n in the case with known variance, the convergence rates of δ̂n

and σ̂n are much harder to establish due to the strong dependence between the seperation

parameter δ and scale parameter σ, which is determined by the following partial differential

equation (PDE):

∂2f

∂δ2
(x, δ, σ) = 2

∂f

∂σ2
(x, δ, σ), (2.3)

for all x, δ, σ and Normal density f . This dependence leads to worse convergence rates for

parameter estimation for over-fit location-scale Gaussian mixtures (Ho and Nguyen, 2016)

and for hypothesis testing for the number of components of location-scale Gaussian mix-

tures (Chen and Chen, 2003). Under the specific setting that we consider, this dependence

leads to a new characterization of the asymptotic behavior of δ̂mle
n , |δ̂mle

n |, and σ̂mle
n under the

two regimes π ∈ (0, 1/2) and π = 1/2. To the best of our knowledge, these have not been
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previously addressed in the literature.

Theorem 2.2. Take π ∈ (0, 1/2]. Under the unknown equal variances setting (2.2), the

following holds

(a) (Asymmetric regime) When π ∈ (0, 1/2), then

C1(ε)

(
1

n

)1/3

≤ sup
(δn,σn)∈S1,n(ε)

E(δn,σn)

(
|δ̂mle
n − δn|2 + |(σ̂mle

n )2 − σ2
n|
)
≤ C2(ε)

(
log n

n

)1/3

,

where S1,n(ε) =
{

(δn, σn) : |δn|2 + |(σn)2 − (σ)2| ≤ n−1/3+ε
}

for any ε > 0 and some

positive constant σ.

(b) (Symmetric regime) When π = 1/2, then

C1(ε)

(
1

n

)1/4

≤ sup
(δn,σn)∈S2,n(ε)

E(δn,σn)

(∣∣∣∣|δ̂mle
n | − |δn|

∣∣∣∣2 + |(σ̂mle
n )2 − σ2

n|
)
≤ C2(ε)

(
log n

n

)1/4

,

where S2,n(ε) =
{

(δn, σn) : |δn|2 + |(σn)2 − (σ)2| ≤ n−1/4+ε
}

for any ε > 0 and some

positive constant σ.

Here, E(δn,σn) denotes the expectation taken with respect to a product measure with a mixture

density of Y1, . . . , Yn under the unknown equal variances setting (2.2). Furthermore, C1(ε)

and C2(ε) are two positive constants depending only on ε.

The proof of Theorem 2.1 is provided in Appendix G.2.

A few comments are in order. First, under the asymmetric regime, the convergence rate

of the separation parameter δ̂mle
n to δn is of an order no more than n−1/6 (due to the squared

term within the expectation) while that of scale parameter (σ̂mle
n )2 to (σn)2 is no more than

order n−1/3, as long as the true parameters δn and σn belong to S1,n(ε). The PDE of the

distribution in (2.3) suggests the faster apparent convergence rate of the scale parameter

relative to the separation parameter.
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Second, under the symmetric regime, the worse-case convergence rate of |δ̂mle
n | to |δn|

is n−1/8, which is slower than the worst-case rate n−1/4 of (σ̂mle
n )2 to (σn)2, when the true

parameters δn and σn belong to S2,n(ε). Here, we consider the absolute value of the separation

parameter for the convergence as the sign of separation parameter is not identifiable under the

symmetric setting. Furthermore, in contrast to the know variance setting (2.1), the worse-

case convergence rate of separation parameter under the symmetric regime is slower than

that of separation parameter under the asymmetric regime. That fundamental difference

can be again explained by the PDE of the location-scale Gaussian distribution.

3 Non-asymptotic properties of the MLE: Pile Up

Thus far, we have established rigorous asymptotic (minimax) behaviors of MLE under the

asymmetric and symmetric cases of model (2.1) and model (2.2). The goal of this section is

to shed some light on the non-asymptotic sample properties of the MLE. To facilitate the

discussion, we focus solely on the known variances setting (2.1), i.e., we want to analyze

the non-asymptotic behavior of MLE when δn is near zero. We work with the likelihood

function of our re-parameterized model (again, setting µ = 0). This allows us to directly

obtain statements regarding the points of the maximum likelihood which in turn allows for

the characterization of the MLE’s behavior. In particular, we first show that under our

parameterization, zero (corresponding to no separation) will always be an inflection point if

not a local mode. Finally, we show that, in general, the local mode is in fact the MLE when

the estimated overall variance is less than σ, the assumed component variance.
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3.1 Zero as a local mode of the likelihood

Given an observation Y = y from the mixture model (2.1), the log-likelihood for δn is

`(δn|Y = y) = log
(
πe−0.5(y−δn)2 + (1− π)e−0.5(y−cδn)2

)
, (3.1)

where we set σ = 1, though these results immediately extend to arbitrary σ. The score

function is then

`′(δn|Y = y) = −πe
−0.5(y+δn)2(y − µ+ δn)− c(1− π)e−0.5(y−cδn)2(y − cδn)

πe−0.5(y+δn)2 + (1− π)e−0.5(y−cδn)2
. (3.2)

Since c = π
1−π with π ∈ (0, 1/2], it follows from (3.2) that

`′(0|Y = y) = 0, for all y ∈ R. (3.3)

Given the samples Y n = (Y1, Y2, . . . Yn) from model (2.1), Equation (3.3) yields the

following approximation of the log-likelihood given samples Y n:

`(δn|Y n) = `(0|Y n) +
1

2
`′′(0|Y n)δ2

n +O(δ2
n). (3.4)

In the event that `′′(0|Y n) < 0, zero is a local mode for the log-likelihood function

`(δn|Y n); we call this event

E ≡ {`′′(0|Y n) < 0}. (3.5)

Direct calculation yields that

`′′(0|Y n) = c

(
n∑
i=1

Y 2
i − n

)
, (3.6)

and thus `′′(0|Y n) < 0 when
∑n

i=1 Y
2
i < n. Equivalently, `′′(0|Y n) < 0 when m̂2 < 1,
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where m̂2 ≡ 1
n

∑n
i=1 Y

2
i is the observed second moment of the mixture distribution, and

the assumed within-component variance is 1. We return to this connection to higher-order

moments below.

3.2 Zero as the global mode of the likelihood

After establishing that zero is a local mode of the likelihood when `′′(0|Yn) < 0, an important

question is whether zero is also a global mode in this case. Let F ≡ {δ̂mle
n = 0} be the event

that zero is also the global mode for the likelihood function `(δ|Y ), where δ̂mle
n is the MLE

under the setting of model (2.1). We refer to the event F as pile up throughout the paper.

While it is clear that F ⊂ E , the reverse implication is not trivial. We divide our analysis

into two cases: π = 1/2 and π ∈ (0, 1/2). We again denote m̂2 := 1
n

∑n
i=1 Y

2
i .

Symmetric case. When π = 1
2
, conditioning on the event E (equivalently m̂2 < 1), we

can check that

`′′(δ|Y n) =
4

n

n∑
i=1

Y 2
i

(exp(−δYi) + exp(δYi))
2 − 1 ≤ m̂2 − 1 < 0

where the inequality is due to applying Cauchy-Schwarz exp(−δYi) + exp(δYi) ≥ 2 for all

i ∈ {1, . . . , n}. The above inequality implies that the log-likehood function `(δ|Y n) is strictly

concave under the event E . Therefore, zero is the global maximum of the log-likelihood

function under the event E . This leads to the following result regarding pile up.

Proposition 1. Under the symmetric setting of location-scale Gaussian mixtures with known

variances, E ≡ F , i.e., pile up occurs as long as 0 is a local maxima of the log-likelihood

function.

The result of Proposition 1 suggests that we can rewrite the representation of MLE under
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symmetric setting with known variances as

δ̂mle
n =


0, if m̂2 < 1

Op(n
−1/4), if m̂2 ≥ 1

.

Thus, at least in the symmetric case, the MLE behaves like a threshold estimator analogous

to the classic Hodges estimator (see Van der Vaart, 2000).

Asymmetric case. Unlike the symmetric case, we can see via simulations that there are

instances for which E 6= F in relatively small samples. Nonetheless, these counter-examples

are fairly rare; for ∆ = (1+c)δn = 0.25, {E∩F c} occurs in fewer than 3 percent of simulation

draws with sample sizes less than N = 500, decreasing to below 1 percent with samples sizes

of N = 1000 or more. Extensive simulation studies seem to imply that Pn(F) ↗ Pn(E).1

We do not have a rigorous proof of this and therefore state it as a conjecture:

Conjecture 3.1. Under the asymmetric setting of location-scale Gaussian mixtures with

known variances, if δn = Op(n
−1/6), then limn→∞ Pn(E ∩ F) = 1.

Thus Conjecture 3.1, if true, implies that, for the asymmetric setting of location-scale

Gaussian mixtures with known variances, the probability that pile up occurs, i.e., δ̂n = 0,

can be well approximated by the event {`′′(0|Y n) < 0}. In other words, we can safely ignore

the case in which zero is a local but not a global mode of the likelihood.

Figure 2 shows this pile up phenomenon in practice. Specifically, Figures 2a and 2b

show the likelihood surfaces for two data sets generated via Equation (1.1), with N = 200,

π = 0.35, and ∆ = (1 + c)δ = 0.6. In Figure 2a, the likelihood is bimodal and the global

mode is close to the truth, albeit more extreme.2 In Figure 2b, the likelihood is unimodal

1The index n denotes the fact that the sampling distribution in (2.1) changes with n.
2The characterization of δ̂mle

n as a Hodges-like estimator suggests that the MLE will be biased away from

zero when δ̂mle
n 6= 0. This is closely related to the bias induced by introducing identifiability constraints,
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(a) Example bimodal likelihood
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(b) Example unimodal likelihood

Figure 2. Two example likelihoods for component means, with data generated via Equa-
tion (1.1) with parameters N = 200, π = 0.35, and ∆ = 0.6. The ‘+’ denotes the true
component means.

and centered at zero, which is far from the truth.

4 Diagnostics for MLE pathologies

The results above suggest that the higher-order moments of the mixture distribution play

an important role in the finite sample properties of the MLE. We now construct diagnostics

for the MLE using these moments. First, we use these higher-order moments to construct

diagnostics for pile up for the MLE, specifically the probability that pile up will occur

given a set of moments, either observed moments or assumed moments. We then construct

similar diagnostics for the relative order of the components, as captured by the sign of ∆.

Throughout, we consider the setting with known variances, since the corresponding moment

such as δ > 0 (Jasra et al., 2005; Frühwirth-Schnatter, 2006). In both cases, the MLE is the maximum of a
truncated likelihood surface, truncated at the line δ = 0.
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equations are tractable in this case.

4.1 Probability of pile up

The probability of pile up can be characterized by using the sampling distribution of the

second moment, Y 2. In particular, we can determine P{m̂2 < 1} using the first three

moments of Y 2:

m2 = E[Y 2] = 1 + cδ2
n (4.1)

v2 = V[Y 2] = 3 + 3(π + c4(1− π))δ4
n −m2

2 (4.2)

Γ2 =
1

v
3/2
2

E|Y 2 −m2|3, (4.3)

where we can obtain Γ2 via Monte Carlo methods. Using the Berry-Essen theorem for the

convergence rates of a CLT, and assuming Conjecture 3.1, we can obtain the following bound

for the probability of pile up:

|Pn(E)− Φ(bn)| ≤ 0.7915
Γ2√
n
. (4.4)

As we show in simulations, Φ(bn) appears to be an excellent approximation to the empirical

pile up probability, even though the bound, which depends on the sixth mixture moment,

can be wide in practice. See supplementary materials.

We can use this result for practical diagnostics, both for planning a future analysis and

for assessing a particular data set. Figure 3a shows the pile up probability computed via

simulation and via Equation (4.4), with π = 0.325, ∆ = (1 + c)δn = 0.25, and varying n.

First, there is excellent agreement between the simulations and the Normal approximation,

though Φ(bn) slightly under-states the probabilities obtained via simulation. Second, while

the probability of pile up is decreasing in both n and ∆, it is hardly a “small sample” issue.

18



100 200 500 1000 2000 50000.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Sample Size

P
ro

ba
bi

lit
y 

of
 P

ile
 U

p

∆ = 0.25
∆ = 0.5
∆ = 1

(a) π = 0.25

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.50.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Assumed ∆

P
ro

ba
bi

lit
y 

of
 P

ile
 U

p

π = 0.05
π = 0.25
π = 0.45

(b) N = 200

Figure 3. Probability of pileup given sample size and separation of means. Dotted lines
are simulated values across 5,000 simulations; solid lines use the Normal approximation,
Φ(bn).

For ∆ = 0.25, which would be quite large in many social science applications, pile up remains

a meaningful possibility even with sample sizes in the thousands. For ∆ = 1.0, which would

be an implausibly large separation in many settings, the probability of pile up is still greater

than 1 in 4 for n = 5, 000. Finally, Figure 3b shows similar results for a moderate sample

size of N = 200 but varying mixing proportions. In this case, the probability of pile up

decreases as π approaches 0.5. We believe that figures such as these are useful diagnostics

before observing the mixing distribution itself.

We can also incorporate information from the observed mixture distribution. First, we

can plug in the observed empirical moments, m̂2 and v̂2, to calculate b̂ = 1−m̂2√
v̂2/n

and Φ(̂b).

This relies on the Normal approximation for the sampling distribution as well as precisely

estimating v̂2, which is the fourth moment of the observed mixture distribution and might

be noisy in practice. Alternatively, we could use a case-resampling bootstrap to estimate
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P{m̂2 < 1}. Note that this is not the same as using the case-resampling bootstrap to

estimate standard errors, which we advise against (see supplementary materials). Rather,

this is analogous to the use of the bootstrap as a diagnostic tool in finite mixtures; see,

for example, Grün and Leisch (2004). Finally, we note that an estimated MLE of zero

still provides some information about the unknown parameter. For instance, if ∆̂mle =

(c+ 1)δ̂n = 0, ∆ = 0.2 is a much more plausible value than ∆ = 2.0. We discuss this in the

supplementary materials.

4.2 Probability of a sign error

We now turn to the sign of ∆̂mle when π 6= 1/2 (the sign is not estimable when π = 1/2).

Specifically, we define a sign error as sgn
(

∆̂mle
)
6= sgn (∆). This is a well-studied issue

in mixture modeling; for example, choosing the true mode in a multimodal likelihood is

a classic problem (see Gan and Jiang, 1999; Biernacki, 2005). Redner and Walker (1984)

give a foundational review of asymptotic versus local identifiability in mixtures. For a more

recent perspective, see Kim and Lindsay (2015), who introduce the concept of empirical

identifiability.

As with pile up, we use higher order moments for diagnosis. This is slightly more compli-

cated than for pile up because sgn
(

∆̂
)

is undefined when ∆̂ = 0. Thus, we need to consider

the joint sampling distribution of both the second and third moments. In the setting with

known, equal variances in Equation (2.1), we have the following moment equations:

m2 = E[Y 2] = 1 + π(1− π)∆2

m3 = E[Y 3] = π(1− π)(1− 2π)∆3.

Following Tan and Chang (1972), the corresponding sample moments have the following
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distribution: m̂2

m̂3

 ·∼ N


 m2

m3

 ,
1

n

 κ11∆4 + 2m2
2 κ12∆5 + 6m2m3

κ22a∆
6 + κ22bm2∆4 + 6m3

2


 , (4.5)

with constants κ11 = π(1 − π)(1 − 6π(1 − π)); κ12 = π(1 − π)(1 − 2π)(1 − 12π(1 − π));

κ22a = π(1 − π)(1 − 30π(1 − π) + 120π2(1 − π)2) + 9π2(1 − π)2(1 − 2π)2; and κ22b =

9π(1 − π)(1 − 6π(1 − π)). Thus, we can approximate the joint probability of pile up, sign

error, or neither for a given ∆, n, and π, where we set ∆ > 0 for illustration:

P ({pile up; sign error; neither}) ≈

P ({m̂2 < 1; m̂2 > 1 ∩ m̂3 < 0; m̂2 > 1 ∩ m̂3 > 0})
(4.6)

If desired, we could apply a similar Berry-Essen bound for these probabilities, as in Equation

(4.4). Instead, we simply invoke the Central Limit Theorem and use the Normal approxi-

mation in Equation (4.5).

Figure 4 shows the conditional probability of sign error given no pile up across values of

N and ∆ found by two methods: (1) direct simulation (simulations are restricted to draws

in which ∆̂mle 6= 0); and (2) the tail probability of Equation (4.6) based on the Normal

approximation in Equation (4.5). While the probability of a sign error decreases in both n

and ∆, it remains remarkably high over plausible parameter values. Indeed, for ∆ = 0.25 the

sign of ∆ is essentially a coin flip, even with a sample size of 5,000. Importantly, conventional

approaches for standard errors in the MLE (McLachlan and Peel, 2004) typically ignore this

uncertainty. For additional discussion, see Kim and Lindsay (2015).

As in Section 4.1, we can assess the probability of sign error in practice. Based only on

the sample size and mixing proportion, we can re-create Figure 4 across plausible parameter

values. We can also plug observed values into Equation (4.5). Alternatively, we can count
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Figure 4. Probability that sgn
(

∆̂
)
6= sgn(∆) based on simulations (solid line) and the

method of moments approximation in Equation (4.5) (dotted line); based on π = 0.25 and
1000 simulations at each set of parameter values

the proportion of bootstrap replicates in which the sign of the bootstrapped third moment

differs from the observed sign and m̂2 > 1.

5 Application to principal stratification

We now motivate the use of finite mixtures in principal stratification. For our primary run-

ning example, we re-analyze the Job Search Intervention Study (JOBS II), a randomized field

experiment of a mental health and job training intervention among unemployed workers (Vi-

nokur et al., 1995) that has been extensively studied in the causal inference literature (Jo

and Stuart, 2009; Mattei et al., 2013). This is an example of one-sided noncompliance and is

a simple but non-trivial example of the principal stratification setup. In the supplementary

materials, we also re-analyze a randomized evaluation of JobCorps, the largest job training

program in the US (Schochet et al., 2008). We briefly discuss these results at the end of this

section.
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5.1 Setup

We begin with the canonical example of a randomized experiment with noncompliance, such

as JOBS II, and set up the problem using the potential outcomes framework (Neyman, 1923;

Rubin, 1974). We observe N individuals who are randomly assigned to a treatment group,

Ti = 1, or control group, Ti = 0, with observed outcome, Y . For JOBS II, the primary out-

come is a measure of depression six months after randomization. As usual, we assume that

randomization is valid and that the Stable Unit Treatment Value Assumption holds (SUTVA;

Rubin, 1980; Imbens and Rubin, 2015). This allows us to define potential outcomes for indi-

vidual i, Yi(0) and Yi(1), under control and treatment respectively, with observed outcome,

Y obs
i = TiYi(1) + (1− Ti)Yi(0). The fundamental problem of causal inference is that we ob-

serve only one potential outcome for each unit. Finally, we define the Intent-to-Treat (ITT)

effect as the impact of randomization on the outcome, ITT = E[Yi(1)− Yi(0)]. Throughout,

we take expectations and probabilities to be over a hypothetical super-population.

The main complication is that only 55% of those individuals assigned to treatment ac-

tually enrolled in the program. Let Di be an indicator for whether individual i receives the

treatment, with corresponding compliance Di(0) and Di(1) for control and treatment respec-

tively. For simplicity, we assume that only individuals assigned to treatment can receive the

active intervention (i.e., there is one-sided noncompliance), which is the case in the JOBS II

evaluation. Formally, Di(0) = 0 for all i. This gives two subgroups of interest: Never Takers,

Di(1) = 0, and Compliers, Di(1) = 1. Following Angrist et al. (1996) and Frangakis and

Rubin (2002), we refer to these subgroups interchangeably as compliance types or principal

strata, Ui ∈ {c, n}, with “c” denoting Compliers and “n” denoting Never Takers. Table 1

shows the relationship between observed groups and principal strata.
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Table 1: Summary statistics for observed groups in JOBS II
Z Dobs Observed Mean Observed SD Possible Principal Strata
1 1 -0.16 1.03 Compliers
1 0 0.05 0.96 Never Takers
0 0 0.14 0.99 Compliers and Never Takers

The two main estimands are the ITT effects for Compliers and Never Takers:

ITTc = E[Yi(1)− Yi(0) | Ui = c] = µc1 − µc0,

ITTn = E[Yi(1)− Yi(0) | Ui = n] = µn1 − µn0,

in which µut represents the outcome mean for Ui = u and Ti = t. We are primarily interested

in ITTc, the impact of randomization on Compliers, which measures the impact of actually

enrolling in JOBS II. Since we observe stratum membership for individuals assigned to

treatment, we can immediately estimate µc1 and µn1. Moreover, due to randomization, the

observed proportion of Compliers in the treatment group is, in expectation, equal to the

overall proportion of Compliers in the population, π ≡ P{Ui = c}. Thus, we treat π as

essentially known or, at least, directly estimable. The main inferential challenge is that we

do not observe stratum membership in the control group. Rather we observe a mixture of

Compliers and Never Takers assigned to control:

Y obs
i | Ti = 0 ∼ πfc0(yi) + (1− π)fn0(yi), (5.1)

where fu0(y) is the distribution of potential outcomes for individuals in stratum u assigned

to control.

The standard solution for this problem is to invoke the exclusion restriction for Never

Takers, which states that ITTn = 0, or equivalently, µn1 = µn0. Substantively, this states that

the only impact of randomization on the outcome is by changing the intermediate variable,

D. This is often a reasonable assumption, since actual program participation—rather than
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the randomization itself—is typically the important factor in practice. With this assumption,

we can then estimate ITTc with the usual instrumental variables approach (Angrist et al.,

1996). In JOBS II, however, there is a concern that randomization has a negative impact on

depression levels for Never Takers (see Mattei et al., 2013). Thus, assuming that ITTn = 0

could lead to biased estimates for ITTc.

5.2 Model-based estimation

In a seminal paper, Imbens and Rubin (1997) outlined a model-based instrumental vari-

ables framework, proposing a parametric model for the outcome distribution conditional

on stratum membership and treatment assignment, such as fut(yi) = N (µut, σ
2
ut). While

the exclusion restriction can strengthen inference in this setting, it is not strictly necessary.

Instead, identification is based entirely on standard results for mixture models.

Since Imbens and Rubin (1997), dozens of papers have used finite mixtures for estimating

causal effects.3 For one-sided noncompliance, we can write the observed data likelihood with

mean-shifted standard Normal component distributions as:

Lobs(θ) =
∏

i: Ti=1, Dobs
i =1

πφ(yi;µc1) ×
∏

i: Ti=1, Dobs
i =0

(1− π)φ(yi;µn1) ×

∏
i: Ti=0

[πφ(yi;µc0) + (1− π)φ(yi;µn0)] ,

where θ represents the vector of parameters and φ(yi;µ) is the Normal density with mean

µ and variance 1. In practice, we often relax the assumption of known, common variance.

Since the observed data likelihood for individuals with Ti = 1 immediately factors into

the likelihood for the Compliers and the likelihood for the Never Takers, we can directly

3Some examples of other relevant papers are Little and Yau (1998); Hirano et al. (2000); Barnard et al.
(2003); Ten Have et al. (2004); Gallop et al. (2009); Zhang et al. (2009); Elliott et al. (2010); Zigler and
Belin (2011); Frumento et al. (2012); Page (2012); Schochet (2013).
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estimate µc1 and µn1. With one-sided noncompliance, we can also directly estimate π among

individuals assigned to treatment.

The challenge is therefore to estimate µc0 and µn0 via a two-component homoskedastic

Gaussian mixture with known mixing proportion, π.4 See Mattei et al. (2013) for further

discussion of parametric mixture modeling in this setting.

5.3 Application to JOBS II

We now turn to using the non-asymptotic results in Section 4 for estimation and diagnostics

for JOBS II. We focus on a subset of N = 410 high risk individuals, with N1 = 278 randomly

assigned to treatment and N0 = 132 to control. The finite mixture consists of the N0 = 132

individuals assigned to control with mixing proportion π̂ = 0.45.

Table 1 shows summary statistics for the three observed groups. We standardize the

outcome by subtracting off the grand mean and dividing by σ̂1 =
√
πσ̂2

n1 + (1− π)σ̂2
c1,

the estimated within-component standard deviation under treatment. Based on the group

means, it is clear that workers who are observed to enroll in the program have lower depres-

sion, on average, than those who do not. Note that the point estimates for σ̂c1 and σ̂n1 are

quite close, which is consistent with the equal variance assumption.

First, we consider the expected performance of the mixture MLE based solely on the

observed sample size and mixing proportion. Figure 5a gives the probability of pile up

and sign error over a range of plausible values of ∆ using the Normal approximation in

Equation (4.5) and the observed JOBS II values of N = 132 and π̂ = 0.45. The pattern is

striking. For values of ∆ < 0.5, the most likely estimate of the MLE is zero, regardless of

the true value of ∆. If the MLE is non-zero, the probability of correctly estimating the sign

of ∆ is only slightly better than a coin flip.

4Note that there is a very small amount of information about π from the mixture model among those
assigned to the control group. Given the other complications that arise in mixture modeling, we ignore this
and regard π as if it were estimated directly from the treatment group.
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Figure 5. Quality of Maximum Likelihood Estimation for the finite mixture model in
JOBS II, with parameters N = 132 and π = 0.45. Panels (a) and (b) show the probability
of MLE pathology and expected bias of the MLE if non-zero; Panel (c) shows the observed
likelihood for the JOBS II mixture, with a maximum at µc0 = µn0.

Second, we incorporate information from the mixture distribution itself. First, the ob-

served second and third moments are m̂2 = 0.96 and m̂3 = 0.17 (after centering the mixture

distribution). When we plug the observed values into the Normal approximations in Equa-

tion (4.5), the probability of pile up is 0.63 and the probability of a sign error is 0.31. The

corresponding probabilities based on the case-resampling bootstrap are nearly identical, 0.64

and 0.29 respectively. Thus, prior to any estimation, we believe that the probability of a

pathological MLE is high.

Figure 5b shows the observed likelihood surface for Equation (1.1) fit to the JOBS II

data. The likelihood is unimodal and centered at zero, which is consistent with the univariate

results in Mattei et al. (2013).5 Given the high probability of pile up ex ante, our analysis

5We can see this using the summary statistics in Mattei et al. (2013). For the univariate model without
the exclusion restriction, their Table 1 gives point estimates µ̂c1 = 1.96 and µ̂n1 = 2.08 on the depression
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suggests that we should interpret the MLE of ∆̂mle = 0 with caution.

5.4 Application to Job Corps

In the supplementary materials, we provide a detailed re-analysis of a randomized evaluation

of JobCorps, the largest job training program in the US (Schochet et al., 2008). Following Lee

(2009) and Zhang et al. (2009), we are interested in the impact of Job Corps on (log) hourly

wages, which is a measure of job quality. This quantity, however, is only well defined for

a certain sub-population, known as always employed individuals. This is a principal causal

effect and is sometimes referred to as the Survivor Average Causal Effect (SACE). While

more complicated than non-compliance in JOBS II, we can again formulate the question as

estimating the component means in a Normal finite mixture model. We focus on a mixture

of N = 3, 371 individuals with π = 0.06. Thus, while the mixing proportion is relatively

extreme, the sample size is considerable.

Despite the large sample size, we continue to find pathological estimates from the Normal

mixture model. First, based on the diagnostics we propose above, the probability of pile up

is around one-third, which is surprising given the large sample size. Rather than find that

∆̂mle = 0, however, we estimate an implausibly large ∆̂mle = −4.5 standard deviations.

This estimate is well outside outside the minimax bounds, ∆ ∈ [−2.4, 2.2], suggesting that

bias might be substantial.6 See the supplementary materials for additional analysis. In

practice, the simplest explanation for these results is that the simple Normal mixture model

in Equation (1.1) is a poor fit to the data. At the same time, it is difficult to imagine a

different parametric mixture model that would be a better fit. This suggests that parametric

scale. The treatment effect point estimates are ÎTTc = −0.206 and ÎTTn = −0.084, which imply µ̂c0 =
1.96 + 0.206 = 2.166 and µ̂n0 = 2.08 + 0.084 = 2.164. Therefore, ∆̂ ≈ 0. By contrast, the implied estimate
for ∆ from their bivariate model is ∆̂ = 0.261, which is roughly three-quarters of a standard deviation on the
depression scale. Finally, note that the model in Mattei et al. (2013) assumes unknown, unequal variances.

6Following Lee (2009), we calculate minimax bounds via trimmed means of the mixture distribution.
Specifically, we bound µNE1 via the mean of the π = 0.06 individuals with, respectively, the lowest and
highest values of hourly wages, with similar bounds for µEE1.

28



finite mixtures might not be an effective strategy here.

6 Discussion

We find that maximum likelihood estimates for component-specific means in finite mixtures

can yield pathological results in a range of practical settings. These pathologies are particu-

larly relevant for estimating causal effects in principal stratification models, which are often

based on estimates of component means. Echoing previous work (e.g., Griffin et al., 2008),

we therefore caution researchers on the use and interpretation of model-based estimates of

component-specific parameters, especially for causal inference.

First, we suggest that, whenever possible, researchers consider alternative approaches to

inference that do not rely on model-based estimation. In the context of principal stratifica-

tion, these alternatives often rely on constant treatment effect assumptions or on conditional

independence across multiple outcomes (e.g., Jo, 2002; Jo and Stuart, 2009; Ding et al.,

2011). When such restrictions are not possible, we recommend that researchers first com-

pute nonparametric bounds (see Zhang and Rubin, 2003; Grilli and Mealli, 2008; Lee, 2009;

Miratrix et al., 2018).

Second, researchers might nonetheless be interested in leveraging parametric assump-

tions for estimation. In this case, we suggest that researchers use our results to assess the

probability of pathological results for different parameter values. Similar to design analysis,

these calculations can provide practical guidance on whether mixture modeling will yield

useful inference. One possibility is to incorporate multiple outcomes, such as in Mattei et al.

(2013). This can greatly improve inference; intuitively, the distance between components

will be greater in multivariate space, in effect, giving larger ∆ and easier separation (see also

Mercatanti et al., 2015).

Third, we have focused on maximum likelihood rather than Bayesian methods (Frühwirth-
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Schnatter, 2006). The Bayesian approach offers some distinct advantages over likelihood-

based inference.7 For example, the Bayesian can incorporate informative prior information,

which can be especially important in finite mixture modeling; see, for example, Aitkin and

Rubin (1985); Hirano et al. (2000); Chung et al. (2004); Lee et al. (2009); Gelman (2010).

Moreover, our concern about sign error is trivial in the Bayesian setting: the global mode is

simply a poor summary of a multi-modal posterior. More broadly, the weak identification

issues we highlight in this paper are not necessarily relevant to a strict Bayesian. Imbens

and Rubin (1997) and Mattei et al. (2013), for example, characterize weak identification as

substantial regions of flatness in the posterior, which increases uncertainty but does not lead

to any fundamental challenges.8 Nonetheless, we argue that our results are highly relevant

for Bayesians who are also interested in good frequency properties (Rubin, 1984). In the

supplementary materials, we offer evidence that the pathological behaviors we document for

the MLE also hold for the posterior mean and median with some “default” prior values. In

this sense, we conduct a Frequentist evaluation of a Bayesian procedure (e.g., Rubin, 2004)

and find poor frequency properties overall. More generally, we agree that informative prior

information can be a powerful tool for improving inference in this setting. Finding suitable

priors for finite mixture models is a topic for future research.

Going forward, we hope that the approach outlined here can serve as a useful template for

studying the behavior of mixture model estimates in finite samples. Moreover, we considered

only a very simple case in this paper; in the future, we plan to assess inference for much

richer models, especially those common in principal stratification. Finally, we are actively

exploring alternative estimation strategies, particularly those that more directly leverage

7The Bayesian approach also introduces some unique challenges that we do not address here, namely the
label-switching problem (Celeux et al., 2000; Jasra et al., 2005) and the difficulty of specifying vague prior
distributions for finite mixtures (Grazian and Robert, 2015).

8Imbens and Rubin (1997) note that “issues of identification [in the Bayesian perspective] are quite differ-
ent from those in the frequentist perspective because with proper prior distributions, posterior distributions
are always proper. The effect of adding or dropping assumptions is directly addressed in the phenomenologi-
cal Bayesian approach by examining how the posterior predictive distributions for causal estimands change.”
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Bayesian methods and that can give sensible point estimates. In the end, inference in the

Twilight Zone is possible. But we must proceed with caution.
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Supplementary Materials for “Weak separation in
mixture models and implications for principal

stratification”

A Robust estimation via method of moments

Rather than use higher order moments as diagnostics, we can instead use the method of
moments directly for estimation. Several recent papers have highlighted the attractive prop-
erties of method of moment estimators for general mixture models (Anandkumar et al.,
2012; Wu and Yang, 2018). Applying these results, we show that the method of moments
approach has similar asymptotic properties to the MLE but better finite sample properties;
in particular, the method of moments is not susceptible to pile up.

First, in the setting with known, equal variances in Equation (2.1), we have the following
moment equations:

m1 = E[Y ] = µ

m2 = E[Y 2] = 1 + cδ2 (A.1)

m3 = E[Y 3] =
1− 2π

1− π
cδ3,

where ∆ = (1 + c)δ. Since there is no information in the first moment about δ, we consider
two estimators based on the second and third moments:9

|δ̂m2 | :=
∣∣∣∣m̂2 − 1

c

∣∣∣∣1/2 δ̂m3 :=

[
(1− π)

c (1− 2π)
m̂3

]1/3

,

where m̂2 and m̂3 are the sample second and third (non-central) moments, respectively.

First, the absolute value for |δ̂m2| is necessary because there is no information about sign of

δ in the second moment. Thus, δ̂m2 is a natural estimator when π = 1/2. By contrast, when
π ∈ (0, 1/2), δ̂m3 will estimate both the magnitude and sign of δ.

The following result establishes that these estimators have asymptotic behavior similar
to the MLE, as described in Theorem 2.1.

Proposition 2. Given the formulations of estimators δ̂m2 and δ̂m3, for the setting of known
equal variances (2.1), the following holds

9In principle, we could also consider a generalized method of moments estimator based on both the second
and third moments, though this is less transparent than the estimators we discuss below. See Anandkumar
et al. (2012); Hardt and Price (2015); Wu and Yang (2018).
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(a) (Asymmetric regime) When π ∈ (0, 1/2), then

sup
δn∈Θ

∣∣∣∣∣∣δ̂m2

∣∣∣− |δn|∣∣∣ = Op

(
n−1/4

)
, (A.2)

sup
δn∈Θ

∣∣∣δ̂m3 − δn
∣∣∣ = Op

(
n−1/6

)
. (A.3)

(b) (Symmetric regime) When π = 1/2, then

sup
δn∈Θ

∣∣∣∣∣∣δ̂m2

∣∣∣− |δn|∣∣∣ = Op

(
n−1/4

)
, (A.4)

where δ̂m3 is undefined when π = 1/2.

While these simple estimators have the same asymptotic behavior as the MLE, neither
δ̂m2 nor δ̂m3 are susceptible to pile up. It suggests that the moment estimators under the
simple setting of known equal variances are more robust than the MLE.

B Analysis of Job Corps

B.1 Setup.

Following (Zhang et al., 2009), we use the principal stratification framework to define the im-
pact of Job Corps on hourly wages. Let S be an indicator for employment, with corresponding
potential outcomes Si(0) and Si(1) and observed employment status Sobs

i for individual i.
We then define principal strata, U , based on the joint distribution, {Si(0), Si(1)}:

Ui =


EE if Si(1) = 1, Si(0) = 1

EN if Si(1) = 1, Si(0) = 0

NE if Si(1) = 0, Si(0) = 1

NN if Si(1) = 0, Si(0) = 0

.

We are interested in the impact of randomization on the always employed strata, EE. This
is sometimes known as a Survival Average Causal Effect and is closely related to the idea of
“truncation due to death” (see Zhang et al., 2009). Finally, following (Lee, 2009), we invoke
the monotonicity assumption, which states that random encouragement to enroll in a job
training program can only increase employment, Si(1) ≥ Si(0); thus the NE group does not
exist.10

10While this simplifies the analysis and allows us to highlight the role of finite mixture modeling, Zhang
et al. (2009) argue against this assumption. In particular, they argue that enrolling in a job training program
might raise an individual’s reservation wage and, as a result, make that individual less likely to accept a
lower paying job. We merely note that relaxing this assumption further complicates the analysis, since the
mixing proportions are no longer identified non-parametrically.
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Table 2: Summary statistics for observed groups in Job Corps
Z Sobs Observed Mean Observed SD Possible Principal Strata
1 1 0.03 1.013 EE and EN
1 0 — — NN
0 1 -0.05 1 EE
0 0 — — NN and EN

Table 2 shows the relationship between principal strata and the observed groups, based
on Z and Sobs. Under monotonicity, we directly observe always employed individuals (EE)
assigned to the control group. We can therefore directly estimate the average outcome for this
group, µEE0. We can also directly estimate the proportion of EE individuals via π̂EE = P[S |
Zi = 0], the proportion of never employed individuals (NN) via π̂NN = 1−P[S | Zi = 1], and
the proportion of the induced to employment individuals (EN) via π̂EN = 1 − π̂NN − π̂EE.
Without additional assumptions, however, we cannot estimate µEE1, instead observing a
mixture of EE and EN individuals. Consistent with (Zhang et al., 2009) and (Frumento
et al., 2012), we therefore assume that log-hourly wages follow a mixture of Gaussians with
known mixing proportion, as in Equation (1.1) in the main text. Note that this mixture
is much simpler than the full model considered in (Zhang et al., 2009), which accounts for
some important additional complications.

B.2 Diagnostics.

We focus on a complete case subset used by (Lee, 2009) of N = 9, 145 individuals, with
N1 = 5, 546 randomly assigned to treatment and N0 = 3, 599 to control. The mixture model
consists of the N11 = 3, 371 individuals assigned to treatment who are employed, with mixing
proportion π̂ = 0.06.

Table 2 shows summary statistics for observable groups. We standardize the outcome
by subtracting off the grand mean and dividing by σ̂0, the estimated standard deviation for
individuals assigned to control who are employed. This is also the standard deviation for
EE individuals assigned to control. Since hourly wage is only defined for employed workers,
the rows with Sobs = 0 have undefined outcomes.

Figure B.6a gives the probability of pile up and sign error over a range of plausible values
of ∆ using the Normal approximation in Equation (4.5) and the observed Job Corps mixtures
parameters of N = 3, 371 and π̂ = 0.06. As in Figure 5a, pile up is a major concern, though
the probability of a sign error is somewhat less ex ante, in part because the mixing proportion
is much closer to 0. Figure B.6b shows the bias of the MLE if the MLE is non-zero and the
sign is correct. As with JOBS II, the bias can be severe.

We can also incorporate the higher order moments of the mixture distribution. In this
case, the observed second and third moments are m̂2 = 1.03 and m̂3 = −0.87, respectively
(after centering the mixture distribution). Plugging the observed values into the Normal ap-
proximations in Equation (4.5), the pile up probability of 0.34 and the sign error probability
is 0.03. The corresponding probabilities based on the case-resampling bootstrap are nearly
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Figure B.6. Quality of Maximum Likelihood Estimation for the finite mixture model
in Job Corps, with parameters N = 3, 371 and π = 0.06. Panels (a) and (b) show the
probability of MLE pathology and expected bias of the MLE if non-zero; Panel (c) shows
the observed likelihood for the Job Corps mixture, with a global mode and a local mode.
The dotted line denotes equal component means.
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identical, 0.34 and 0.04 respectively.
Figure B.6c shows the observed likelihood for the mixture model. The MLE is at µ̂mle

EE1 =

0.09 and µ̂mle
NE1 = −4.40, which implies ∆̂mle = −4.49 standard deviations. This is clearly an

extreme estimate. Transforming these estimates to $ per hour shows that µ̂mle
EE1 = $8.24 per

hour and µ̂mle
NE1 = $0.09 per hour, which is far below feasible hourly wages in this sample. This

estimate is also outside the minimax bounds, ∆ ∈ [−2.4, 2.2].11 There is also a local mode

centered at µ̂mle
EE1 = −0.01 and µ̂mle

NE1 = 0.59, which implies ∆̂mle = 0.60 standard deviations.
In units of $ per hour, this is µ̂mle

EE1 = $7.47 per hour and µ̂mle
NE1 = $13.64 per hour. While far

more feasible than the global mode, these estimates are still worrisome, since it is unlikely
that the group induced to employment by Job Corps would have hourly wages nearly twice
those of the always employed group; see Figure B.6b. Regardless, the likelihood at the MLE
is considerably higher than at the local mode, with −2 ∗ (`(+0.60|Y )− `(−4.49|Y )) = 296.
Taken together, these results suggest that maximum likelihood does not give practically
useful results in this example.

In practice, the simplest explanation for these results is that the simple Normal mixture
model in Equation (1.1) in the main text is a poor fit to the data. At the same time, however,
it is difficult to imagine a more plausible parametric mixture model in this setting. Thus
parametric finite mixtures might not be an effective strategy in this example.

C Validating the Normal approximations

We present figures testing the agreement of the moment-based Normal approximations with
their corresponding pathologies assessed via simulation. Figure C.7 compares the incidence
of pile up and m̂2 < 1 for a range of values of π,∆, and N . The blue line indicates the
probability the method of moments estimator indicator of pile up (1{m̂2 < 1}) agrees with
whether or not pile up was observed in simulation. The results are averaged over 1000
simulated data sets. Unsurprisingly, the correspondence improves as N increases and is
worst when π = 0.1, the case in which the mixture is its most asymmetric. Overall, however,
the Normal approximation provides an excellent estimator for whether pile up has occurred
in the sample.

Figure C.8 shows the corresponding plots for assessing the sign of ∆. Here, due to
the extra noise in m3, the correspondence is much less sharp. The discrepancies are most
noticeable when π is close to 0 and ∆ is small.

D Confidence sets via inverting tests

Given the poor performance of the MLE, we are interested in methods that perform well even
when ∆ is small. Based on the large literature on weak identification in other settings, we

11Following (Lee, 2009), we calculate minimax bounds via trimmed means of the mixture distribution.
Specifically, we bound µNE1 via the mean of the π = 0.06 individuals with, respectively, the lowest and
highest values of hourly wages, with similar bounds for µEE1.
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Figure C.7. Probability that the diagnostic based on the second moment (1{m̂2 < 1})
agrees with whether or not pile up was observed in simulation. The dotted red line perfect
correspondence at each tested N . The blue line is the average agreement probability over
1000 simulated data sets.
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Figure C.8. Probability that the diagnostic based on the third moment agrees with whether
or not the wrong sign pathology was observed in simulation. The dotted red line perfect
correspondence at each tested N . The blue line is the average agreement probability over
1000 simulated data sets.
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Figure C.9. Berry-Essen bound for probability of pile up for π = 0.35 and a range of
values of N and ∆.

presume that many such methods are possible. As a starting point, we suggest an approach
to construct confidence intervals based on inverting a sequence of tests. This approach is
widely used in other weak identification settings, namely weak instruments (e.g., Staiger
and Stock, 1997; Kang et al., 2015) and the unit root moving average problem (Mikusheva,
2007). It is also closely related to the method of constructing confidence intervals for causal
effects by inverting a sequence of Fisher Randomization Tests (Rosenbaum, 2002).

At the same time, this approach has its drawbacks. First, while test inversion yields
confidence sets with good coverage properties, it does not necessarily yield good point esti-
mates. In particular, it is possible to construct a Hodges-Lehmann-style estimator via the
point on the grid with the highest p-value (Hodges and Lehmann, 1963). But since pile up
and sign error remain issues, any point estimator in this case should be interpreted with cau-
tion. Second, the coverage guarantees hold only when the model is correctly specified; under
even moderate mis-specification, the resulting estimator can cease to exist (Gelman, 2011).
Importantly, the MLE performs poorly even when the model is correctly specified. Alterna-
tively, researchers uninterested in test inversion for confidence intervals might nonetheless
be interested in using this approach to assess model fit. If the proposed procedure rejects
everywhere, this is evidence that the Normal mixture model is a poor fit.

We discuss two basic approaches here. Our first approach is a version of the grid boot-
strap of (Andrews, 1993) and (Hansen, 1999), which generates Monte Carlo p-values by
simulating fake data sets from the null hypothesis. While the grid bootstrap is conceptually
straightforward and enjoys theoretical guarantees (Mikusheva, 2007), it is also computation-
ally intensive. Our second approach is therefore a fast approximation that directly uses the
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Normal sampling distribution in Equation (4.5) of the main text to derive a χ2 test at each
grid point. To demonstrate these methods, we first outline inference for ∆ alone and then
extend this to inference for the component-specific means, µ0 and µ1.

D.1 Overview of grid bootstrap

To conduct a grid bootstrap, we first need a grid. Define ∆ = {∆0,∆1, . . . ,∆n} with ∆i > ∆j

for i > j. The immediate goal is then to obtain a p-value for the following null hypotheses
for each value ∆j ∈ ∆:

H0 : ∆ = ∆j vs. H1 : ∆ 6= ∆j. (D.1)

For convenience we first center the data (i.e., we set µ = 0 as in the main text). Next, we
need a test statistic, t(y,∆j), that is a function of the observed (or simulated) data and
the value of ∆ under the null hypothesis, ∆ = ∆j. For a given N , and initially assuming
π and σ2 are known, we then obtain exact p-values through simulation with the following
procedure:

• For each ∆j ∈ ∆

– Calculate the observed test statistic, tnj = t(yn,∆j).

– Generate B data sets of size N from the model

y∗j
iid∼ πN

(
∆j

2
, σ2

)
+ (1− π)N

(
−∆j

2
, σ2

)
.

– For each simulated y∗j , compute t∗j = t(y∗j ,∆j).

– Calculate the empirical p-value of tnj as a function of the null distribution, t∗j .

• Calculate the confidence set, CSα(∆) = {∆j : p(∆j) > 1−α} for a specified significance

level α, where p(∆j) is the empirical p-value of ∆̂mle assuming that ∆ = ∆j.

Note that the resulting confidence set might not be continuous, which could occur if the
sampling distribution is strongly bimodal.

D.2 Constructing a test statistic

So long as the model is correctly specified, this approach yields an exact p-value for any valid
test statistic, up to Monte Carlo error (Mikusheva, 2007). We propose a test statistic based
on the joint distribution of m̂2 and m̂3.12 Equation 4.5 suggests a natural combination of
the estimated cumulants:

tm(y,∆j) = (d2, d3)Var(m2,m3)−1(d2, d3)T , (D.2)

12There are many possible alternatives. For example, Frumento et al. (2016) suggest test statistics based
on scaled log-likelihood ratios. Another option is to use univariate test statistics based on m̂2 or m̂3.
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Figure D.10. Three examples of the grid of Wald test p-values from Equation D.3. The
three simulated data sets were drawn from Equation (1.1) in the main text with N = 1000,
π = 0.325, σ2 = 1, µ0 = 1

8 , µ1 = −1
8 . The dark line shows the cutoff for p = 0.05. The red

dot shows the true value. Note that the Wald test is undefined when µ0 = µ1.

where dk = m̂k − mk, and we use the assumed null of ∆ = ∆j to obtain (m2,m3) and
Var(m2,m3). As we saw, the Normal approximation in Equation (4.5) in the main text is
excellent, even for modest sample sizes (say N > 100). This implies:

tm(y,∆j)
a∼ χ2

2.

We can therefore obtain a p-value via a Wald test, rather than via simulation, at each grid
point, which is much faster computationally.

Finally, to use these approaches to estimate component means, we need to (1) expand
the grid, and (2) expand the test statistic. A natural choice for a grid of points is the
two-dimensional grid over µ0 and µ1. To expand the test statistic, we directly use the first
three cumulants from Equation (4.5) from the main text and from (Tan and Chang, 1972)
to obtain a joint test statistic as in Equation (D.2):

tm(y,∆j) = (d1, d2, d3)Var(κ1, κ2, κ3)−1(d1, d2, d3)T ∼ χ2
3. (D.3)

As above, we can obtain p-values via the grid bootstrap rather than via the χ2 distribu-
tion. Figure D.10 shows the distribution of p-values for three different examples from the
same data generating process, with N = 1000, π = 0.325, σ2 = 1, µ0 = +1

8
, µ1 = −1

8
.13

Figure D.11 shows the 95% coverage for the confidence sets obtained through this fast
approximation. As expected, the coverage is essentially exact. In particular, 95% coverage
for this procedure is far better than the corresponding coverage based on the MLE.

13Note that the χ2 distribution no longer holds when µ0 = µ1. While we can use a univariate Normal
distribution to obtain a valid p-value in this case, this additional complication is generally unnecessary in
practice.
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scribed in Section D. The results for the MLE are for the standard finite mixtures estimator.
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D.3 Grid bootstrap for principal stratification model

In the full principal stratification model, we directly estimate the outcome means for Compli-
ers and Never Takers assigned to treatment, µ̂c1 and µ̂n1, and use the finite mixture model to
estimate corresponding outcome means for Compliers and Never Takers assigned to control,
µ̂c0 and µ̂n0. Our goal is inference for ITTc = µ̂c1 − µ̂c0 and ITTn = µ̂n1 − µ̂n0. While this
is straightforward given estimates for µc0 and µn0, we only have confidence sets for these
means.

We therefore propose the following approach to obtaining (1 − α)100% confidence sets
for ITTc and ITTn:

• Use a grid bootstrap or test inversion to obtain a joint (1 − α/2)100% confidence set
for µc0 and µn0, which we can project into univariate confidence sets, CSα/2(µc0) and
CSα/2(µn0)

• Directly obtain (1−α/2)100% confidence intervals via the Normal distribution for µc1

and µn1, CSα/2(µc1) and CSα/2(µn1)

• For ITTc (repeat for ITTn):

– If CSα/2(µc0) is not disjoint, obtain a (1− α)100% confidence interval for ITTc:

CSUBα (ITTc) = CSUBα/2(µc1)− CSLBα/2(µc0)

CSLBα (ITTc) = CSLBα/2(µc1)− CSUBα/2(µc0)

– If CSα/2(µc0) is disjoint, repeat the above calculations for each separate segment
and then take the union

This yields valid confidence sets for both treatment effects of interest. If desired, we could
incorporate an additional Bonferroni correction to account for the two separate intervals.

Finally, if desired, we can extend this procedure to account for uncertainty in π and σ,
which are nuisance parameters for the desired hypothesis tests. We can therefore use results
from (Berger and Boos, 1994) to obtain valid p-values in this context. First, we obtain a
(1−γ)-level joint confidence set for CSγ(π, σ

2), such as via case-resampling bootstrap, with γ
very small, such as γ = 0.001. We obtain a valid p-value for, say, ∆, by taking the maximum
p-value over CSγ(π, σ

2) plus a correction for the added uncertainty:

pγ(∆0) = sup
(π,σ2)∈CSγ(π,σ2)

p(∆0) + γ.

See (Nolen and Hudgens, 2011) and (Ding et al., 2016) for further discussion of the validity
of this approach.
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E Failure of resampling methods

Resampling methods, such as the case-resampling bootstrap, are common in finite mixture
model settings. For example, (McLachlan and Peel, 2004, Sec. 2.16.2) recommend using
the bootstrap to improve estimation of standard errors when the Fisher information yields
a poor approximation (see also Grün and Leisch, 2004). Others have suggested subsampling
in similar settings (Andrews, 2000). Figure E.12 shows the coverage for 95% confidence sets
based on the case-resampling and subsampling intervals. Clearly, the coverage is far from
nominal.

The form of ∆̂mom shows why the performance of these methods is so poor. As (Bickel and
Freedman, 1981) prove, for the bootstrap to be consistent in the iid context, the mapping
from the underlying distribution of the data to the distribution of the statistic must be
continuous (see also Andrews, 2000). Clearly,

∆̂mom = sgn(m̂3)

√
m̂2 − 1

π(1− π)

is not a continuous mapping from the sample to ∆̂mom, with a boundary at m2 ≥ 1 and
a discontinuity at m3 = 0.14 In the related case of the unit root problem, (Mikusheva,
2007) shows that other resampling methods also fail, including subsampling and the m of n
bootstrap. In the context of principal stratification, (Zhang et al., 2009) note that confidence
intervals based on the bootstrap often fail when the likelihood is multimodal. (Frumento
et al., 2016) offer additional discussion in this setting.

F Frequency Performance of the Posterior Mean and

Median

Bayesian inference for finite mixtures introduces some unique challenges for specifying pri-
ors (e.g., Grazian and Robert, 2015). Nonetheless, inference for a posterior with a sufficiently
vague prior should be broadly similar to inference based on the likelihood alone. Thus, with-
out an informative prior for {µ0, µ1} in the two-component Gaussian mixture, the posterior
mean and median should exhibit similar pathologies to those exhibited by the MLE. We test
this intuition using the bayesm package in R. Figure F.13 shows histograms of the posterior
mean of ∆ when the true ∆ is 0.5 and 1, π = 0.3, and N = 100. We use the default priors
of the bayesm package except in the case of the Dirichlet parameter, which is set to reflect
that π = 0.3 is known (i.e., we assume a very informative prior). The histograms exhibit
the same behavior as the MLE of ∆. In particular, the estimator concentrates around 0 and
seems unable to differentiate between ∆ > 0 and ∆ < 0.

Figure F.14 shows the corresponding plot for the distribution of the posterior median of

14In some promising recent work, (Laber and Murphy, 2011) explore bootstrap-type methods with non-
continuous mappings. We hope to explore this more in the future.
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Figure E.12. Coverage probabilities for 95% confidence sets based on the case-resampling
and subsampling intervals. The blue line represents the case-resampling coverage probabil-
ity, while the blue line represents the subsampling coverage probability.
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Figure F.13. Histograms of the posterior mean for ∆ calculated via MCMC draws from
bayesm. The histogram on the left is for ∆ = 0.5, while the histogram on the right is for
∆ = 1. Both histograms have N = 100, π = 0.3, and σ = 1.

∆. As we can see, the median also concentrates about 0 and appears unable to determine
the sign of ∆.
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Figure F.14. Histograms of the posterior median for ∆ calculated via MCMC draws from
bayesm. The histogram on the left is for ∆ = 0.5, while the histogram on the right is for
∆ = 1. Both histograms have N = 100, π = 0.3, and σ = 1.
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G Proofs

In this appendix, we provide detailed proofs for the key asymptotic results in Section 2. We

first start with the proof regarding convergence rates of δ̂mle
n and

∣∣∣δ̂mle
n

∣∣∣ under the asymmetric

and symmetric setting of model (2.1).

G.1 PROOF OF THEOREM 2.1

Throughout this proof, for the ease of presentation, we denote

g(x, δ) := πφ(x,−δ) + (1− π)φ(x, cδ),

for any δ ∈ Θ where {φ(x, δ)} denotes the family of Gaussian distribution with location
parameter δ and scale is fixed to be 1. Additionally, we also remind that c = π/(1 − π),
with this quantity thus being a known constant. To streamline the argument, we divide the
proof into two parts. In Section G.1.1, we provide the proof for the upper bounds of the
convergence rate of MLE. Then, in Section G.1.2, we present the proof for the lower bounds.

G.1.1 Proof for upper bounds

The proof technique for the upper bounds utilizes the strategy of comparing the convergence
rate of density estimation to that of parameter estimation in mixture models, which had been
employed successfully in the previous work (Chen, 1995; Nguyen, 2013; Ho and Nguyen, 2016;
Heinrich and Kahn, 2018).

Convergence rate of density estimation The convergence rate of density estimation in
Gaussian mixture models had been studied rigorously in the literature (Ghosal and van der
Vaart, 2001). Regarding our model (2.1), we have the following result regarding the conver-

gence rate of g(x, δ̂mle
n ) to g(x, δn) under Hellinger metric.

Proposition 3. Under the setting of model (2.1), the following holds

sup
δn∈Θ

Eδn
(
h
(
g(x, δ̂mle

n ), g(x, δn)
))

.

(
log n

n

)1/2

,

where Θ is a bounded (growing) parameter space. Here, Eδn denotes the expectation taken
with respect to product measure with mixture density of Y1, . . . , Yn under the model (2.1).

The proof of the above result follows from a standard application of Theorem 7.4 in
(van de Geer, 2000); therefore, it is omitted.

From density estimation to parameter estimation Equipped with (log n/n)1/2 rate

of density estimation in Proposition (3), to achieve the convergence rates of δ̂mle
n and

∣∣∣δ̂mle
n

∣∣∣
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under the asymmetric and symmetric setting of model (2.1), it is sufficient to demonstrate
the following result:

Lemma G.1. Given π ∈ (0, 1/2] and Θ = [−1, 1], the following holds

(a) (Asymmetric regime) When π ∈ (0, 1/2), then

inf
δ(1),δ(2)∈Θ

h
(
g(x, δ(1)), g(x, δ(2))

)
/
∣∣δ(1) − δ(2)

∣∣3 > 0.

(b) (Symmetric regime) When π = 1/2, then

inf
δ(1),δ(2)∈Θ

h
(
g(x, δ(1)), g(x, δ(2))

)
/

∣∣∣∣|δ(1)| − |δ(2)|
∣∣∣∣2 > 0.

Proof. (a) Due to the basic inequality between total variational distance and Hellinger dis-
tance h ≥ V , it suffices to prove that

inf
δ(1),δ(2)∈Θ

V
(
g(x, δ(1)), g(x, δ(2))

)
/|δ(1) − δ(2)|3 > 0. (G.1)

Assume that the conclusion of (G.1) does not hold. It implies that we can find two sequences{
δ

(1)
n

}
and

{
δ

(2)
n

}
such that V (g(x, δ

(1)
n ), g(x, δ

(2)
n ))/|δ(1)

n − δ
(2)
n |3 → 0 as n → ∞. For the

simplicity of the presentation, we only the consider the most challenging setting of sequences{
δ

(1)
n

}
and

{
δ

(2)
n

}
when δ

(1)
n → 0, δ

(2)
n → 0 as n → ∞. The proof for other possibilities

of these sequences can be argued in the similar fashion. Now, we have two distinct cases
regarding the convergence of δ

(1)
n and δ

(2)
n .

Case a.1: δ
(1)
n /δ

(2)
n 6→ 1 as n → ∞ (Here, the limit can be thought as that of some

subsequence of δ
(1)
n /δ

(2)
n . However, we replace this subsequence by the whole sequence of

δ
(1)
n /δ

(2)
n for the simplicity of the presentation). Under this case, we divide our argument into

several steps.

Step 1 - Taylor expansion Now, the following equality holds

g(x, δ
(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |3
=

π(φ(x,−δ(1)
n )− φ(x,−δ(2)

n ))

|δ(1)
n − δ(2)

n |3

+
(1− π)(φ(x, cδ

(1)
n )− φ(x, cδ

(2)
n ))

|δ(1)
n − δ(2)

n |3
.
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Invoking Taylor expansion up to the third order, we obtain that

φ(x,−δ(1)
n )− φ(x,−δ(2)

n ) =
3∑

α=1

(δ
(2)
n − δ(1)

n )α

α!

∂αφ

∂δα
(x,−δ(2)

n ) +R1(x),

φ(x, cδ(1)
n )− φ(x, cδ(2)

n ) =
3∑

α=1

cα(δ
(1)
n − δ(2)

n )α

α!

∂αφ

∂δα
(x, cδ(2)

n ) +R2(x)

=
3∑

α=1

cα(δ
(1)
n − δ(2)

n )α

α!

( 3−α∑
τ=0

(c+ 1)τ (δ
(2)
n )τ

τ !

∂α+τφ

∂δα+τ
(x,−δ(2)

n )

+R2,α(x)

)
+R2(x),

where R1(x), R2(x) are respectively the Taylor remainders up to the third order from per-

forming Taylor expansion around −δ(2)
n and cδ

(2)
n while R2,α are Taylor remainders up to the

order 3 − α from performing Taylor expansion around −δ2
n in

∂αφ

∂δα
(x, cδ

(2)
n ) as 1 ≤ α ≤ 3.

Here, the Taylor remainders R1(x) and R2(x) satisfy

max{‖R1(x)‖∞, ‖R2(x)‖∞} = O
(
|δ(1)
n − δ(2)

n |3+γ
)
, (G.2)

where γ > 0 is some positive constant. It implies that R1(x)/|δ(1)
n − δ

(2)
n |3 → 0 and

R2(x)/|δ(1)
n − δ(2)

n |3 → 0 for all x ∈ R. Similarly, ‖R2,α(x)‖∞ = O(|δ(2)
n |3−α+γ) as 1 ≤ α ≤ 3.

As δ
(1)
n /δ

(2)
n 6→ 1, we have |δ(2)

n |/|δ(1)
n − δ(2)

n | 6→ +∞. Therefore, we have |δ(2)
n |r−α+γ/|δ(1)

n −
δ

(1)
n |r−α → 0 as n→∞, which eventually leads to

(δ(1)
n − δ(2)

n )α‖R2,α(x)‖∞/|δ(1)
n − δ(2)

n |3 → 0 (G.3)

for all 1 ≤ α ≤ 3. Governed by the previous results, the following representation holds

g(x, δ
(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |3
=

π

(
3∑

α=1

(δ
(2)
n − δ(1)

n )α

α!

∂αφ

∂δα
(x,−δ(2)

n ) +R1(x)

)
|δ(1)
n − δ(2)

n |3

+

(1− π)

(
3∑

α=1

cα(δ
(1)
n − δ(2)

n )α

α!

(
3−α∑
τ=0

(c+ 1)τ (δ
(2)
n )τ

τ !

∂α+τφ

∂δα+τ
(x,−δ(2)

n ) +R2,α(x)

)
+R2(x)

)
|δ(1)
n − δ(2)

n |3

:=

3∑
α=1

An,α
∂αφ

∂δα
(x,−δ(2)

n ) +R(x)

|δ(1)
n − δ(2)

n |3
, (G.4)
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where R(x) = πR1(x) + (1 − π)
3∑

α=1

cα(δ
(1)
n − δ(2)

n )α

α!
R2,α(x) + (1 − π)R2(x) for all x ∈ R.

Invoking the bounds with Taylor remainders R1(x), R2(x), and R2,α(x) in (G.2), (G.3), we

have ‖R(x)‖∞/|δ(1)
n − δ(2)

n |3 → 0 as n→∞.

Step 2 - Non-vanishing coefficients Assume that the coefficients An,α/|δ(1)
n −δ(2)

n |3 → 0
as n→∞ for all 1 ≤ α ≤ 3. From the formulations of An,α in (G.4), we can quickly compute
that An,1 = 0 while

An,2 =
c

2
(δ(2)
n − δ(1)

n )(δ(1)
n + δ(2)

n ),

An,3 =
π(δ

(2)
n − δ(1)

n )3

3!
+ (1− π)c(c+ 1)2(δ(2)

n )2 (δ
(1)
n − δ(2)

n )

2!

+(1− π)(c+ 1)c2 (δ
(1)
n − δ(2)

n )2

2!
δ(2)
n + (1− π)c3 (δ

(1)
n − δ(2)

n )3

3!
.

As An,2/|δ(1)
n − δ

(2)
n |3 → 0, it implies that (δ

(1)
n + δ

(2)
n )/|δ(1)

n − δ
(2)
n |2 → 0, which leads to

δ
(1)
n /δ

(2)
n → −1 as n→∞. Plugging this limit into An,3/|δ(1)

n − δ(2)
n |3 → 0 yields the following

equation

8π

3!
− (1− π)c(c+ 1)2 + 2(1− π)c2(c+ 1)− 8(1− π)c3

3!
= 0,

which has only a unique solution π = 1/2, a contradiction to the assumption of asymmetric

setting, i.e., π ∈ (0, 1/2). Therefore, not all the coefficients An,α/|δ(1)
n − δ

(2)
n |3 → 0 when

n→∞ as 1 ≤ α ≤ 3.

Step 3 - Fatou’s argument Denote mn = |δ(1)
n − δ(2)

n |3/ max
1≤α≤3

|An,α|. Since not all the

coefficients An,α/|δ(1)
n − δ(2)

n |3 → 0 as 1 ≤ α ≤ 3, we have mn 6→ ∞. Therefore, we obtain
that

mn
g(x, δ

(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |3
= mn

3∑
α=1

An,α
∂αφ

∂δα
(x,−δ(2)

n ) +R(x)

|δ(1)
n − δ(2)

n |3
→

3∑
α=1

βα
∂αφ

∂δα
(x, 0),
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for all x where An,α/ max
1≤α≤3

|An,α| → βα as 1 ≤ α ≤ 3 such that at least one of βα has absolute

value to be 1. Invoking Fatou’s lemma, the following holds

0 = lim
n→∞

mnV
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

|δ(1) − δ(2)|3
≥
∫

lim inf
n→∞

mn

∣∣∣g(x, δ
(1)
n )− g(x, δ

(2)
n )
∣∣∣

|δ(1)
n − δ(2)

n |3
dx

=

∫ 3∑
α=1

βα
∂αφ

∂δα
(x, 0)dx.

The above inequality leads to
3∑

α=1

βα
∂αφ

∂δα
(x, 0) = 0 for almost surely x. Nevertheless, due

to the strong order identifiability of location Gaussian distribution Chen (1995), the above
equation implies that βα = 0 for all 1 ≤ α ≤ 3, which is a contradiction. Therefore, Case
a.1 cannot holds.

Case a.2: δ
(1)
n /δ

(2)
n → 1 as n→∞. It implies that |δ(2)

n |/|δ(1)
n − δ(2)

n | → ∞ as n→∞. As

V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)
/|δ(1)

n − δ(2)
n |3 → 0, it implies that

V
(
g(x, δ(1)

n ), g(x, δ(2)
n )
)
/|δ(1)

n − δ(2)
n |2 → 0,

as n→∞ for all x ∈ R. Similar to the Taylor expansion argument in Step 1 in Case a.1, by
means of Taylor expansion up to the second order, we obtain that

g(x, δ
(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |2
=

π(φ(x,−δ(1)
n )− φ(x,−δ(2)

n )) + (1− π)(φ(x, cδ
(1)
n )− φ(x, cδ

(2)
n ))

|δ(1)
n − δ(2)

n |2

=

π

(
2∑

α=1

(δ
(2)
n − δ(1)

n )α

α!

∂αφ

∂δα
(x,−δ(2)

n ) +R′1(x)

)
|δ(1)
n − δ(2)

n |2

+

(1− π)

(
2∑

α=1

cα(δ
(1)
n − δ(2)

n )α

α!

(
2−α∑
τ=0

(c+ 1)τ (δ
(2)
n )τ

τ !

∂α+τφ

∂δα+τ
(x,−δ(2)

n ) +R′2,α(x)

)
+R′2(x)

)
|δ(1)
n − δ(2)

n |2

=

2∑
α=1

An,α
∂αφ

∂δα
(x,−δ(2)

n ) +R′(x)

|δ(1)
n − δ(2)

n |2
→ 0,
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where ‖R′(x)‖∞ = O
(
|δ(2)
n |1+γ|δ(1)

n − δ(2)
n |
)

for some γ > 0. By means of the calculations

with An,α in Case a.1, we have

‖R′(x)‖∞
|An,2|

=

O

(∣∣∣δ(2)
n

∣∣∣1+γ ∣∣∣δ(1)
n − δ(2)

n

∣∣∣)∣∣∣δ(2)
n − δ(1)

n

∣∣∣ ∣∣∣δ(1)
n + δ

(2)
n

∣∣∣ → 0.

Now, if An,α/|δ(1)
n − δ(2)

n |2 → 0 for all 1 ≤ α ≤ 2, we have |δ(1)
n + δ

(2)
n |/|δ(1)

n − δ(2)
n | → 0, which

implies that δ
(1)
n /δ

(2)
n → −1, a contradiction to the assumption of Case a.2. According to

the argument in Step 3 in Case a.1, by denoting m′n = |δ(1)
n − δ(2)

n |2/ max
1≤α≤2

|An,α|, we have

m′n 6→ ∞. Therefore, we have

m′n
g(x, δ

(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |2
→

2∑
α=1

τα
∂αφ

∂δα
(x, 0),

for all x for some coefficients τα such that at least one of them has absolute value to be 1. By

virtue of Fatou’s lemma in Step 3 in Case a.1 with lim
n→∞

V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)
/|δ(1)

n −δ(2)
n |2,

we achieve that
2∑

α=1

τα
∂αφ

∂δα
(x, 0) = 0 for almost surely x. However, the strong identifability of

location Gaussian distribution implies that τα = 0 for all 1 ≤ α ≤ 2, which is a contradiction.
Therefore, Case a.2 cannot happen.

Combining the results from Case a.1 and Case a.2, we achieve the conclusion of (G.1).
As a consequence, the conclusion of part (a) of Lemma G.1 follows.

(b) Similar to the proof strategy of part (a), to obtain the conclusion of this result, it is
sufficient to demonstrate that

inf
δ(1),δ(2)∈δ

V
(
g(x, δ(1)), g(x, δ(2))

)
/

∣∣∣∣|δ(1)| − |δ(2)|
∣∣∣∣2 > 0. (G.5)

Assume that the conclusion of (G.5) does not hold. It implies that we can find two sequences{
δ

(1)
n

}
and

{
δ

(2)
n

}
such that

V
(
g(x, δ(1)

n ), g(x, δ(2)
n )
)
/

∣∣∣∣|δ(1)
n | − |δ(2)

n |
∣∣∣∣2 → 0

as n →∞. Similar to the proof argument of part (a), we only consider the possibility that

δ
(1)
n → 0 and δ

(2)
n → 0 as n→∞. Now, we have two different settings of δ

(1)
n and δ

(2)
n .

Case b.1: δ
(1)
n /δ

(2)
n 6→ 1 as n → ∞ and δ

(1)
n δ

(2)
n ≥ 0 for all n (Here, the limit and the

inequality can be thought as those of some subsequence of δ
(1)
n and δ

(2)
n . However, we replace
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this subsequence by the whole sequence of δ
(1)
n and δ

(2)
n for the simplicity of the presentation).

Under that setting, we have

V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

∣∣∣∣|δ(1)
n | − |δ(2)

n |
∣∣∣∣2 =

V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

|δ(1)
n − δ(2)

n |2
→ 0.

To ease the understanding, we divide our argument for Case b.1 into two separate steps.

Step 1 - Taylor expansion By means of Taylor expansion up to the second order as that
of Case a.2 in the proof of part (a), we obtain that

g(x, δ
(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |2
=

2∑
α=1

An,α
∂αφ

∂δα
(x,−δ(2)

n ) +R′(x)∣∣∣δ(1)
n − δ(2)

n

∣∣∣2 → 0,

where R′(x) is a combination of Taylor remainders such that

‖R′(x)‖∞ = O
(∣∣δ(2)

n

∣∣1+γ ∣∣δ(1)
n − δ(2)

n

∣∣) ,
for some positive constant γ and An,α are defined as in that in Case a.2 when π = 1/2. Since

δ
(1)
n /δ

(2)
n 6→ 1, we have |δ(2)

n |/|δ(1)
n − δ(2)

n | 6→ ∞. Therefore, it leads to

‖R(x)‖∞/|δ(1)
n − δ(2)

n | → 0

as n→∞.

Step 2 - Non-vanishing coefficients and Fatou’s argument Assume that An,α/|δ(1)
n −

δ
(2)
n |2 → 0 for all 1 ≤ α ≤ 2. From the formulation of An,2, we have

(δ(1)
n + δ(2)

n )/|δ(1)
n − δ(2)

n | → 0.

It implies that δ
(1)
n /δ

(2)
n → −1 as n → ∞, which is a contradiction to the condition that

δ
(1)
n δ

(2)
n ≥ 0. Therefore, not all of the coefficients of An,α/|δ(1)

n − δ(2)
n |2 go to 0. From here, by

means of the Fatou’s argument in Step 3 of Case a.1, we achieve the conclusion that Case
b.1 cannot hold.
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Case b.2 δ
(1)
n /δ

(2)
n 6→ 1 and δ

(1)
n δ

(2)
n < 0 for all n. Under that setting, we have

V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

∣∣∣∣|δ(1)
n | − |δ(2)

n |
∣∣∣∣2 =

V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

∣∣∣δ(1)
n + δ

(2)
n

∣∣∣2 → 0.

We also divide the argument of Case b.2 into two main key steps.

Step 1 - Taylor expansion By means of Taylor expansion up to the second order, we
obtain

g(x, δ
(1)
n )− g(x, δ

(2)
n )

|δ(1)
n + δ

(2)
n |2

=

1

2
(φ(x,−δ(1)

n )− φ(x, δ
(2)
n )) +

1

2
(φ(x, δ

(1)
n )− φ(x,−δ(2)

n ))

|δ(1)
n + δ

(2)
n |2

=

1

2

(
2∑

α=1

(−δ(2)
n − δ(1)

n )α

α!

∂αφ

∂δα
(x, δ

(2)
n ) +R′′1(x)

)
|δ(1)
n + δ

(2)
n |2

+

1

2

(
2∑

α=1

(δ
(1)
n + δ

(2)
n )α

α!

(
2−α∑
τ=0

2τ (−δ(2)
n )τ

τ !

∂α+τφ

∂δα+τ
(x, δ

(2)
n ) +R′′2,α(x)

)
+R′′2(x)

)
|δ(1)
n + δ

(2)
n |2

:=

2∑
α=1

Bn,α
∂αφ

∂δα
(x, δ

(2)
n ) +R′′(x)

|δ(1)
n + δ

(2)
n |2

→ 0,

where R′′(x) is the combination of Taylor remainders such that

‖R′′(x)‖∞ = O
(
|δ(2)
n |1+γ|δ(1)

n + δ(2)
n |
)
,

which implies that ‖R′′(x)‖∞/|δ(1)
n + δ

(2)
n |2 → 0 as n→∞.

Step 2 - Non-vanishing coefficients and Fatou’s argument Assume that Bn,α/|δ(1)
n +

δ
(2)
n |2 → 0 for all 1 ≤ α ≤ 2. Direct computation with Bn,2 implies that

(δ(1)
n − δ(2)

n )/|δ(1)
n + δ(2)

n | → 0

as n → ∞. It leads to δ
(1)
n /δ

(2)
n → 1, which is a contradiction to the assumption that

δ
(1)
n δ

(2)
n < 0. From here, the Fatou’s argument in Step 3 of Case a.1, we also obtain the

conclusion that Case b.2 does not hold.
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Case b.3 δ
(1)
n /δ

(2)
n → 1 as n → ∞. This implies that δ

(1)
n δ

(2)
n > 0 when n is sufficiently

large. From here, the proof argument of this case is similar to that of Case a.2 in part (a),
which also yields the contradiction.

As a consequence, we achieve the conclusion of part (b) of the lemma.

G.1.2 Proof for lower bounds

(a) Based on the proof technique of Theorem 3.2 in Heinrich and Kahn (2018), to achieve
the conclusion with the lower bound of part (a) of the theorem, it is sufficient to demonstrate
that

inf
δ(1),δ(2)∈Θ1,n

h
(
g(x, δ(1)), g(x, δ(2))

)
/

∣∣∣∣δ(1) − δ(2)

∣∣∣∣r = 0 (G.6)

for any 1 ≤ r < 3. We divide the proof argument for the above result into several key steps.

Step 1 - Constructing sequences In fact, we construct two sequences
{
δ

(1)
n

}
and

{
δ

(2)
n

}
such that δ

(1)
n = −δ(2)

n for all n ≥ 1 and δ
(1)
n → 0 as n→∞. For any fixed r < 3, by means of

Taylor expansion up to the second order as that in Step 1 of Case a.1 in part (a) of Theorem
2.1 (cf. Equation (G.4)), the following holds

g(x, δ(1)
n )− g(x, δ(2)

n ) =
2∑

α=1

An,α
∂αφ

∂δα
(x,−δ(2)

n ) +R(x),

where R(x) is a combination of Taylor remainders where its detail formulation is postponed
to later discussion. Additionally, the formulations of An,α satisfy An,1 = 0 and

An,2 =
c

2
(δ(2)
n − δ(1)

n )(δ(1)
n + δ(2)

n ) = 0.

Step 2 - Hellinger bound and Taylor remainders Equipped with the above results,
we have

h2
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

∣∣∣δ(1)
n − δ(2)

n

∣∣∣2r =

∫ (
g(x, δ

(1)
n )− g(x, δ

(2)
n )
)2

2r
∣∣∣δ(2)
n

∣∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2dx

=

∫
(R(x))2

2r
∣∣∣δ(2)
n

∣∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2dx.
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To validate that the above term goes to 0, we will need to investigate the concrete formulation
of R(x). In particular, the formulation of R(x) is

R(x) = πR1(x) + (1− π)
2∑

α=1

cα(δ
(1)
n − δ(2)

n )α

α!
R2,α(x) + (1− π)R2(x),

where the formulations of Taylor remainders R1(x), R2,α(x), and R2(x) are as follows

R1(x) =
3
(
δ

(2)
n − δ(1)

n

)3

3!

1∫
0

(1− t)2∂
3φ

∂δ3

(
x,−δ(2)

n + t
(
δ(2)
n − δ(1)

n

))
dt,

R2(x) =
3c3
(
δ

(1)
n − δ(2)

n

)3

3!

1∫
0

(1− t)2∂
3φ

∂δ3

(
x, cδ(2)

n + t
(
cδ(1)
n − cδ(2)

n

))
dt,

R2,α(x) =
(3− α)(c+ 1)3−α

(
δ

(2)
n

)3−α

(3− α)!α!

1∫
0

(1− t)2−α∂
3φ

∂δ3

(
x,−δ(2)

n + t(c+ 1)δ(2)
n

)
dt

for any 1 ≤ α ≤ 2.

Step 3 - Taylor remainders control Now, Holder’s inequality leads to

R2
1(x) ≤

(
δ

(2)
n − δ(1)

n

)6

4

1∫
0

(1− t)4

(
∂3φ

∂δ3

(
x,−δ(2)

n + t
(
δ(2)
n − δ(1)

n

)))2

dt.

Due to the formulation of location Gaussian kernel with variance 1, we can check that

sup
t∈[0,1]

∫ (
∂3φ

∂δ3

(
x,−δ(2)

n + t
(
δ

(2)
n − δ(1)

n

)))2

φ(x,−δ(2)
n )

dx <∞.

Equipped with the above results, the following holds∫
R2

1(x)

2r−1

∣∣∣δ(2)
n

∣∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2dx ≤
∫

R2
1(x)

2r−1

∣∣∣δ(2)
n

∣∣∣2r πφ(x,−δ(2)
n )

dx

.
∣∣δ(2)
n

∣∣6−2r → 0 (G.7)
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as n→∞ where the first inequality is due to the inequality

(√
g(x, δ

(1)
n ) +

√
g(x, δ

(2)
n )

)2

≥

πφ(x,−δ(2)
n ). By means of the similar argument, we also obtain that∫

R2
2(x)

2r−1

∣∣∣δ(2)
n

∣∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2dx ≤
∫

R2
2(x)

2r−1

∣∣∣δ(2)
n

∣∣∣2r (1− π)φ(x, cδ
(2)
n )

dx

.
∣∣δ(2)
n

∣∣6−2r → 0,∫ (
δ

(1)
n − δ(2)

n

)α
R2

2,α(x)

2r−1

∣∣∣δ(2)
n

∣∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2dx ≤
∫ (

δ
(1)
n − δ(2)

n

)α
R2

2,α(x)

2r−1

∣∣∣δ(2)
n

∣∣∣2r πφ(x,−δ(2)
n )

dx

.
∣∣δ(2)
n

∣∣6−2r → 0. (G.8)

Invoking Cauchy-Schwarz’s inequality, the following inequality holds

R2(x) ≤ 3

(πR1(x))2 +

(
(1− π)

2∑
α=1

cα(δ
(1)
n − δ(2)

n )α

α!
R2,α(x)

)2

+ ((1− π)R2(x))2

 .

(G.9)

Combining the results from (G.7), (G.8), and (G.9), we achieve that∫
R2(x)/

(
2r−1

∣∣δ(2)
n

∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2
)
dx→ 0.

As a consequence, we achieve the conclusion with the lower bound of part (a) of the theorem.
(b) Similar to the proof argument of part (a), to achieve the conclusion of the lower

bound of part (b), it is sufficient to demonstrate that

inf
δ(1),δ(2)∈Θ2,n

h
(
g(x, δ(1)), g(x, δ(2))

)
/
∣∣∣∣δ(1)

∣∣− ∣∣δ(2)
∣∣∣∣r = 0 (G.10)

for any 1 ≤ r < 2. In particular, we choose two sequences
{
δ

(1)

n

}
and

{
δ

(2)

n

}
such that

δ
(1)

n = 2δ
(2)

n for all n ≥ 1 and δ
(1)

n → 0 as n→∞. For any r < 2, invoking Taylor expansion
up to the first order as that of Case b.1 in the proof of Theorem 2.1, we have

g(x, δ
(1)

n )− g(x, δ
(2)

n ) = R(x),
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where the formulation of R(x) is

R(x) =
1

2
R1(x) +

1

2

(
δ

(1)

n − δ
(2)

n

)
R2,1(x) +

1

2
R2(x).

Here, the detail formulations of Taylor remainders R1(x), R2,1(x), and R2(x) are

R1(x) =
2
(
δ

(2)

n − δ
(1)

n

)2

2!

1∫
0

(1− t)∂
2φ

∂δ2

(
x,−δ(2)

n + t
(
δ

(2)

n − δ
(1)

n

))
dt,

R2(x) =
2
(
δ

(1)

n − δ
(2)

n

)2

2!

1∫
0

(1− t)∂
2φ

∂δ2

(
x, δ

(2)

n + t
(
δ

(1)

n − δ
(2)

n

))
dt,

R2,1(x) = 2δ
(2)

n

1∫
0

∂2φ

∂δ2

(
x,−δ(2)

n + 2tδ
(2)

n

)
dt.

With the choice that δ
(1)

n = 2δ
(2)

n → 0 and the same argument as Step 3 in part (a), we can
argue that ∫

R
2
(x)
/(

2r−1
∣∣∣δ(2)

n

∣∣∣2r (√g(x, δ
(1)

n ) +

√
g(x, δ

(2)

n

)2
)
→ 0

as n→∞. Therefore, for any 1 ≤ r < 2, we achieve

h
(
g(x, δ

(1)

n ), g(x, δ
(2)

n )
)
/

∣∣∣∣ ∣∣∣δ(1)

n

∣∣∣− ∣∣∣δ(2)

n

∣∣∣∣∣∣∣r → 0.

As a consequence, we achieve the conclusion of part (b) of the theorem.

G.2 PROOF OF THEOREM 2.2

For the sake of presentation, we denote v := σ2 and g(x, δ, v) := πf(x,−δ, v) + (1 −
π)f(x, cδ, v) for all δ ∈ Θ, σ ∈ Ω where f(x, δ, v) is the density of location-scale Gaus-
sian distribution with location δ and scale v. For the simplicity of the proof argument, we
only focus on the proof for the upper bounds of the theorem. The proof for the lower bounds
can be argued similarly as that of the lower bounds in Theorem 2.1 in Section G.1.2.

(a) By means of the proof argument with the upper bound of Theorem 2.1, in order to
achieve the upper bound of part (a), it is sufficient to demonstrate that

inf
δ(1),δ(2)∈Θ
v(1),v(2)∈Ω

V
(
g(x, δ(1), v(1)), g(x, δ(2), v(2))

)
|δ(1) − δ(2)|3 + |v(1) − v(2)|3/2

> 0, (G.11)
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where Θ = [−1, 1] and Ω is a bounded set containing σ. Assume that the above inequality

does not hold. It implies that we can find sequences
{
δ

(1)
n

}
,
{
δ

(2)
n

}
,
{
v

(1)
n

}
, and

{
v

(2)
n

}
such

that

V
(
g(x, δ

(1)
n , v

(1)
n ), g(x, δ

(2)
n , v

(2)
n )
)

|δ(1)
n − δ(2)

n |3 + |v(1)
n − v(2)

n |3/2
→ 0

as n → ∞. To simplify the presentation, we only consider the most challenging setting
δ

(1)
n → 0, δ

(2)
n → 0, v

(1)
n → v0, v

(2)
n → v0 for some v0 ∈ Ω. Additionally, we denote

Dn = |δ(1)
n − δ(2)

n |3 + |v(1)
n − v(2)

n |3/2.

Now, we consider the following settings with δ
(1)
n and δ

(2)
n .

Case a.1: δ
(1)
n /δ

(2)
n 6→ 1 as n → ∞. Similar to the structure of the proof of Theorem 2.1,

we also divide the proof argument of this case into two key steps.

Step 1 - Taylor expansion Under this setting, by means of Taylor expansion up to the
third order, we obtain that

g(x, δ
(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn

(G.12)

=

π

(
f(x,−δ(1)

n , v
(1)
n )− f(x,−δ(2)

n , v
(2)
n )

)
+ (1− π)

(
f(x, cδ

(1)
n , v

(1)
n )− f(x, cδ

(2)
n , v

(2)
n )

)
Dn

=

π

( ∑
|α|≤3

(δ
(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

∂|α|f

∂δα1∂vα2
(x,−δ(2)

n , v
(2)
n ) +R1(x)

)
Dn

+

(1− π)

( ∑
|α|≤3

cα1(δ
(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

∂|α|f

∂δα1∂vα2
(x, cδ

(2)
n , v

(2)
n ) +R2(x)

)
Dn

=

π

( ∑
|α|≤3

1

2α2

(δ
(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

∂α1+2α2f

∂δα1+2α2
(x,−δ(2)

n , v
(2)
n ) +R1(x)

)
Dn

+

(1− π)

( ∑
|α|≤3

1

2α2

cα1(δ
(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

∂α1+2α2f

∂δα1+2α2
(x, cδ

(2)
n , v

(2)
n ) +R2(x)

)
Dn

,
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where the last equality is due to the PDE structure of location-scale Gaussian distribution,
which is given by

∂2f

∂δ2
(x, δ, σ) = 2

∂f

∂σ2
(x, δ, σ).

Additionally, R1(x) and R2(x) are Taylor remainders that satisfy the following inequality

max{‖R1(x)‖∞, ‖R2(x)‖∞} = O
(
|δ(1)
n − δ(2)

n |3+γ + |v(1)
n − v(2)

n |3+γ
)

for some γ > 0. It implies that R1(x)/Dn → 0 and R2(x)/Dn → 0 for all x as n→∞. Now,
by means of Taylor expansion up to the third order, we further have

∂α1+2α2f

∂δα1+2α2
(x, cδ(2)

n , v(2)
n ) =

3−|α|∑
τ=0

(c+ 1)τ (δ
(2)
n )τ

τ !

∂α1+2α2+τf

∂δα1+2α2+τ
(x,−δ(2)

n , v(2)
n ) +R2,α(x)(G.13)

for each α = (α1, α2) such that 1 ≤ |α| ≤ 3. Here, R2,α(x) is a Taylor remainder that

satisfies ‖R2,α(x)‖∞ = O
(
|δ(2)
n |3−|α|+γ

)
for all α. By plugging equations (G.13) into (G.12),

the following holds

g(x, δ
(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn

=

π

( ∑
|α|≤3

1

2α2

(δ
(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

∂α1+2α2f

∂δα1+2α2
(x,−δ(2)

n , v
(2)
n )

)
Dn

+

(1− π)

( ∑
|α|≤3

3−|α|∑
τ=0

1

2α2

cα1(c+ 1)τ (δ
(2)
n )τ (δ

(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

τ !α1!α2!

∂α1+2α2f

∂δα1+2α2
(x,−δ(2)

n , v
(2)
n )

Dn

+

πR1(x) + (1− π)R2(x) +
∑
|α|≤3

1

2α2

cα1(δ
(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!
R2,α(x)

Dn

=

6∑
l=1

An,l
∂lf

∂δl
(x,−δ(2)

n , v
(2)
n ) +R(x)

Dn

,
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where the detail formulations of An,l and R(x) are as follows

An,l = π
∑
α1,α2

1

2α2

(δ
(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

+(1− π)
∑

α1,α2,τ

1

2α2

cα1(c+ 1)τ (δ
(2)
n )τ (δ

(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

τ !α1!α2!
,

R(x) = πR1(x) + (1− π)R2(x) +
∑
|α|≤3

1

2α2

cα1(δ
(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!
R2,α(x)

for any 1 ≤ l ≤ 6 and x ∈ R. Here, the ranges of α1, α2 in the first sum of An,l satisfy
α1 + 2α2 = l, 1 ≤ |α| ≤ 3 while the ranges of α1, α2, τ in the second sum of An,l satisfy

α1 +2α2 +τ = l, 0 ≤ τ ≤ 3−|α|, and 1 ≤ |α| ≤ 3. According to the hypothesis δ
(1)
n /δ

(2)
n 6→ 1,

we have

|δ(2)
n |/|δ(1)

n − δ(2)
n | 6→ ∞.

Therefore, we have

|δ(1)
n − δ(2)

n |α1|v(1)
n − v(2)

n |α2‖R2,α(x)‖∞
Dn

=
O
(
|δ(1)
n − δ(2)

n |α1|v(1)
n − v(2)

n |α2|δ(2)
n |3−|α|+γ

)
Dn

→ 0.

As a consequence, we have ‖R(x)‖∞/Dn → 0 as n→∞.

Step 2 - Non-vanishing coefficients and Fatou’s argument Assume that all the
coefficients An,l/Dn → 0 for all 1 ≤ l ≤ 6 as n→∞. We denote the following key term

Mn := max
{
|δ(1)
n − δ(2)

n |, |v(1)
n − v(2)

n |1/2
}
.

As |δ(2)
n |/|δ(1)

n − δ
(2)
n | 6→ ∞, we also have |δ(2)

n |/Mn 6→ ∞. Now, we denote δ
(2)
n /Mn → x,

(δ
(2)
n − δ

(1)
n )/Mn → y, and (v

(1)
n − v

(2)
n )/M2

n → z as n → ∞. From the definition of Mn,
at least one among y and z is different from 0. By dividing both the numerator and the

denominator of An,l/Dn by M
l

n as 1 ≤ l ≤ 3, as n → ∞, we have the following system of
polynomial equations

cy2 + z − 2cxy = 0,

π(1− 2π)

3!(1− π)2
y3 +

1

2
xz +

c2

2
xy2 − π

2(1− π)2
x2y = 0.

The above system of polynomial equations leads to π(1− 2π)y(y2 − 3xy + 3x2) = 0, which
only holds when y = 0. Therefore, it leads to z = 0, which is a contradiction. It implies that

68



not all the coefficients An,l/Dn → 0 as n→∞. Denote mn = Dn/ max
1≤l≤6

|An,l|. According to

the previous result, we have mn 6→ ∞. Now, we have that

mn
g(x, δ

(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn

→
6∑
l=1

τl
∂lf

∂δl
(x, 0, v0)

for some coefficients τl such that not all of them are 0. Similar to the proof argument of

Theorem 2.1, by invoking Fatou’s lemma with V
(
g(x, δ

(1)
n , v

(1)
n ), g(x, δ

(2)
n , v

(2)
n )
)
/Dn → 0,

the following equation holds

6∑
l=1

τl
∂lf

∂δl
(x, 0, v0) = 0

for almost surely x. However, due to the linear independence of

{
∂lf

∂δl
(x, 0, v0)

}
, we have

τl = 0 for all 1 ≤ l ≤ 6, which is a contradiction. Therefore, Case a.1 does not hold.

Case a.2: δ
(1)
n /δ

(2)
n → 1 as n→∞. It implies that |δ(2)

n |/|δ(1)
n − δ(2)

n | → ∞. Similar to Case
a.2 in the proof of Theorem 2.1, the main challenge with that setting is that R(x)/Dn does
not converge to 0; therefore, we cannot hinge upon the previous argument in Case a.1 to argue
the contradiction with this case. To be able to deal with that problem, we will demonstrate
two key properties under that setting: max

1≤l≤6
{|An,l|} /Dn 6→ 0 and ‖R(x)‖∞/ max

1≤l≤6
|An,l| → 0.

Indeed, we have the following possibilities regarding δ
(1)
n , δ

(2)
n , v

(1)
n , and v

(2)
n .

Case a.2.1: |v(1)
n − v(2)

n |/
{
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n |
}
→∞. Assume by the contrary that the

following term max
1≤l≤6

{|An,l|} /Dn → 0. From the formulation of An,2, we have

|An,2| =
1

2

∣∣∣∣(v(1)
n − v(2)

n )− c(δ(2)
n − δ(1)

n )(δ(2)
n + δ(1)

n )

∣∣∣∣ & |v(1)
n − v(2)

n |,

as n is sufficiently large due to the assumption of Case a.2.1. Since An,2/Dn → 0, it implies

that (v
(1)
n − v

(2)
n )/Dn → 0. Therefore, it leads to (δ

(1)
n − δ

(2)
n )(δ

(2)
n + δ

(1)
n )/Dn → 0. As

|δ(2)
n |/|δ(1)

n − δ(2)
n | → ∞, the previous limit implies that |δ(1)

n − δ(2)
n |2/Dn → 0. These results

mean that

1 =
|v(1)
n − v(2)

n |3/2 + |δ(1)
n − δ(2)

n |3

Dn

→ 0,
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which is a contradiction. Therefore, we have max
1≤l≤6

{|An,l|} /Dn 6→ 0. Now, for any 1 ≤ |α| ≤
3, as n is sufficiently large, we have

|δ(1)
n − δ(2)

n |α1|v(1)
n − v(2)

n |α2‖R2,α(x)‖∞
max
1≤l≤6

{|An,l|}
≤ O(|δ(1)

n − δ(2)
n |α1|v(1)

n − v(2)
n |α2 |δ(2)

n |3−|α|+γ)
|v(1)
n − v(2)

n |
→ 0.

Hence, we achieve that ‖R(x)‖∞/ max
1≤l≤6

{|An,l|} → 0 for all x ∈ R.

Case a.2.2: |v(1)
n − v(2)

n |/
{
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n |
}
→ c 6= c. Under that assumption, we

have

|An,2| =
1

2

∣∣∣∣(v(1)
n − v(2)

n )− c(δ(2)
n − δ(1)

n )(δ(2)
n + δ(1)

n )

∣∣∣∣ & |δ(1)
n − δ(2)

n ||δ(1)
n + δ(2)

n |

when n is sufficiently large. If we have max
1≤l≤6

{|An,l|} /Dn → 0, then |An,2| /Dn leads to both

(v
(1)
n − v(2)

n )/Dn → 0 and
(
δ

(1)
n − δ(2)

n

)(
δ

(1)
n + δ

(2)
n

)
/Dn → 0, which does not hold according

to the argument of Case a.2.1. Therefore, max
1≤l≤6

{|An,l|} /Dn 6→ 0. On the other hand, for

any 1 ≤ |α| ≤ 3, as n is sufficiently large, we have

|δ(1)
n − δ(2)

n |α1|v(1)
n − v(2)

n |α2‖R2,α(x)‖∞
max
1≤l≤6

{|An,l|}
≤

O
(
|δ(1)
n − δ(2)

n |α1|v(1)
n − v(2)

n |α2|δ(2)
n |3−|α|+γ

)
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n |

=
O
(
|δ(1)
n − δ(2)

n ||α||δ(2)
n |3−α1+γ

)
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n |

→ 0.

Hence, we achieve that ‖R(x)‖∞/ max
1≤l≤6

{|An,l|} → 0 for all x ∈ R.

Case a.2.3: |v(1)
n − v

(2)
n |/

{
|δ(1)
n − δ

(2)
n ||δ(1)

n + δ
(2)
n |
}
→ c. Without loss of generality, we

assume that (v
(1)
n − v(2)

n )/(δ
(1)
n − δ(2)

n )(δ
(1)
n + δ

(2)
n ) → c as the argument when this ratio goes

to −c is similar. Under this assumption, we have

|An,3|
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n ||δ(2)

n |
→
∣∣∣∣ c2 − (1− π)c(c+ 1)2

4

∣∣∣∣ > 0.

Therefore, as n is sufficiently large, we have |An,3| & |δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n ||δ(2)

n |. If we have

max
1≤l≤6

{|An,l|} /Dn → 0, then |An,3| /Dn → 0 leads to |δ(1)
n − δ

(2)
n ||δ(1)

n + δ
(2)
n ||δ(2)

n |/Dn → 0.
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Therefore, the following holds

|v(1)
n − v(2)

n |3/2/
{
|δ(1)
n − δ(2)

n ||δ(1)
n + δ(2)

n ||δ(2)
n |
}
→∞,

which means |v(1)
n − v(2)

n |/|δ(2)
n |2 → ∞ — a contradiction to the assumption of Case a.2.3.

Hence, max
1≤l≤6

{|An,l|} /Dn 6→ 0. On the other hand, for any 1 ≤ |α| ≤ 3, as n is sufficiently

large, we have

|δ(1)
n − δ(2)

n |α1|v(1)
n − v(2)

n |α2‖R2,α(x)‖∞
max
1≤l≤6

{|An,l|}
≤

O
(
|δ(1)
n − δ(2)

n |α1|v(1)
n − v(2)

n |α2|δ(2)
n |3−|α|+γ

)
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n ||δ(2)

n |

=
O
(
|δ(1)
n − δ(2)

n ||α||δ(2)
n |3−α1+γ

)
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n ||δ(2)

n |
→ 0.

Thus, we obtain that ‖R(x)‖∞/ max
1≤l≤6

{|An,l|} → 0 for all x ∈ R.

Governed by the results from Case a.2.1, Case a.2.2, and Case a.2.3, we finally achieve
that max

1≤l≤6
{|An,l|} /Dn 6→ 0 and ‖R(x)‖∞/ max

1≤l≤6
|An,l| → 0. Denote m′n = Dn/ max

1≤l≤6
{|An,l|}.

Then, we will have m′n 6→ ∞. Thus, the following limit holds

m′n
g(x, δ

(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn

→
6∑
l=1

τ ′l
∂lf

∂δl
(x, 0, v0),

for some coefficients τ ′l such that not all of them are 0. By means of Fatou’s lemma with the

ratio V
(
g(x, δ

(1)
n , v

(1)
n ), g(x, δ

(2)
n , v

(2)
n )
)
/Dn → 0, we obtain that

6∑
l=1

τ ′l
∂lf

∂δl
(x, 0, v0) = 0.

However, due to the linear independence of

{
∂lf

∂δl
(x, 0, v0)

}
, we will have τ ′l = 0 for all

1 ≤ l ≤ 6, which is a contradiction. Therefore, Case a.2 does not hold. As a consequence,
we achieve the conclusion with the upper bound of part (a) of the theorem.

(b) Similar to the proof argument of part (a), it is sufficient to demonstrate that

inf
δ(1),δ(2)∈Θ
v(1),v(2)∈Ω

V
(
g(x, δ(1), v(1)), g(x, δ(2), v(2))

)∣∣∣∣|δ(1)| − |δ(2)|
∣∣∣∣4 + |v(1) − v(2)|2

> 0,

where Θ = [−1, 1] and Ω is a bounded set containing σ. Assume that the above inequality
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does not hold. It implies that we can find sequences
{
δ

(1)
n

}
,
{
δ

(2)
n

}
,
{
v

(1)
n

}
, and

{
v

(2)
n

}
such

that

V
(
g(x, δ

(1)
n , v

(1)
n ), g(x, δ

(2)
n , v

(2)
n )
)

∣∣∣∣|δ(1)
n | − |δ(2)

n |
∣∣∣∣4 + |v(1)

n − v(2)
n |2

→ 0

as n → ∞. Similar the proof argument of part (a), we only consider the most challenging

setting δ
(1)
n → 0, δ

(2)
n → 0, v

(1)
n → v0, v

(2)
n → v0 for some v0 ∈ Ω. For the convenience of

presentation, we denote

Dn =

∣∣∣∣|δ(1)
n | − |δ(2)

n |
∣∣∣∣4 + |v(1)

n − v(2)
n |2.

Now, we have three settings with δ
(1)
n and δ

(2)
n in the proof of part (b).

Case b.1: δ
(1)
n /δ

(2)
n 6→ 1 as n→∞ and δ

(1)
n δ

(2)
n ≥ 0 for all n. Under this case, we have

Dn = |δ(1)
n − δ(2)

n |4 + |v(1)
n − v(2)

n |2.

To facilitate the proof argument of this case, we also divide it into two key steps.

Step 1 - Taylor expansion Using the similar argument as that of part (a), by means of
Taylor expansion up to the fourth order, we get the following representation

g(x, δ
(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn

=

8∑
l=1

Bn,l
∂lf

∂δl
(x,−δ(2)

n , v
(2)
n ) +R(x)

Dn

,

where the formulations of Bn,l and R(x) are as follows

Bn,l =
1

2

∑
α1,α2

1

2α2

(δ
(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

+
1

2

∑
α1,α2,τ

1

2α2

2τ (δ
(2)
n )τ (δ

(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

τ !α1!α2!
,

R(x) =
1

2
R1(x) +

1

2
R2(x) +

∑
|α|≤4

1

2α2

(δ
(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!
R2,α(x).

Here, the ranges of α1, α2 in the first sum of Bn,l satisfy α1 + 2α2 = l, 1 ≤ |α| ≤ 4 while
the ranges of α1, α2, τ in the second sum of Bn,l satisfy α1 + 2α2 + τ = l, 0 ≤ τ ≤ 4 − |α|,
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and 1 ≤ |α| ≤ 4. Additionally, R1(x) is a Taylor remainder from expanding f(x,−δ(1)
n , v

(1)
n )

around f(x,−δ(2)
n , v

(2)
n ) up to the fourth order, R2(x) is Taylor remainder from expanding

f(x, cδ
(1)
n , v

(1)
n ) around f(x, cδ

(2)
n , v

(2)
n ) up to the fourth order, and R2,α(x) is Taylor remainder

from expanding
∂α1+2α2f

∂δα1+2α2
(x, cδ

(2)
n , v

(2)
n ) around

∂α1+2α2f

∂δα1+2α2
(x,−δ(2)

n , v
(2)
n ) up to the order 4−|α|.

Similar to the argument of Case a.1, the assumption of Case b.1 is sufficient to guarantee
that R(x)/Dn → 0.

Step 2 - Non-vanishing coefficients and Fatou’s argument Assume that all the
coefficients Bn,l/Dn → 0 for all 1 ≤ l ≤ 8 as n→∞. Remind from part (a) that we denote

Mn := max
{
|δ(1)
n − δ(2)

n |, |v(1)
n − v(2)

n |1/2
}
.

Additionally, we also denote δ
(2)
n /Mn → x, (δ

(2)
n − δ(1)

n )/Mn → y, and (v
(1)
n − v(2)

n )/M
2

n → z
as n → ∞ where at least one from y and z is different from 0. Due to the assumption
that δ

(1)
n δ

(2)
n ≥ 0, we have x(x − y) ≥ 0. Now, by dividing both the numerator and the

denominator of Bn,l/Dn by M
l

n as 1 ≤ l ≤ 4, as n → ∞, we have the following system of
polynomial equations

y2 + z − 2xy = 0,

y4

4!
+
y2z

4
+
z2

8
− xyz

2
+
x2z

2
− xy3

6
+
x2y2

2
− 2x3y

3
= 0.

When x = 0, the above system of polynomial equations leads to y = z = 0, which is a
contradiction with the assumption that at least one of y, z is different from 0. When x 6= 0,
the above system of polynomial equations leads to y3 − 4xy2 + 6x2y − 4x3 = 0, which leads
to y = 2x — a contradiction to the condition x(x− y) ≥ 0 and x 6= 0. Therefore, not all of
the coefficients Bn,l/Dn → 0 as n→∞. From here, using the same proof argument as that
of Case a.1 in part (a), we achieve the conclusion that Case b.1 cannot hold.

Case b.2: δ
(1)
n /δ

(2)
n 6→ 1 as n→∞ and δ

(1)
n δ

(2)
n < 0 for all n. Under this case, we have

Dn = |δ(1)
n + δ(2)

n |4 + |v(1)
n − v(2)

n |2.
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By means of Taylor expansion up to the fourth order, we obtain the following representation

g(x, δ
(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn

=

1

2
(f(x,−δ(1)

n , v
(1)
n )− f(x, δ

(2)
n , v

(2)
n )) +

1

2
(f(x, δ

(1)
n , v

(1)
n )− f(x,−δ(2)

n , v
(2)
n ))

Dn

=

8∑
α=1

Cn,l
∂lf

∂δl
(x, δ

(2)
n , v

(2)
n ) + R̃(x)

Dn

,

where the formulations of Cn,l and R1(x) are as follows

Cn,l =
1

2

∑
α1,α2

1

2α2

(−δ(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

+
1

2

∑
α1,α2,τ

1

2α2

2τ (−δ(2)
n )τ (δ

(1)
n + δ

(2)
n )α1(v

(1)
n − v(2)

n )α2

τ !α1!α2!
,

R̃(x) =
1

2
R̃1(x) +

1

2
R̃2(x) +

∑
|α|≤4

1

2α2

cα1(δ
(1)
n + δ

(2)
n )α1(v

(1)
n − v(2)

n )α2

α1!α2!
R̃2,α(x).

Here, the ranges of α1, α2 in the first sum of Cn,l satisfy α1 + 2α2 = l, 1 ≤ |α| ≤ 4 while
the ranges of α1, α2, τ in the second sum of Cn,l satisfy α1 + 2α2 + τ = l, 0 ≤ τ ≤ 4 − |α|,
and 1 ≤ |α| ≤ 4. Additionally, R̃1(x) is a Taylor remainder from expanding f(x,−δ(1)

n , v
(1)
n )

around f(x, δ
(2)
n , v

(2)
n ) up to the fourth order, R̃2(x) is a Taylor remainder from expanding

f(x, δ
(1)
n , v

(1)
n ) around f(x,−δ(2)

n , v
(2)
n ) up to the fourth order, and R̃2,α(x) is a Taylor remain-

der from expanding
∂α1+2α2f

∂δα1+2α2
(x,−δ(2)

n , v
(2)
n ) around

∂α1+2α2f

∂δα1+2α2
(x, δ

(2)
n , v

(2)
n ) up to the order

4−|α|. Due to the assumption of Case b.2, we can check that ‖R̃(x)‖∞/Dn → 0 as n→∞.
Assume that all the coefficients Cn,l/Dn → 0 for all 1 ≤ l ≤ 8 as n→∞. We denote

M̃n := max
{
|δ(1)
n + δ(2)

n |, |v(1)
n − v(2)

n |1/2
}
.

From the definition of M̃n, we can denote δ
(2)
n /M̃n → x1, (δ

(2)
n + δ

(1)
n )/M̃n → y1, and (v

(1)
n −

v
(2)
n )/M̃2

n → z1 as n→∞ where at least one from y1 and z1 is different from 0. Due to the

assumption that δ
(1)
n δ

(2)
n < 0, we have x1(y1−x1) ≤ 0. Now, by dividing both the numerator

and the denominator of Cn,l/Dn by M̃4
n as 1 ≤ l ≤ 4, as n → ∞, we have the following
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system of polynomial equations

y2
1 + z1 − 2x1y1 = 0,

y4
1

4!
+
y2

1z1

4
+
z2

1

8
− x1y1z1

2
+
x2

1z1

2
− x1y

3
1

6
+
x2

1y
2
1

2
− 2x3

1y1

3
= 0.

If x1 = 0, the above system leads to y1 = z1 = 0, which is a contradiction with the
assumption of y1, z1. As x1 6= 0, the above system of polynomial equations leads to y1 = 2x1

— a contradiction to the condition x1(y1 − x1) ≤ 0 and x1 6= 0. Therefore, not all of the
coefficients Cn,l/Dn → 0 as n → ∞. From here, using the same proof argument as that of
Case a.1 in part (a), we achieve the conclusion that Case b.2 cannot hold.

Case b.3: δ
(1)
n /δ

(2)
n → 1 as n → ∞. Under this assumption, we have δ

(1)
n δ

(2)
n > 0 as n is

sufficiently large. Without loss of generality, we assume that δ
(1)
n δ

(2)
n > 0 for all n. Therefore,

we have

Dn = |δ(1)
n − δ(2)

n |4 + |v(1)
n − v(2)

n |2.

Remind from case b.1 that we have the following representation

g(x, δ
(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn

=

8∑
l=1

Bn,l
∂lf

∂δl
(x,−δ(2)

n , v
(2)
n ) +R(x)

Dn

.

The main challenge in Case b.3 is that ‖R(x)‖∞/Dn 6→ 0 as n → ∞. To avoid this issue,
we will utilize the technique in Case a.2 of the proof of Theorem 2.2. In particular, we
will demonstrate two key properties: ‖R(x)‖∞/ max

1≤l≤8
|Bn,l| → 0 and max

1≤l≤8
|Bn,l|/Dn 6→ 0 as

n→∞.
Under the settings of Case a.2.1 and Case a.2.2 in the proof of part (a), with the same

argument as that in these cases, we have |Bn,2|/Dn 6→ 0 and ‖R(x)‖∞/|Bn,2| → 0. Therefore,
we have R(x)/ max

1≤l≤8
|Bn,l| → 0 and max

1≤l≤8
|Bn,l|/Dn 6→ 0 under the settings of Case a.2.1 and

Case a.2.2. It implies that we only need to focus on the setting that

|v(1)
n − v(2)

n |/
{
|δ(1)
n − δ(2)

n ||δ(1)
n + δ(2)

n |
}
→ 1.

Without loss of generality, we assume that (v
(1)
n − v(2)

n )/

{
(δ

(1)
n − δ(2)

n )(δ
(1)
n + δ

(2)
n )

}
→ 1 as

the argument for the setting that this ratio goes to -1 is similar. Under this setting, we can
easily check that

|Bn,4|/
{
|δ(1)
n − δ(2)

n ||δ(2)
n |3

}
→ 4.
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Therefore, as n is sufficiently large, we have

|Bn,4| & |δ(1)
n − δ(2)

n ||δ(2)
n |3.

If we have max
1≤l≤8

|Bn,l|/Dn → 0, then |Bn,4| /Dn → 0 leads to |δ(1)
n − δ

(2)
n ||δ(2)

n |3/Dn → 0.

Therefore, the following holds

|v(1)
n − v(2)

n |2/
{
|δ(1)
n − δ(2)

n ||δ(2)
n |3

}
→∞,

which means |v(1)
n − v

(2)
n |/|δ(2)

n |2 → ∞, which is a contradiction to the assumption that

(v
(1)
n − v

(2)
n )/

{
(δ

(1)
n − δ

(2)
n )(δ

(1)
n + δ

(2)
n )

}
→ 1. Thus, we have max

1≤l≤8
|Bn,l|/Dn 6→ 0. On the

other hand, as n is sufficiently large, we have

|δ(1)
n − δ(2)

n |α1 |v(1)
n − v(2)

n |α2‖R2,α(x)‖∞
max
1≤l≤8

{|Bn,l|}
≤

O
(
|δ(1)
n − δ(2)

n |α1 |v(1)
n − v(2)

n |α2|δ(2)
n |4−|α|+γ

)
|δ(1)
n − δ(2)

n ||δ(2)
n |3

=
O
(
|δ(1)
n − δ(2)

n ||α||δ(2)
n |4−α1+γ

)
|δ(1)
n − δ(2)

n ||δ(2)
n |3

→ 0.

It implies that ‖R(x)‖∞/ max
1≤l≤8

{|Bn,l|} → 0. From here, using the same argument as that of

Case a.2.3, we obtain the contradiction, which leads to the conclusion that Case b.3 cannot
hold. As a consequence, we achieve the conclusion of part (b) of the theorem.

G.3 Proof of extra results

In this appendix, we provide proof for an additional result with the non-polynomial conver-
gence rate of MLE δ̂mle

n under the known variances setting (2.1).

Proposition 4. Under the symmetric regime of the true model (2.1), we have

sup
δn∈Θ

Eδn
∣∣∣δ̂mle
n − δn

∣∣∣ & n−1/r,

where Θ = [−1, 1]. Here, Eδn denotes the expectation taken with respect to product measure
with mixture density of Y1, . . . , Yn under the model (2.1).

Proof. We divide our argument for the proof of this result into two key parts.

Part 1 - Upper bound of Hellinger distance between mixing densities in terms of
their corresponding parameters To obtain the conclusion for this inequality, we first
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prove the following key result

inf
δ(1),δ(2)∈Θ

h
(
g(x, δ(1)), g(x, δ(2))

)
/
∣∣δ(1) − δ(2)

∣∣r = 0 (G.14)

for any r ≥ 1. In fact, we construct two sequences
{
δ

(1)
n

}
and

{
δ

(2)
n

}
such that δ

(1)
n = −δ(2)

n

for all n ≥ 1. Then, it is clear that h
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

= 0 for all n ≥ 1. Therefore, it is

straightforward that h
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)
≤
∣∣∣δ(1)
n − δ(2)

n

∣∣∣r for any r ≥ 1. As a consequence,

we achieve the conclusion of (G.14).

Part 2 - Le Cam’s argument for minimax lower bound Now, we follow the tra-
ditional Le Cam’s argument for minimax lower bound to achieve the conclusion with non-
polynomial convergence rate of δ̂mle

n to δn (Yu, 1997). In particular, due to the result from

(G.14), for any εn > 0 sufficiently small and any fixed r ≥ 1, we can find δ
(1)
n and δ

(2)
n

such that
∣∣∣δ(1)
n − δ(2)

n

∣∣∣ = 2εn and h
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)
≤ Cεrn where C is a fixed positive

constant. Invoking Lemma 1 from Yu (1997), the following inequality holds

sup
δn∈Θ

Eδn
∣∣∣δ̂mle
n − δn

∣∣∣ ≥ sup
δn∈

{
δ
(1)
n ,δ

(2)
n

}Eδn|δ̂n − δn| ≥ εn
[
1− V

(
gn
(
x, δ(1)

n

)
, gn
(
x, δ(2)

n

))]
,

(G.15)

where gn
(
x, δ

(1)
n

)
denotes the density of n i.i.d. samples Y1, . . . , Yn. By means of classical

inequality between total variation distance and Hellinger distance V ≤ h, we obtain that

V
(
gn(x, δ(1)

n ), gn(x, δ(2)
n )
)
≤ h

(
gn(x, δ(1)

n ), gn(x, δ(2)
n )
)
≤
√

1− (1− C2ε2rn )n.

By choosing C2ε2rn = 1/n, it is clear that

εn
[
1− V

(
gn
(
x, δ(1)

n

)
, gn
(
x, δ(2)

n

))]
& εn & n−1/2r. (G.16)

Combining the results from (G.15) and (G.16), we achieve the conclusion that

sup
δn∈Θ

Eδn
∣∣∣δ̂mle
n − δn

∣∣∣ & n−1/r

for any r ≥ 2.
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