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Abstract
Recent results established that EM enjoys global convergence for Gaussian Mixture Models.

For Mixed Linear Regression, however, only local convergence results have been established, and
those only for the high signal-to-noise ratio (SNR) regime. In this work, we completely characterize
the global optimality of EM: we show that starting from any randomly initialized point, the EM
algorithm converges to the true parameter β∗ at the minimax statistical rates under all SNR regimes.
Toward this goal, we first show the global convergence of the EM algorithm at the population level.
Then we provide a complete characterization of statistical and computational behaviors of EM
under all SNR regimes with finite samples. In particular: (i) When the SNR is sufficiently large,
the EM updates converge to the true parameter β∗ at the standard parametric convergence rate
O((d/n)1/2) after O(log(n/d)) iterations. (ii) In the regime where the SNR is above O((d/n)1/4)
and below some constant, the EM iterates converge to a O(SNR−1(d/n)1/2) neighborhood of the
true parameter, when the number of iterations is of the order O(SNR−2 log(n/d)). (iii) In the low
SNR regime where the SNR is below O((d/n)1/4), we show that EM converges to a O((d/n)1/4)
neighborhood of the true parameters, after O((n/d)1/2) iterations. By providing tight convergence
guarantees of the EM algorithm in middle-to-low SNR regimes, we reveal that in low SNR, EM
changes rate, matching the n−1/4 rate of the MLE, a behavior that previous work had been unable
to show.

Key words: The EM Algorithm, Latent Variable Model, Mixture of Linear Regression, Global Convergence,
Sample Complexity, Minimax Rates

1 Introduction
The expectation-maximization (EM) algorithm is a general-purpose technique for estimating the model parame-
ters in problems with unobserved latent variables [12, 34]. In particular, EM computes successively tighter upper
bounds of the negative log-likelihood function in the hope of finding a good minimizer. In general, optimizing
the likelihood in the presence of missing data is an intractable problem due to the non-convexity of the negative
log-likelihood function. Nevertheless, EM is still widely used in practice due to its simplicity and good empirical
performance [16, 25, 7, 23, 3]. Relatively little is understood about the theoretical properties of EM.

Recent work has made progress in deriving theoretical guarantees for EM for several statistical problems. It
has been demonstrated that when the Signal-to-Noise Ratio (SNR) is high and certain regularity assumptions
hold, EM converges locally if initialized near the global optimum; see, e.g., the work in [39, 1, 17, 40, 41]
and the references therein. For the special case of Gaussian Mixture Models (GMM) with two components,
Xu et al. [36] and Daskalakis et al. [10] have shown that a two-phase version of EM converges from random
initialization. As far as we know, no comparable global convergence result is known for the related problem of
Mixed Linear Regression (MLR), despite the empirical success of EM in this setting [11, 15].

∗Preliminary results from this work were presented in 2019 Conference on Learning Theory (COLT) [20] and 2021
Internal Conference on Artifical Intelligence and Statistics (AISTATS) [21]
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The lack of global convergence guarantees for EM under MLR is not simply an oversight. Rather, as we
show later, the structures of MLR differ significantly from GMM, even on the population (infinite sample)
level; consequently, EM exhibits very different behaviors under these two models. Existing techniques used to
analyze EM under GMM—often based on showing contraction in `2 distance—are fundamentally insufficient
for establishing global convergence of EM under MLR. Furthermore, most prior work has studied instances
with strong separation (high SNR) and established linear convergence of the EM algorithm with the standard
parametric statistical rate n−1/2. In contrast, the understanding of the EM algorithm in the weak separation
(low SNR) settings, especially mixed linear regression, remains incomplete.

1.1 Basic Setup and the EM Algorithm
Mixed linear regression (MLR) models the regression setting where different subsets of the response variables
are generated by different regressors. In the case of two components, which we consider here, each data point
(xi, yi) ∈ Rd × R is generated by a mixture of two linear models with unknown regressors ±β∗ ∈ Rd:

yi = ci〈β∗,xi〉+ ei, i = 1, ..., n, (1)

where ei is the noise term, and ci ∈ {±1} is the hidden/latent variable denoting whether the i-th data point
(xi, yi) is generated by +β∗ or −β∗. Finding the true parameter β∗ is known to be NP-hard in general even
without noise [40]. Accordingly, a common assumption in the literature stipulates that the covariates and
noise terms, xi and ei, are sampled independently from Gaussian distributions; that is, xi ∼ N (0, I) and
ei ∼ N (0, σ2), where the noise variance σ2 is known. We assume, moreover, that the hidden variables {ci} take
values ±1 with equal probability and are independent of each other and of everything else. We define SNR as
η := ‖β∗‖/σ. We assume that η is bounded from above by some (large enough) constant ρ = O(1).

EM is an iterative algorithm for optimizing the likelihood function of a latent variable model. At each
iteration, EM performs two steps: the E-step that computes the expectation of the log-likelihood conditioned
on the current estimate of β∗, and the M-step that optimizes this conditional expectation. For MLR, when
we plug in the likelihood of the assumed Gaussian distribution and replace the expectation with an empirical
average over observed data {xi, yi}, the M -step becomes the weighted least squared loss minimization problem.
In this case, the finite-sample-based EM update, given the current estimator β, has the following closed form
expression:

(finite-sample EM) β̃′ =
( 1

n

n∑
i=1

xix
>
i

)−1
(

1

n

n∑
i=1

tanh
( 〈β,xi〉

σ2
yi
)
yixi

)
; (2)

for a derivation see Balarishnan et al. [1] or Klusowski et al. [17].
The infinite-sample limit of the finite-sample EM, which we call the population EM, has the following

expression:

(population EM) β′ = EX∼N (0,I)

[
EY |X∼N (〈X,β∗〉,σ2)

[
tanh

(
〈X,β〉
σ2

Y

)
Y

]
·X
]
. (3)

The above expression follows from taking the limit n→∞ in the EM update formula (2) and simplifying the
result using the symmetry of the distribution of Y given X.

1.2 Main Contributions
In this work, we show that EM for MLR with two components converges globally from random initialization.
We first establish this result in the infinite sample limit, i.e., for the population version of EM. Along the way,
we provide a complete characterization of the landscape of the population likelihood function, by classifying its
local maxima, local minima and saddle points. This geometric result implies non-contraction in `2 distance of
the EM iterates—in sharp constrast to previous result to GMM—which therefore necessitates a new convergence
analysis based on the angle.

We then provide a finite sample analysis, starting by coupling the finite-sample version of EM with the
population EM. While the ideas remain the same for the middle-to-high SNR regimes, as we see below,
finite-sample EM shows a very different behavior from population EM in the low SNR regime. We reveal this
transition in statistical and computational behaviors from middle to low SNR regimes that previous analysis had
missed. Collecting the results, we provide a complete picture of the EM algorithm under all SNR regimes: we
show that EM converges to the true parameter starting from any randomly initialized point at known minimax
rates [8] in all SNR regimes. We describe our contributions in more details as follows.
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1. Population Analysis for Global Convergence: Previous work on analyzing the EM algorithm for
MLR relies on demonstrating that the `2 distance between the current iterate and the true solution β∗,
contracts at every iteration provided that the initial distance is already small. Such a contraction, however,
cannot hold globally, as the EM update initialized randomly may in fact result in a larger distance from
β∗. This phenomenon was pointed out in [17]. Nevertheless, we prove the global convergence from careful
observations on the population landscape as described below:

1.1 Population Landscape: We provide a geometric explanation in this paper by showing the existence
of saddle points of the log-likelihood function in the direction orthogonal to β∗. These saddle points
prevent a global convergence in `2 distance of EM (which is equivalent to gradient ascent). On the
other hand, we show that ±β∗ are the only local maxima, hence suggesting that global convergence
can be proved by other means.

1.2 Global Convergence via Decreasing Angle: Instead of proving a global convergence via the
`2 distance, we show that the angle between the iterate and β∗ is always decreasing (unless we start
from an exactly orthogonal vector—a measure zero event). Consequently, EM quickly enters a local
region where the current iterate is well aligned with the direction of β∗. In this local region, we
show that a contraction in distance indeed holds. We use this argument to demonstrate that EM
converges to β∗ from any randomly initialized point with high probability.

2. Finite-Sample Analysis and Minimax Rates: Using our population results, we provide the finite-
sample analysis for the EM algorithm. However, unlike in the population case, we show that finite-sample
EM shows very different behaviors in different SNR regimes as described below:

2.1 High-to-middle SNR regimes: when η & (d/n)1/4 (up to some logarithmic factor), we show
that finite-sample EM converges to β∗ within a neighborhood of O(max{1, η−1}(d/n)1/2) after
O(max{1, η−2} log(n/d)) number of iterations.

2.2 Low SNR regime: when η . (d/n)1/4 (up to some logarithmic factor), the EM algorithm
converge to β∗ within a neighborhood of O((d/n)1/4) when the number of iterations is of the order
of O((n/d)1/2).

For the finite-sample analysis, we focus primarily on two aspects of the EM algorithm: (i) statistical
rate, and (ii) computational complexity. In the high SNR regime, we have linear convergence to true
parameters within

√
d/n rate as noted previously in the literature. In contrast, in the low SNR regime

when η . (d/n)1/4, the statistical rate is (d/n)1/4. We explain this transition in statistical rate with a
convergence property of the population EM in the middle-to-low SNR regimes. The upper bound on the
statistical error given by EM matches the known lower bound for this problem in all SNR regimes [8].
For the computational complexity, the number of iterations increases quadratically in the inverse of SNR
until SNR reaches (d/n)1/4. One can also observe that the number of iterations is naturally interpolated
at SNR = (d/n)1/4 from η−2 log(n/d) to

√
n/d. This transition in computational complexity could also

be of independent interest for other mixture models with small separations. We note that our results do
not require sample-splitting (a technique using fresh samples every iteration) which is crucial for getting
the sample optimality results in middle-to-low SNR regimes.

In summary, we obtain the following overall guarantee for the finite-sample EM with n samples:

Theorem 1. Let β̃0 be a random initial vector in Rd such that the direction of β̃0 is randomly sampled from
the uniform distribution on the unit sphere. The norm of initial vector can be any non-zero constant such
that ‖β̃0‖ ≥ cσ(d log2(n/δ)/n)1/4 and n > Cd2 for some universal constants c, C > 0. There exist universal
constants C1, . . . , C5 > 0 such that the following holds.

(a) (Middle-to-high SNR regimes) When η ≥ C1(d log2(n/δ)/n)1/4, with probability at least 1− δ, we have

‖β̃T − β∗‖ ≤ C2σmax{1, η−1}(d log2(n/δ)/n)1/2,

after we run the standard EM algorithm (2) for T = C3 max{1, η−2} log(n/d) iterations.
(b) (Low SNR regime) When η ≤ C1(d log2(n/δ)/n)1/4, with probability at least 1− δ, we have

‖β̃T − β∗‖ ≤ C4σ(d log2(n/δ)/n)1/4,

after we run either Easy-EM or standard EM for T = C5 log(log(n/d))
√
n/(d log2(n/δ)) iterations.
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1.3 Key Challenges and Comparison to Existing Approaches for GMM
As mentioned earlier, several recent works have consider the related problem of 2-component GMM and
established global convergence of the EM algorithm [36, 10, 13]. Here we highlight the key challenges in our
MLR setting as well as the differences between our analysis and those for GMM in prior works, deferring a
more detailed discussion to subsequent sections. Additional discussion on related work is provided at the end of
this subsection.

Population Analysis. A key difference between MLR and GMM is the presence of the covariates X in
the regression setting. Therefore, each observation (X, y) in MLR only provides information along the X
direction for the relative position of the current iterate β and the true β∗. This difference has far-reaching
consequences: the geometry of the negative log-likelihood function of MLR and the dynamics of the EM
algorithm are significantly different from those in the GMM setting.

In particular, unlike GMM, in MLR there is a non-trivial region where the EM iterate does not contract in
Euclidean distance to the true parameter. This difference is illustrated in Figure 1: note that for MLR the
distance ‖β − β∗‖2 first increases than decreases. Consequently, the approaches in [10, 17], which are based on
distance contraction in GMM, do not work in our setting. For MLR, we need consider alternative measures (or
potential functions) under which the EM iteration converges quickly. Specifically, we establish angle contraction
results in Section 3, and our analysis is divided into 3 phases:

• Phase 1: We start with random initialization, and thus, we start with a small cosine value between the
EM iterate β and the true β∗. We show that the cosine value increases at a (constant) linear rate and
thus EM escapes the small-angle region in O(log d) steps.

• Phase 2: Once the cosine value reaches O(1), the sine value becomes a more appropriate potential
function, which decays at a (constant) linear rate to 0. Note that the increase rate in the cosine value
slows down when it is close to 1.

• Phase 3: Eventually we want to show that iterate β linearly converges to β∗ in `2-distance, which happens
after sufficient angle alignment.

Xu et al. [36] have used similar angle alignment arguments to show convergence of the EM algorithm for GMM.
However, they only used the sine value as their potential function, restricting the analysis to the asymptotic
regime (in their analysis, the convergence rates have not been explicitly specified). With random initialization,
the sine values converges slowly during the first phase. We circumvent the issue by establishing the linear
increase in the cosine values during phase 1, showing that EM escapes the initial phase after O(log d) iterations.
The work by Daskalakis et al. [10] has provided a non-asymptotic convergence result for 2-GMM; however, they
rely on global `2-distance convergence, which does not hold in 2-MLR.

Finite-Sample Analysis. Prior work has established the local convergence of EM for both 2-component
GMM and 2-compnent MLR in the high SNR regime (η = ‖β∗‖/σ > 1) [40, 10, 17]. To our best knowledge, no
prior work has shown the minimax optimality of the EM algorithm in the middle or low SNR regimes. Our
analysis for the low SNR regime is inspired by the technique developed in Dwivedi et al. [13]. However, they
can only address the over-specified settings (i.e., the SNR is ‖β∗‖/σ = 0), whereas we extend the applicability
of their techniques to show the minimax statistical rates in all SNR regimes. In particular, we explicitly show
the transition of statistical rates from high to low SNR regimes σmax(1, η−1) ·

√
d/n to (d/n)1/4 through the

careful analysis of angle concentration and localization, which has not been done in the context of analyzing
EM algorithms.

1.3.1 Other Related Work

As mentioned, our knowledge of when EM converges to a true solution is still limited. In general, it is known that
the EM algorithm may settle in a bad local optimum [34]. Classical results on convergence were infinitesimally
local, and asymptotic [28, 37, 25]. Recent study on the theoretical understanding of EM has been initiated in
Balakrishnan et al. [1], which proposed a novel framework to analyze the EM algorithm. Motivated by this
work, there has been a line of work that provides local analysis of EM when it starts from a well initialized
point [39, 40, 38, 19, 18].

More recent work has provided global analysis for the GMM problem. For the mixture of two Gaussians,
Xu et al. [36] and Daskalakis et al. [10] establish guarantee convergence of EM for this specific problem from a
random initialization. Extensions to other variants of GMM are considered in the work [27, 26, 2]. For GMM
with more components, however, Jin et al. [14] proves that bad local optima exist and randomly initialized EM
converges to such a local solution with high probability.
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For MLR, only the local convergence of EM has been recently established: when there are two components,
the EM algorithm converges to the global optimum if we start from a point sufficiently close to the true
parameter in `2 distance; see, e.g., [40, 39, 41, 1] and the references therein. A better local contraction region
was suggested in Klusowski et al. [17], where the convergence is guaranteed inside a region where the angle
between the initial solution and the true parameter is small. Still, all known results remain inherently local
for MLR, and in particular, are not satisfied by a random initialization, even when a norm bound on the true
parameter is known.

Moreover, previous results on MLR are strictly restricted to high SNR regimes, i.e., when ‖β∗‖ is sufficiently
larger than σ. In a closely related problem of learning mixtures of two Gaussians, [13] recently studied the EM
algorithm in an extreme case of the over-specified models, i.e., there is no separation between two components.
However, their analysis is restricted to strictly over-specified settings, and it has not been obvious to extend
their result to low SNR models. In another recent work, [35] has studied the EM algorithm for learning a
mixture of two weakly-separated location Gaussians, establishing a minimax rate of the EM algorithm after
O(
√
n/d) iterations in middle-to-low SNR regimes. However, their result requires the initialization to be already

within a small Euclidean ball of (d/n)1/4-radius, which is restrictive. Our result does not suffer from small
initialization issue as in [35]. Furthermore, our proof strategy can be applied to resolve the open issue with
small initialization in [35].

MLR is an interesting problem by itself, for which many algorithms beyond EM have been proposed. The
work in Chen et al. [8, 9] developed a lifted convex formulation approach that achieves tight minimax error
rates. A good initialization strategy for EM based on Stein’s second-order lemma was proposed in Yi et al. [40],
though this seems to rely on the noiseless setting which they study. The above two papers have focused on MLR
of two components case. Recent work has extended the focus to multiple components. The work in [42, 24]
develops gradient descent based algorithms. In parallel, the work in [6, 41, 29] considers algorithms that are
based on tensor decomposition of third order moments. EM is an attractive option among these algorithms due
to its generality, simplicity and computational efficiency; moreover, EM is often applied to the output of other
algorithms to obtain an improved estimate.

1.4 Notations
We establish the notation used throughout the remainder of the paper. We use ∠(u,v) to denote the angle
between two vectors u and v. The `2 norm for a vector is denoted by ‖ · ‖, and the spectral norm (the largest
singular value) of a matrix is denoted by ‖ · ‖op . For two vectors u,v ∈ Rd, 〈u,v〉 = u>v is the usual inner
product between them.

We use (X, Y ) as a generic random variable representing the covariate-response pair from the MLR model (1),
and use {(xi, yi)} as independent copies of (X, Y ). Due to a symmetry between the regressors ±β∗, we focus
on the convergence to one of them, say β∗. We use βt to denote the estimate of β∗ at the tth iteration of
the population EM, and use θt := ∠(βt,β

∗) to denote the angle formed by βt and β∗. When we intend to
understand a single iteration of the EM, we drop the subscript t, and use β in place of βt for the current iterate
and β′ in place of βt+1 for the next iterate. Similarly, we use θ for θt and and θ′ for θt+1. We assume without
loss of generality that the initial angle θ0 is in [0, π/2), where π/2 is excluded as it has measure zero. An initial
solution falling in the remainder of the circle has precisely the same behavior, but with a convergence to −β∗
instead of β∗.

For the iterates and angles in the finite-sample EM, we use ·̃ to distinguish them from the population case.
For instance, β̃t denotes the tth iterate of the finite-sample EM and θ̃t denotes the angle between β̃t and β∗.
Similarly, for a single iteration of finite-sample EM with the current iterate β, the notations β̃′ and θ̃′ denote
the next iterate and its angle with β∗, respectively.

Recall that σ is the known standard deviation of the noise {ei}, and the SNR is defined as η := ‖β∗‖
σ

, with
the assumption that η ≤ ρ = O(1).

1.5 Paper Organization
In Section 2, we demonstrate a few structural properties of the population EM update. The global convergence
result of the population EM is provided in Section 3. The global convergence and minimax results of the
finite-sample EM in the high and low SNR regimes are provided in Section 4. The proofs of our main results
are provided in Sections 6, 7 and 8. The paper is concluded in Section 9 with a discussion of future directions.
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2 Population EM and Likelihood Landscape
In this section, we derive several structural properties of the population EM update. By connecting the EM
update with the log likelihood of MLR, we provide a characterization of the landscape of the likehood function.
These results highlight the main challenges in the MLR problem and the reasons why they can be resolved,
which serves as a starting point of our subsequent proof for global convergence.

2.1 Explicit Expression for the Population EM Update
Given the current iterate β, we consider one iteration of the population EM update (3) which yields the next
iterate β′. Since the distribution of the covariate X is spherically symmetric, we may choose a convenient an
orthonormal basis {v1, ...,vd} of Rd as follows. We let v1 be a unit vector in the direction of β and v2 be a
unit vector that is in span{β,β∗} and orthogonal to v1. In this case, X can be written as X :=

∑d
i=1 αivi,

where α = (α1, . . . , αd) ∼ N (0, I). Introduce the shorthands b1 := 〈β,v1〉 = ‖β‖, b∗1 := 〈β∗,v1〉, b∗2 := 〈β∗,v2〉
and σ2

2 := σ2 + b∗2
2. We may write the next iterate β′ as

β′ = Eα∼N (0,I)

[
EY |α∼N (α1b

∗
1+α2b

∗
2 ,σ

2)

[
tanh

(
b1α1

σ2
Y

)
Y

] d∑
i=1

αivi

]
. (4)

Without loss of generality, we assume that b1, b∗1, b∗2 ≥ 0. The following lemma provides an explicit expression
of β′ under the above orthonormal basis.

Lemma 1 (Explicit Update for Population EM). Let β 6= 0 be the current iterate and β′ be the next iterate
defined in equation (4). Then β′ is in span(β,β∗) and can be written as β′ = b′1v1 + b′2v2 with

b′1 = b∗1S +R and b′2 = b∗2S, (5)

where S and R have the following expressions:

S :=Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
, (6a)

R :=(σ2 + ‖β∗‖2)Eα1,z

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
. (6b)

The expectations above are taken over α1 ∼ N (0, 1) and z ∼ N (0, 1). Moreover, we have S ≥ 0 and R > 0,
where S = 0 if and only if b∗1 = 0.

Lemma 1 is proved in Section 6.1. Qualitatively, the lemma establishes that the next iterate β′ remains in
the linear subspace spanned by the current iterate β and the true parameter β∗. Moreover, if β is orthogonal
to β∗, then β′ remains in span(β). Consequently, if we run the population update starting from some initial
solution β0, then it holds that βt ∈ span(β0,β

∗) for all t = 1, 2, . . .
The quantities b′1 and b′2 in Lemma 1 represent the projections of β′ along v1 (direction of β) and v2 (the

orthogonal direction to β), respectively. From the expressions of b′1 and b′2, we can further deduce the following
quantitative properties of the population EM dynamics:

1. Decreasing angle: When ∠(β,β∗) ∈
(
0, π

2

)
, then ∠(β′,β∗) < ∠(β,β∗), that is, each iteration of

population EM strictly decreases the angle between the iterate and the true parameter.

2. Contraction along β: In the direction of v1 (equivalently, β), β′ moves towards a unique fixed point
E(v1); i.e., |b′1 − E(v1)| ≤ |b1 − E(v1)| with equality holds if and only if b1 = E(v1).

The first property immediately follows from the expression of b′2. In particular, note that 0 ≤ tan∠(β′,β) =
b′2
b′1
≤ b∗2

b∗1
= tan∠(β∗,β). When b′2

b′1
> 0, the angle strictly decreases; when b′2

b′1
= 0, the angle remains the same.

In particular, the latter case b′2
b′1

= 0 happens if and only if b′2 = 0, which means either b∗2 = 0 (i.e., β ∈ span(β∗))
or S = 0 (i.e., β ⊥ β∗). The second property follows from the expression of b′1; the derivation is given in
Lemma 10.

2.2 Structural Properties of Population EM and Likelihood Function
The population negative log-likelihood function L of the MLR model (1) is given by

L(β) =− EXEY |X
[
log

(
1

2
√

2πσ2
exp

(
− (Y − 〈X,β〉)2

2σ2

)
+

1

2
√

2πσ2
exp

(
− (Y + 〈X,β〉)2

2σ2

))]
, (7)
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where X ∼ N (0, I) and Y |X ∼ N (〈X,β∗〉, σ2). Interestingly, it can be shown that the population EM update
is equivalent to applying gradient descent to the population negative log-likelihood.

Lemma 2 (Connection Between EM and Gradient Descent). Given the current iterate β, the next iterates
produced by the population EM update (3) satisfies

β′ = β − σ2∇βL(β).

Consequently, the set of fixed points of the population EM update is equal to the set of stationary points of the
population negative log-likelihood L.

Proof. Direct computation shows that the gradient of L given in (7) admits the expression:

∇βL(β) =
1

σ2

[
β − EXEY |X

[
tanh

(
〈X,β〉Y

σ2

)
YX

]]
. (8)

Comparing this equation with the expression of the population EM update (5), we see that∇βL(β) = 1
σ2 (β−β′).

The lemma follows.

Using the two properties derived in the last subsection, we obtain the following complete characterization of
the fixed points of the population EM as well as the stationary points of the population log likelihood.

Theorem 2 (Population EM and Log-likelihood). Let v be an arbitrary unit vector orthogonal to β∗. In the
subspace span(v,β∗), the population negative log-likelihood function (7) has exactly five stationary points:

β∗, −β∗, 0, E(v)v, −E(v)v,

where E(v) > 0. In particular, ±β∗ are global minima, 0 is a local maximum, and ±E(v)v are saddle points
whose Hessians have a strictly negative eigenvalue. Moreover, these five points are the only fixed points of the
population EM (4) in span(v,β∗).

Theorem 2 is proved in Section 6.2. In the left pane of Figure 1, we illustrate the landscape of the negative
log-likelihood of MLR in dimension d = 2. Since ±β∗ are the only local minima, it can be expected that
population EM (equivalent to gradient descent) converges to them from a random initialization—we establish
this result rigorously in subsequent sections and provide non-asymptotic convergence rates. On the other hand,
due to the existence of saddle points, the `2 distance of the EM iterates to β∗ cannot contract globally. In
particular, if the current iterate β is the near a saddle point and the maximum 0, the next iterate β′ will first
move toward the saddle point before making progress to β∗, hence ‖β′ − β∗‖ > ‖β − β∗‖. This issue is only
exacerbated in higher dimensions, where most β’s are nearly orthogonal to β∗ and hence likely to be near a
saddle point. A similar non-contraction phenomenon for EM was pointed out in by Klusowski et al [17]; here
we provide a geometric explanation in terms of the likelihood landscape.

We note that negative likelihood function of GMM does not have such non-zero saddle points, as illustrated
in the right pane of Figure 1. Consequently, the `2 distance does decrease globally in this problem, as is
established in previous global analysis of EM under GMM [10, 36]. This `2-distance-based analysis, however, is
fundamentally insufficient for proving global convergence under MLR.

3 Convergence Analysis of the Population EM
In this section, we provide our main results on the global convergence of the population EM. As mentioned, a
major challenge in the analysis is the non-contraction of the `2 distance of the EM iterates to the true parameter
β∗. To address this challenge, we adopt the new strategy of first proving a rapid decrease in angle and then
proving a geometric decrease in `2 distance.

3.1 Convergence in Cosine
Recall that η := ‖β∗‖/σ is the SNR, and θ0, θ and θ′ denote the angles that β∗ forms with β0 (initial iterate),
β (current iterate), and β′ (next iterate), respectively. By symmetry we may assume without loss of generality
that cos θ0 is positive. For the early stage of the EM iterations, we focus on the cosine of the angle and show
that it increases geometrically with a constant rate.
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Figure 1: Negative log-likelihood functions of MLR (left) and GMM (right) with true parameter β∗ = (1, 0). In both
problems, ±β∗ are the only local minima. MLR has a local maximum at 0 and two non-zero saddle points along the x2

axis that are orthogonal to β∗. GMM has a saddle point at 0 and no other stationary points.

Theorem 3 (Cosine Convergence). When 0 ≤ θ < π
2
, the population EM iteration (4) satisfies

cos(θ′) ≥ κ1(θ) cos(θ), (9)

where κ1(θ) =

√
1 + sin2(θ)

cos2(θ)+ 1
2

(1+η−2)
. In particular, when θ ≥ π

3
, we have κ1(θ) ≥

√
1 + η2

2
3

+η2
. Consequently,

if cos(θ0) = Θ(1/
√
d), after T = O

(
max(1, η−2) log d

)
iterations, we get θT < π/3 or equivalently cos(θT ) ≥ 1

2
.

Theorem 3 is proved in Section 7.2. Note that using a random initialization, we have cos θ0 = Θ(1/
√
d)

with high probability (see Lemma 16). Therefore, starting such an initial angle θ0, Theorem 3 ensures that a
logarithmic number of iterations of the population EM is sufficient to achieve cos θt = O(1).

Theorem 3 provides explicit characterization of the linear convergence rate, where the ratio κ1(θ) between
cos θ′ and cos θ is bounded away from 1 when θ is bounded away from 0. Therefore, this result is most useful in
the early stage of EM. As θ goes to 0, the ratio κ1(θ) approaches 1, in which case the cosine of the angle is
no longer informative for establishing a linear convergence rate. In the following subsection, we establish a
complementary result for the sine of the angle.

3.2 Convergence in Sine
Our next theorem shows that the sine of the angle converges geometrically to 0. This result is reminiscent of
Theorem 3 in Xu et al. [36], where they considered GMM and used a similar argument to show asymptotic
convergence. Here we provide an explicit rate of convergence by quantifying the amount of change in sine. This
quantitative, non-asymptotic guarantee is critical when we port the population-level results to the finite sample
setting.

Theorem 4 (Sine Convergence). When 0 ≤ θ < π
2
, the population EM iteration (4) satisfies

sin θ′ ≤ κ2(θ) sin θ, (10)

where κ2(θ) =
(√

1 + 2η2

1+η2
cos2 θ

)−1

< 1. In particular, when θ < π
3
, we have κ2(θ) <

(√
1 + η2

1+η2

)−1

.

Theorem 4 is proved in Section 7.1. Note that the speed of convergence increases as the angle decreases. This
result is most useful when the angle is bounded away from π/2—complementary to the case covered by Theorem 3.
In particular, starting from an initial solution θ0 < π/3, Theorem 4 ensures that after T = O

(
max(1, η−2)

)
iterations, the population EM outputs a solution satisfying θT < π/8.

We remark that in the high SNR regime (η � 1), the ratio κ2(θ) can be much smaller than 1, despite
depending on the initial angle. In the low SNR regime (η � 1), however, the ratio κ2(θ) cannot be smaller
than 1−O(η2), regardless of the initial angle.

3.3 Convergence in `2 Distance
Combining the above results on cosine and sine, we can conclude that eventually the population EM pushes
any random initial solution into a region with a small angle around β∗. At this point, EM safely transits to the
stage that exhibits a contraction in `2 distance, which is the content of our next result.
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Theorem 5 (`2 Contraction). Suppose we have that θ < π/8. Recall the shorthands b1 := ‖β‖, b∗1 := ‖β∗‖ cos(θ),
b∗2 := ‖β∗‖ sin(θ) and σ2

2 := σ2 + b∗22 . The following holds for the population EM iteration (4):

• If b∗2 < σ or σ2
2
σ2 b1 < b∗1, then

‖β′ − β∗‖ ≤ κ3(θ)‖β − β∗‖+ κ3(θ)(16 sin3 θ)‖β∗‖ η2

1 + η2
, (11a)

where κ3(θ) =

(√
1 + min

(
σ2
2
σ2 b1, b

∗
1

)2

/σ2
2

)−1

.

• If b∗2 ≥ σ and σ2
2
σ2 b1 > b∗1, we have

‖β′ − β∗‖ ≤ 0.6‖β − β∗‖. (11b)

Theorem 5 is proved in Section 7.3. Note that the bound (11a) has an additional term that depends on the
angle and SNR. When b1 is close to b∗1 and σ is small, we get a better contraction bound in (11b).

Equipped with the above per-iteration contraction result, we can bound the `2 error after t iterations of
population EM and conclude that it converges to β∗.

Corollary 1 (`2 Convergence). Suppose that the initial solution satisfies θ0 < π/8. There exists a constant
κ < 1 such that after T iterations of the population EM, we have the error bound

‖βT − β∗‖ < κT ‖β0 − β∗‖+ TκT ‖β∗‖ η2

1 + η2
. (12)

In particular, the constant κ can be taken to be the maximum among

0.6,

√(
1 +
‖β0‖2
σ2

)−1

,

√
1− 0.8η2

1 + η2
. (13)

Corollary 1 is proved in Section 7.4. We shall see in the proof that the value of κ depends on max(κ3
2(θ0), κ3(θ0)),

which is upper bounded by max(κ3
2(π/8), κ3(π/8)) when θ0 < π/8. Therefore, the convergence rate κ depends

on the SNR η as well as the norm ‖β0‖ of the initial solution. For different values of the SNR η, the rate is
either a constant or 1−O(η2), as was in the case of bounding the sine. Therefore, T = O

(
max(1, η−2) log(1/ε)

)
iterations is sufficient to achieve a solution ε-close to β∗.

Combining the above results on the cosine, sine and `2 distance, we conclude that starting from a random ini-
tial solution, the population EM converges to β∗ and achieves an ε error in `2 distance in O

(
max(1, η−2) log(d/ε)

)
iterations.

4 Finite Sample Analysis
We now turn to proving the convergence of the finite-sample EM update given in equation (2). Throughout this
section, we assume that the number of samples n satisfies n ≥ Cd for some sufficiently large constant C > 0.
Our analysis is divided into two cases: the middle-high SNR regime and the low SNR regime. For high and
middle SNR, i.e., η & (d/n)1/4, we relate the finite EM update with the angle convergence argument we used
for the population EM. In contrast, for a low SNR, i.e., η . (d/n)1/4, we do not require any angle convergence
argument since we only need to show that the norm of the iterate shrinks until it enters in the ball of radius
(d/n)1/4. Thus, we handle the low-SNR regime in Section 4.3 separately.

For the bulk of this section, we assume the following:

Middle-to-High SNR regime: η ≥ C(d log2(n/δ)/n)1/4, (14)

for some universal constant C > 0. In this regime, we show that at each iteration, the finite-sample update is
close to its population counterpart up to a “statistical fluctuation” term εf , defined as:

εf := c

√
d ln2(n/δ)/n, (15)

for some absolute constant c > 0.
In this section, we use β to denote our current iterate, β′ for the output from one step of the population

EM, and β̃′ for the output from one step of the finite-sample EM. Accordingly, θ̃′ denotes the angle between β̃′
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and β∗. When we consider the sequence of iterates generated by the finite-sample EM, we use β̃t for the tth

iterate and θ̃t for its angle with β∗.
Our results, summarized below, establish that the finite-sample EM converges in four phases in the

middle-to-high SNR regime:

1. Possible initialization from Spectral Method: Start from a randomly initialized vector β0. With
high probability, the vector β0 satisfies cos(θ̃0) = Θ(1/

√
d). We compare the statistical fluctuation εf

to the threshold min(1, η2)/
√
d, which amounts to the increase in cosine values. If εf > min(1, η2)/

√
d

(equivalently, if n < max(1, η−4) · d2 ln2(n/δ)), then we first use the standard spectral method to get an
initial vector β̃0 such that cos(θ̃0) = Ω

(
max(1, η−2) · εf

)
. Otherwise, we set β̃0 = β0 and directly go to

Phase 2.

2. Decreasing Angle: Starting from β̃0 obtained from Phase 1, which satsifies cos(θ̃0) ≥ Ω(εf ), run
the finite-sample EM for T1 = O

(
log(1/εf ) · max(1, η−2)

)
iterations to get an iterate β̃T1 satisfying

sin(θ̃T1) ≥ sin(π/25).

3. Convergence in `2: Starting from β̃T1 obtained from Phase 2, run the finite-sample EM for T2 =

O
(

max(1, η−2) log(n/d)
)
iterations to get an iterate β̃T2 satisfying ‖β̃T2 − β∗‖ ≤ O

(
max(1, η−1)

√
d/n

)
.

This matches the known minimax rates in the middle-to-high SNR regime [8].

Remark 1 (Initialization). In this paper we do not resort to the sample-splitting scheme, in which one draws a
new batch of samples at every iteration. In doing so, the challenge is to establish the right uniform bound on the
statistical deviation over the parameter domain of interest. In the conference version of our paper [20], we show
that the deviation in cosine value is max(εf/

√
d, ε2f ) when a sample-splitting scheme is used. This allows us to

analyze the EM algorithm as it is, instead of using a spectral method for the initialization. It seems that there is
hard trade-off in the analysis between removing the sample-splitting scheme and avoiding the need for spectral
initialization. As our focus is on the minimax-optimality of last iterates of the EM algorithm, we compromise
some generality in our analysis by assuming spectral initialization when n is small.

4.1 Global Convergence in Angle
We now provide the details for Phase 2 outlined above. As discussed in the introduction, our approach is based
on coupling the finite sample EM iterate with the population EM iterate. The work in Balakrishnan et al. [1]
establishes a concentration bound on the `2 distance between the population and finite-sample iterates in the
form of

‖β̃′ − β′‖ = O
(√
‖β∗‖2 + σ2

√
d/n

)
.

This type of bound implies local contraction in distance. However, it is not sufficient for us, as we need to
control the angle when the iterate is outside of the local region for `2 contraction.

We establish a more refined bound, which shows that the statistical error is (at most) proportional to the
norm of the current iterate:

Lemma 3. For any given r > 0, there exists a universal constant c > 0 such that we have

P

(
sup
‖β̃′‖≤r

‖β̃′ − β‖ ≤ cr
√
d log2(n/δ)/n

)
≥ 1− δ. (16)

Lemma 3 is proved in Appendix A.2. Note that the bound is holds uniformly over the parameter space,
which is the crucial property that allows us to remove sample-splitting in the analysis. Using equation (16), we
prove the following angle concentration bound.

Lemma 4. With probability at least 1− δ, the following holds for all β satisfying ‖β‖ ≤ C
√
‖β∗‖2 + σ2 for

some universal constant C > 0:

cos(θ̃′) ≥ κ1(θ)(1− 10εf ) cos(θ)− εf , (17)

sin2(θ̃′) ≤ κ2
2(θ) sin2(θ) +O(εf ), (18)

where κ1(θ) =
√

1 + sin2 θ

cos2 θ+ 1
2

(1+η−2)
≥ 1, and κ2(θ) =

(
1 + 2η2

1+η2
cos2 θ

)−1

< 1.

Lemma 4, proved in Section 8.1, allows us to show that at each iteration, the finite-sample EM decreases the
angle between the iterate and the true parameter, up to a quantity that depends on the statistical fluctuation
εf ∝

√
d/n (and hence on the sample size). The key idea in the proof of the lemma is that when we bound the
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statistical error of the cosine value, we need to control the error in the fixed direction u = β∗/‖β∗‖ instead of
all directions in Rd.

A consequence of Lemma 4 is that when the statistical fluctuation εf is small relative to the SNR η, the
finite-sample EM iterates have strictly decreasing angles in Phase 2 (and the angles remain small in Phase 3).
This result is formalized in the following corollary, whose proof is given in Section 8.2.

Corollary 2. If εf ≤ c1 min(1, η2) for a sufficiently small constant c1 > 0, then with probability 1− δ, we have
θ̃′ < θ in each iteration of Phases 2, and θ̃′ ≤ π

25
in Phase 3.

We now combine the above arguments to establish multi-step convergence of the angle. This is done in the
theorem below, whose proof is given in Section 8.3.

Theorem 6 (Cosine Convergence, Finite-Sample). Suppose that β̃(0) is an iterate obtained from Phase 1. We
run the finite-sample EM with n = max(1, η−2)d/ε2f samples. As long as θ̃(t) > π/25 for all t < T , there exists
an universal constant c1 > 0 such that with probability 1− δ,

cos(θ̃(t)) ≥
(
1 + c1 ·min(1, η2)

)
· cos(θ̃(t−1)). (19)

In particular, if cos(θ̃(0)) = Θ(1), then we have cos(θ̃(T )) ≥ 0.95 after T = O
(

max(1, η−2) log d
)
iterations.

4.2 Local Convergence after Initialization: Minimax Rates
Now that we have reached an angle below π/25, the following theorem provides a convergence guarantee in `2
distance. One subtle issue is that with only the angle argument above, we have not yet said anything about
the norm of the iterate. If the norm of the iterate is too small, then the EM iteration might get stuck around
0, which is a suboptimal stationary point (Theorem 2). To avoid over-complicating the analysis, we assume
for now that the norm of the iterate is also well-initialized such that ‖β0‖ ≥ 0.9‖β∗‖. We later remove this
assumption by supplying a norm initialization lemma after the angle alignment in Section 8.4.

Theorem 7 (`2 Convergence, Finite-Sample in Middle-to-High SNR Regimes). Suppose that β̃0 is an iterate
obtained from Phase 2 whose angle with β∗ satisfies θ̃0 <

π
25
. Furthermore, suppose that ‖β̃0‖ ≥ 0.9‖β∗‖. Then,

for any δ > 0, there exist universal constants C1, C2 > 0 such that with probability at least 1− δ,

‖β̃T − β∗‖ ≤ C1σmax{1, η−1}
(
d log2(nη/δ)/n

)1/2
after T ≥ C2 max{1, η−2} log(nη/d) iterations.

In the high SNR regime with η & 1, our result matches the minimax rate and in particular guarantees exact
recovery when the noise variance σ goes to zero. Our proof of this bound uses an approach different from
what is typically used in the literature. In particular, instead of coupling β̃′ and β′ directly, we use the sample
covariance matrix 1

n

∑n
i=1 xix

>
i to our advantage, which allows us to decompose the error β̃′−β∗ in a way that

correctly captures the behavior of the finite-sample iterate β̃′ near β∗. In this local region, the finite-sample
EM in fact behaves similarly to the standard least-squares estimator applied to two separate linear regression
problems, in which case the statistical error does not depend on the regressors ±β∗. We conjecture that a more
careful analysis can also resolve even the logarithmic dependency on η, and leave it as future work.

Another interesting point arises in the middle SNR regime where (d/n)1/4 . η < 1. Our statistical rate
scales as η−1

√
d/n, which matches the known lower bound in the middle SNR regime [8]. Note that this bound

holds only when η ≥ (d/n)1/4; if η becomes smaller, the problem transits to the low SNR regime, which we
investigate in detail in the next subsection. The main challenge in the middle SNR regime is to guarantee the
progress toward β∗ despite the slow convergence rate (1− η2). Since the statistical fluctuation εf per iteration
is uniformly

√
d/n, a naive approach based on the concentration of the EM operator would require n ≥ η−6 so

that not only the EM iteration moves forward but the accumulation of statistical errors is also controlled in
all iterations. To avoid the excessive sample requirement above, we adopt the localization argument used in
the recent works [13], which established the convergence behaviors of the EM algorithm under over-specified
Gaussian mixtures. Specifically, the localized bound in Lemma 3 is the key for obtaining the minimax rate in
the middle SNR regime as well as for the removal of sample-splitting.

With Lemma 3, the core of our analysis consists of two main steps: (i) refinement of the convergence
rate of the population EM operator, namely, the contraction coefficient of population EM is shown to be
1−O(max{‖β‖2 − η2, η2}), (ii) multi-level application of uniform concentration bound for the EM operators,
which shows that the statistical deviation is proportional to ‖β‖

√
d/n. The EM update is shown to make

progress until η2‖β − β∗‖ < ‖β‖
√
d/N , at which point EM achieves the desired minimax statistical error

‖β − β∗‖ ≈ ση−1
√
d/N . For the complete proof, see Section 8.5.
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(a) (b) (c)

Figure 2: Convergence behavior of the EM algorithm when d = 5: (a) statistical rates of EM iterates (i.e., ‖β̃T − β∗‖ at
the last iteration) for different SNRs; (b) linear convergence in high SNR regime; (c) slow convergence in low SNR regime.

4.3 Finite Sample Analysis: Low SNR Regime
In this subsection, we turn our focus to the low SNR regime, where

Low SNR regime: η ≤ C(d log2(n/δ)/n)1/4, (20)

for some universal constant C > 0. In this regime, instead of bounding the distance between β and β∗, i.e.,
‖β−β∗‖, we aim to obtain a bound simply for ‖β‖. The triangle inequality then gives ‖β−β∗‖ ≤ ‖β‖+ ‖β∗‖.
Therefore, if we can show that

‖βT ‖ . σ(d/n)1/4,

after some T iterations, then with the low SNR condition ‖β∗‖ . σ(d/n)1/4, we obtain the desired bound
‖β − β∗‖ . (d/n)1/4. Therefore, we do not need the angle convergence argument in this regime; proving
convergence of the norm suffices. Intuitively, in the low SNR regime, the EM algorithm essentially cannot
distinguish between β∗ = 0 and β∗ 6= 0. In fact, this is true for any algorithm in view of the known lower
bound in the low SNR regime [8].

Finite sample analysis in the low SNR regime starts with the following Taylor-like approximation on the
norm of the population EM iterate:

Lemma 5. There exists some universal constants cu > 0 such that,

‖β‖(1− 4(‖β‖/σ)2 − cuη2) ≤ ‖β′‖ ≤ ‖β‖(1− (‖β‖/σ)2 + cuη
2).

Lemma 5 implies that the population EM iterates moves toward 0 until ‖β‖ ≤ ‖β∗‖, afer which the iterate
stays in the ball of radius Õ(ση). To prove this result, we apply the localization argument, which is valid until
β reaches ση ≈ σ(d log2(n/δ)/n)1/4. The final product of our analysis is the following finite-sample convergence
theorem for the low SNR regime.

Theorem 8 (`2 Convergence, Finite-Sample in Low SNR Regime). Suppose η ≤ C(d log2(n/δ)/n)1/4 and
‖β̃0‖ = O(σ). Then there exist universal constants C1, C2 > 0 such that with probability at least 1− δ, we have

‖β̃T − β∗‖ ≤ C1σ(d log2(n/δ)/n)1/4

after T ≥ C2 log(log(n/d))
√
n/(d log2(n/δ)) iterations of finite-sample EM.

The initialization condition ‖β̃0‖ = O(σ) is mild: even if we start from an iterate with a much larger norm,
one step of EM would bring the norm down to O(σ). The proof of Theorem 8 is given in Appendix 8.6.

5 Experiments
In this section, we corroborate our theoretical results via numerical examples. In Figure 2, we present the
statistical rate and convergence behavior of EM algorithm under different SNR regimes. We set d = 5
and initialize the EM iteration in a neighborhood of the true parameters such that β0 = β∗ + ru, where
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r = max{1, ‖β∗‖} · 0.1 and u is a random unit vector. To evaluate the statistical rate, we run the EM algorithm
with different sample size n ∈ {128, 180, 256, ...} (i.e., n increases by a factor of

√
2 each time). The final error

‖β̃T − β∗‖ is averaged over 5, 000 independent runs. The stopping criterion is ‖β̃T − β̃T−1‖ ≤ 0.0001. In
Figure 2(a), we observe the standard n−1/2 rate in the high SNR regime, and an approximately n−1/4 rate in
the low SNR regime. Interestingly, with an intermediate SNR = 0.3, the statistical rate transitions from n−1/4

to n−1/2 as n increases. This is consistent with the definition of low SNR ‖β∗‖ . (d/n)1/4, which is relative to
the sample size n rather than being an absolute value.

We next investigate the convergence behavior of EM. We run the EM algorithm with a fixed sample
size n = 32768. The estimation error ‖β̃t − β∗‖ in each iteration t is averaged over 5, 000 independent runs.
Figure 2(b) shows the high SNR regime. Note that the y-axis is in log-scale and we can see the linear convergence
(up to the statistical error). In contrast, in the low SNR regime showed in Figure 2(c), we can observe that the
convergence of the EM algorithm is no longer linear and becomes significantly slower.

6 Proofs for Section 2
In this section, we prove the technical results in Section 2. In particular, Lemma 1 is proved in Section 6.1 and
Theorem 2 is proved in Section 6.2.

6.1 Proof of Lemma 1
We restate the lemma below for readers’ convenience.

Lemma 1 (Explicit Update for Population EM). Let β 6= 0 be the current iterate and β′ be the next iterate
defined in equation (4). Then β′ is in span(β,β∗) and can be written as β′ = b′1v1 + b′2v2 with

b′1 = b∗1S +R and b′2 = b∗2S, (5)

where S and R have the following expressions:

S :=Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
, (6a)

R :=(σ2 + ‖β∗‖2)Eα1,z

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
. (6b)

The expectations above are taken over α1 ∼ N (0, 1) and z ∼ N (0, 1). Moreover, we have S ≥ 0 and R > 0,
where S = 0 if and only if b∗1 = 0.

Proof. Recall that we have dereived a representation of the EM update β′ in equation (3) after choosing an
appropriate orthonormal basis {vi}di=1 of Rd in which v1 = β/‖β‖ is the unit vector in the direction of the
current estimator, and v2 is the unit vector in span{β,β∗} that is orthogonal to v1. We restate equation (3)
below:

β′ = Eα1,...,αd

[
EY |α1,...,αd

[
tanh

(
b1α1

σ2
Y

)
Y

]∑
i

αivi

]
,

where the expectation is taken over αi
iid∼ N (0, 1), and Y | α1, . . . , αd ∼ N (α1b

∗
1 + α2b

∗
2, σ

2),where b1 :=
〈β,v1〉 = ‖β‖ > 0, b∗1 =: 〈β∗,v1〉, and b∗2 := 〈β∗,v2〉. Since the inner expectation does not depend on αj for
j ≥ 3, we have

Eα1,...,αd

[
EY |α1,...,αd

[
tanh

(
b1α1

σ2
Y

)
Y

]
αj

]
= Eα1,α2EY |α1,α2

[
tanh

(
b1α1

σ2
Y

)
Y

]
· Eαj [αj ] = 0.

This implies that β′ is in the span of v1 and v2, and the expression (3) can be rewritten as β′ = b′1v1 + b′2v2,
where b′1 and b′2

b′1 = Eα1,α2

[
EY |α1,α2

[
tanh

(
b1α1

σ2
Y

)
Y

]
α1

]
, (21a)

b′2 = Eα1,α2

[
EY |α1,α2

[
tanh

(
b1α1

σ2
Y

)
Y

]
α2

]
. (21b)
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Note that we can write Y d
= α1b

∗
1 + α2b

∗
2 + σz ( d

= means equality in distribution) for some z ∼ N (0, 1) that is
independent of α1 and α2. We call it the first representation of Y . In addition, since α2 and z are independent
and hence α2b

∗
2 + σz is Gaussian with mean 0 and variance σ2

2 , we can also write Y d
= α1b

∗
1 + σ2z for some

z ∼ N (0, 1) that is independent of α1, . We call it the second representation of Y . We next prove that b′1
and b′2 have the explicit expressions claimed in Lemma 1. The key tool is the Stein’s lemma for the Gaussian
distribution.

We start with the second coordinate b′2. Continuing from equation (21b), we have

b′2
(i)
=Eα1,α2,z

[
tanh

( b1α1

σ2
(σz + α1b

∗
1 + α2b

∗
2)
)

(σz + α1b
∗
1 + α2b

∗
2)α2

]
(ii)
=Eα1,α2,z

∂

∂α2

[
tanh

( b1α1

σ2
(σz + α1b

∗
1 + α2b

∗
2)
)

(σz + α1b
∗
1 + α2b

∗
2)

]
,

=b∗2 · Eα1,α2,z

[
tanh

( b1α1

σ2
(σz + α1b

∗
1 + α2b

∗
2)
)

+
α1b1
σ2

(σz + α1b
∗
1 + α2b

∗
2) tanh′

(
α1b1
σ2

(σz + α1b
∗
1 + α2b

∗
2)

)]
(iii)
= b∗2 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
,

where in step (i), we use the first representation of Y ; in step (ii), we apply Stein’s lemma with respect to α2;
and in step (iii), we use the second representation of Y . This shows that b′2 = b∗2S as desired.

For the first coordinate b′1, we use a similar strategy but apply Stein’s lemma in a different way. Using the
second representation for Y , we rewrite equation (21a) as

b′1 =Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
(σ2z + α1b

∗
1)α1

]
(22)

=b∗1 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
α2

1

]
+ σ2 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
zα1

]
. (23)

Applying Stein’s lemma to the first term in equation (23) with respect to α1 yields

b∗1 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
α2

1

]
=b∗1 · Eα1,z

∂

∂α1

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
α1

]
=b∗1 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+ α1

(
2b∗1b1α1

σ2
+
b1σ2

σ2
z

)
tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
=b∗1 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
+ b∗21 · Eα1,z

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
. (24)

On the other hand, applying Stein’s lemma to the second term in equation (23) with respect to z yields

σ2Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
α1z

]
= σ2

2Eα1,z

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
. (25)

Plugging the above identities (24) and (25) into equation (23), and using the relation that b∗1 +σ2
2 = ‖β∗‖2 +σ2,

we obtain that b′1 = b∗1S +R as desired.
Finally, we have R > 0 since it is the expectation of a random variable that is positive almost surely. For

the quantity S, we prove the following bounds in Section 6.1.1.

Lemma 6 (Lower and Upper Bounds for S). Let S, b1, b∗1 and σ2 be as in Lemma 1. We have

1−


√√√√

1 +
min

(
σ2
2
σ2 b1, b

∗
1

)
b∗1

σ2
2


−1

≤ S ≤ 1.

The lemma implies that S ≥ 0; moreover, S = 0 if and only b1 = 0 or b∗1 = 0. Since b1 := ‖β‖ 6= 0 by
assumption, the proof of Lemma 1 is complete.
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6.1.1 Proof of Lemma 6

Proof. Recall the expression for S:

S =Eα1Ez
[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
=2Eα1:α1≥0Ez

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
,

where the second equation holds due to the symmetry of the distribution for z. We make use of two elementary
properties of the Gaussian distribution and the tanh function:

Lemma 7 (Lemma 1 [10]). Let u, θ ≥ 0 and X ∼ N (u, σ2), then EX [tanh′(θX/σ2)θX] ≥ 0.

Lemma 8 (Lemma 2 [10]). Let u, θ ≥ 0 and X ∼ N (u, σ2), then EX [tanh(θX/σ2)] ≥ 1− exp
(
−min(u,θ)·u

2σ2

)
.

We apply Lemmas 7 and 8 with u = α1b
∗
1 and θ = α1

σ2
2
σ2 b1 to obtain the following lower bounds on the two

terms inside the inner expectation of S:

Ez
[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
≥ 1− exp

−α2
1b
∗
1 min

(
b∗1,

σ2
2
σ2 b1

)
2σ2

2


Ez
[
α1b1
σ2

(y + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
≥ 0

Combining these two lower bounds, we obtain that

S ≥2Eα1:α1≥0

1− exp

−α2
1b
∗
1 min

(
b∗1,

σ2
2
σ2 b1

)
2σ2

2



=Eα1

1− exp

−α2
1b
∗
1 min

(
b∗1,

σ2
2
σ2 b1

)
2σ2

2

 = 1−


√√√√

1 +
min

(
σ2
2
σ2 b1, b

∗
1

)
b∗1

σ2
2


−1

.

This proves the lower bound on S in Lemma 6. For the upper bound, we use the expression in equation (24)
from proof of Lemma 1 to obtain that

S = Eα1,z

[
α2

1 tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
− b1b

∗
1

σ2
α2

1 tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
≤ Eα1,z

[
α2

1 tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
≤ Eα1 [α2

1] = 1,

where the two inequalities above hold since tanh′(x) ≥ 0 and tanh(x) ≤ 1 for any x.

6.2 Proof of Theorem 2
Recall in Lemma 2 we show that the fixed points of population EM are the same as the stationary points of the
negative log-likelihood function. To prove Theorem 2, we first establish several technical lemmas.

We begin with an elementary lemma on smooth concave functions.

Lemma 9. Let f : R+ → R be a smooth and concave function, with a strictly decreasing derivative. Suppose
that f satisfies f(0) = 0, f ′(0) > 0, and limx→∞ f(x) = −∞. Then there exists a unique t > 0 such that f(t) = 0
and f ′(t) < 0. Moreover, f(x) > 0 if x ∈ (0, t) and f(x) < 0 if x ∈ (t,∞).

Proof. Since f has a continuous gradient at 0 with f ′(0) > 0, there exists t1 > 0 such that f ′(x) > 0 for all
x ≤ t1. We thus conclude that f(x) > 0 for all x ∈ (0, t1] by the Fundamental theorem of Calculus. By the
continuity of f and the condition that limx→∞ f(x) = −∞, there exists t2 > 0 such that f(t2) < 0. Rolle’s
theorem ensures that there exists t ∈ (t1, t2) such that f(t) = 0. Since f(0) = 0, the mean value theorem
ensures that there exists t3 ∈ (0, t) such that f ′(t3) = 0. Using the assumption that f has a strictly decreasing
derivative, we have f ′(x) ≤ 0 for all x ≥ t3 and f ′(x) > 0 for all x ∈ (0, t3). In particular, f ′(t) < 0 as t > t3.
Moreover, it follows that f(x) is strictly increasing on (0, t3) and it is strictly decreasing on (t3,∞), therefore,
f(x) > 0 when x ∈ (0, t) and f(x) < 0 when x > t.
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Using the above lemma, we can characterize the dynamic of the population EM iteration along the direction
of the current iterate β.

Lemma 10 (Dynamics Along β). Suppose that 〈β,β∗〉 ≥ 0 and β 6= 0. Let v1 be the unit vector of β, and b′1
be the notation used in Lemma 1, which denotes the the projection of the next EM iterate β′ onto span(v1).
There exists a unique positive number E(v1) satisfying

‖β‖ < b′1 < E(v1) if ‖β‖ < E(v1),

E(v1) < b′1 < ‖β‖ if ‖β‖ > E(v1),

b′1 = E(v1) if ‖β‖ = E(v1).

Proof. We use the same notations as in the proof of Lemma 1. When v1 is fixed, b′1 only depends on b1 = ‖β‖
from the expression (21a). Accordingly, we write

b′1 = f(b1) := Eα1,α2EY |α1,α2

[
tanh

(
b1α1

σ2
Y

)
Y α1

]
to emphasize b′1 is a function of b1. Let us check a few properties of f :

1. f is smooth since the tanh funcion is smooth.

2. f is strictly increasing and concave, since its derivative

f ′(b1) = Eα1,α2EY |α1,α2

[
(Y α1)2

σ2
tanh′

(
b1Y α1

σ2

)]
is positive and is strictly decreasing with respect to b1.

3. f(0) = 0 and f ′(0) > 1, since

f ′(0) =Eα1,α2EY |α1,α2

[
(Y α1)2

σ2

]
=

3b∗21 + b∗22 + σ2

σ2
> 1.

Let us define the shifted function g(b1) := f(b1)− b1. The function g is a strictly concave and smooth function
from Property 2 above. Moreover, we have g(0) = 0 and g′(0) > 0 from Property 3, and limb1→∞ g(b1) = −∞
from Property 4. With these properties of g, we deduce from Lemma 9 that there exists a unique E(v1) > 0
for g such that g(E(v1)) = 0. Moreover, we have g(b1) > 0 when b1 < E(v1), g(b1) < 0 when b1 > E(v1).
Equivalently, we have 

‖β‖ < b′1 < E(v1) if 0 < ‖β‖ < E(v1),

‖β‖ > b′1 > E(v1) if ‖β‖ > E(v1),

b′1 = E(v1) if ‖β‖ = E(v1).

This completes the proof of Lemma 10.

With Lemma 10, we can characterize the fixed points of population EM in a two-dimensional subspace
span(v,β∗).

Lemma 11 (Five Fixed Points in span(v,β∗)). Let v be an arbitrary unit vector satisfying v ⊥ β∗. In
span(β∗,v), the population EM update has exactly five fixed points: 0, β∗, −β∗, E(v)v and −E(v)v, where the
number E(v) > 0 is given in the proof of Lemma 10.

Proof. Recall our notation that β is the current iterate of population EM and β′ is the corresponding be next
iterate. When β = 0, we have β′ = 0 and thus 0 is a fixed point. It remains to consider non-zero fixed points.

We deduce from Lemma 1 that β is a fixed point if and only if b2 = b∗2S = 0, which means either b∗2 = 0 or
S = 0. Note that b∗2 = 0 if and only if β is in the same direction as β∗. Also note that S = 0 if and only if
b∗1 = 0 (as we consider b1 6= 0), or equivalently β is in the direction of v. We conclude that any non-zero fixed
point must be either in span(β∗) or in span(v).

Finally, recall Lemma 10, which states that there is a unique non-zero contraction point along the positive
direction of β. Therefore, in span(β∗), β∗ and −β∗ are the only two fixed points. In span(v), E(v)v and
−E(v)v are the only two fixed points.

We are now ready to prove Theorem 2, which is restated below for readers’ convenience.
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Theorem 2 (Population EM and Log-likelihood). Let v be an arbitrary unit vector orthogonal to β∗. In the
subspace span(v,β∗), the population negative log-likelihood function (7) has exactly five stationary points:

β∗, −β∗, 0, E(v)v, −E(v)v,

where E(v) > 0. In particular, ±β∗ are global minima, 0 is a local maximum, and ±E(v)v are saddle points
whose Hessians have a strictly negative eigenvalue. Moreover, these five points are the only fixed points of the
population EM (4) in span(v,β∗).

Proof. In the subspace span(v,β∗), Lemma 11 shows that population EM has exactly five fixed points ±β∗, 0
and ±E(v)v, which by Lemma 2 are the only stationary points of the negative log-likelihood L. Since L(β)
equals KL divergence between the MLR model with parameter β and the true model with parameter β∗, we
see that ±β∗ minimizes L (with value 0) and is hence the global maxima.

It remains to classify the other three stationary points. We do so by characterizing their Hessian, making
use the following proposition.

Proposition 1 (Hessian of Negative Log-Likelihood). The population negative log-likelihood L defined in (7)
has the Hessian matrix

H(β) =
1

σ2

(
I − EXEY |X

[
1

σ2
Y 2XX> tanh′

(
Y 〈X,β〉

σ2

)])
.

Moreover, if β is a stationary point orthogonal to β∗, then

〈β∗,H(β)β∗〉 ≤ − ‖β∗‖4

σ2(σ2 + ‖β∗‖2)
.

The proof of the proposition is postponed to Section 6.2.1. Using the proposition, we find the Hessian of L
at 0 is negative definite:

H(0) =
1

σ2

(
I − EXEY |X

[
1

σ2
Y 2XX>

])
= − 1

σ4
EX

[
〈β∗,X〉2XX>

]
� 0,

thereby proving that 0 is a local maxima.
Finally, we consider the stationary point E(v)v (the proof for −E(v)v is similar). We claim that E(v)v is

a local minimum of L restricted to the direction v. The claim follows from the following three observations: (i)
the population EM update does not increase the value of L, a general property of the EM algorithm. (ii) in
Section 2.1 we showed that if population EM is initialized in the subspace span(v) with v orthogonal to β∗,
then the iterates remain in span(v) (see the discussion after Lemma 1); (iii) Lemma 11 implies that in span(v),
population EM contracts to the point E(v)v. On the other hand, we find that E(v)v is a local maximum
of L restricted to the direction of β∗, as Proposition 1 ensures that

〈
β∗,H

(
E(v)v

)
β∗
〉
is strictly negative.

Combining pieces, we conclude that E(v)v is a saddle point, thereby completing the proof of Theorem 2.

6.2.1 Proof of Proposition 1

Proof. Recall that Lemma 2 relates the gradient of the log-likelihood to the population EM update:

∇βL(β) =
1

σ2
(β − β′).

Plugging in the expression for next iterate β′ of the population EM update (3) and differentiating with respect
to β, we find that the Hessian matrix is

H(β) =
1

σ2
(I −∇ββ′)

=
1

σ2

(
I − EXEY |X

[
1

σ2
Y 2XX> tanh′

(
Y 〈X,β〉

σ2

)])
.

Let β a stationary point orthogonal to β∗. As before, we use the orthonormal basis {v1,v2, . . . ,vd} satisfying
v1 = β

‖β‖ and v2 = β̂∗, and write X =
∑
i αivi, with αi

iid∼ N (0, 1) for i = 1, . . . , d. Also recall that b1 = 〈β,v1〉
and b′1 = 〈β′,v1〉 are respectively the projections of β and β′ onto the direction v1 (see Lemma 1). The
stationary point β is a fixed point of population EM, which means that

b1 = b′1 = Eα1,α2EY |α1,α2
α1Y tanh

(
b1α1

σ2
Y

)
. (26)
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Let β̂∗ = β∗/‖β∗‖ be the unit vector of β∗. We compute σ2〈β̂∗,H(β)β̂∗〉 as follows:

σ2〈β̂∗,H(β)β̂∗〉 =1− 1

σ2
Eα1,α2EY |α1,α2

[
Y 2α2

2 tanh′
(
α1b1
σ2

Y

)]
(i)
=1− 1

b1
Eα1,α2EY |α1,α2

∂

∂α1

[
Y α2

2 tanh

(
α1b1
σ2

Y

)]
=1− 1

b1
Eα1,α2EY |α1,α2

[
α1Y α

2
2 tanh

(
α1b1
σ2

Y

)]
(ii)
= 1− 1

b1
Eα1,α2EY |α1,α2

∂

∂α2

[
α1Y α2 tanh

(
α1b1
σ2

Y

)]
,

where in steps (i) and (ii), we apply Stein’s Lemma with respect to α1 and α2, respectively. We decompose the
last right hand side into three terms:

σ2〈β̂∗,H(β)β̂∗〉 = 1− 1

b1
Eα1,α2EY |α1,α2

[
α1Y tanh

(
α1b1
σ2

Y

)]
︸ ︷︷ ︸

A

− b∗2
b1

Eα1,α2EY |α1,α2

[
α1α2 tanh

(
α1b1
σ2

Y

)]
︸ ︷︷ ︸

B

− b∗2
σ2

Eα1,α2EY |α1,α2

[
α2

1α2Y tanh′
(
α1b1
σ2

Y

)]
︸ ︷︷ ︸

C

. (27)

The term A equals 0 thanks to the fixed point condition (26). It remains to control the terms B and C.
For term B, we apply Stein’s Lemma with respect to α2 to obtain:

B =
b∗2
b1

Eα1,α2EY |α1,α2

∂

∂α2

[
α1 tanh

(
α1b1
σ2

Y

)]
=
b∗22

σ2
Eα1,α2EY |α1,α2

[
α2

1 tanh′
(
α1b1
σ2

Y

)]
.

Note that Y admits the representation Y
d
= b∗1α1 + σ2z = σ2z with σ2 =

√
‖β∗‖2 + σ2 and z ∼ N (0, 1) is

independent of α1; moreover, we have b∗1 = 0 since β is orthogonal to β∗. It follows that

B
(i)
=
b∗22

σ2
Eα1,z

[
α2

1 tanh′
(
α1b1
σ2

σ2z

)]
=
b∗22

b1σ2
Eα1,z

∂

∂z

[
α1 tanh

(
α1b1
σ2

σ2z

)]
(ii)
=

b∗22

b1σ2
2

Eα1,z

[
σ2zα1 tanh

(
α1b1
σ2

σ2z

)]
(iii)
=

b∗22

b1σ2
2

Eα1,α2EY |α1,α2

[
α1Y tanh

(
b1α1

σ2
Y

)]
(iv)
=

‖β∗‖2

σ2 + ‖β∗‖2 , (28)

where steps (i) and (iii) follows from the aforementioned representation of Y , step (ii) holds by applying Stein’s
Lemma with respect to z, and step (iv) follows from the fixed point condition (26).

We turn to the term C. Using symmetry of the distribution for z as well as the even property of the function
tanh′, we may take the expectation conditioning on the event that α1 ≥ 0, α2 ≥ 0. Doing so gives

C :=
b∗2
σ2

Eα1,α2EY |α1,α2

[
α2

1α2Y tanh′
(
α1b1
σ2

Y

)]
=
b∗2
σ2

Eα1,α2,z

[
α2

1α2(b∗2α2 + σz) tanh′
(
α1b1
σ2

(b∗2α2 + σz)

)]
=

4b∗2
σ2

Eα1,α2:α1≥0,α2≥0α
2
1α2

[
Ez(b∗2α2 + σz) tanh′

(
α1b1
σ2

(b∗2α2 + σz)

)]
≥ 0, (29)

where the last step follows from Lemma 8 in Section 6.1.1.

18



Plugging equations (28) and (29) into equation (27), we obtain that

σ2〈β̂∗,H(β)β̂∗〉 = A−B − C ≤ − ‖β∗‖2

σ2 + ‖β∗‖2 .

Multiplying both sides by ‖β∗‖2/σ2 proves Proposition 1.

7 Proofs for Section 3
In this section, we prove the technical results in Section 3. In particular, Theorems 4 and 3 on angle convergence
are proved in Sections 7.1 and 7.2, respectively. Theorem 5 and Corollary 1 on `2 distance contraction are
proved in Sections 7.3 and 7.4, respectively.

7.1 Proof of Theorem 4
We restate the theorem below for readers’ convenience.

Theorem 4 (Sine Convergence). When 0 ≤ θ < π
2
, the population EM iteration (4) satisfies

sin θ′ ≤ κ2(θ) sin θ, (10)

where κ2(θ) =
(√

1 + 2η2

1+η2
cos2 θ

)−1

< 1. In particular, when θ < π
3
, we have κ2(θ) <

(√
1 + η2

1+η2

)−1

.

Proof. Using the explicit expression (5) of the population EM update given in Lemma 1, we compute the sine
of the angle θ′ between β′ and β∗:

sin θ′ =
Rb∗2

‖β∗‖
√
R2 + S2‖β∗‖2 + 2SRb∗1

= sin θ
1√

1 + (S/R)2‖β∗‖2 + 2(S/R)b∗1

≤ sin θ
1√

1 + 2(S/R)b∗1
. (30)

Recall that we have defined the quantities b∗1 = ‖β∗‖ cos(θ) and b∗2 = ‖β∗‖ sin(θ). Since R > 0 by Lemma 1, it
suffices to prove the lower bound S ≥ b∗1

σ2+‖β∗‖2R, which gives us the claimed result by plugging it into (30).
To establish the lower bound on S, we first observe from the expression for S and R in equation (6) that

S =Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

σ2z tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
︸ ︷︷ ︸

A

+ b∗1Eα1,z

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
= A+

b∗1
σ2 + ‖β∗‖2R.

We claim that A ≥ 0. Indeed, applying Stein’s lemma with respect to z yields

A =Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

σ2z tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
=Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
z2

]
.

We further rewrite the last right hand side as

Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
z2

]
=

1

2
Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
z2

]
+

1

2
Eα1,z

[
tanh

(
α1b1
σ2

(−σ2z + α1b
∗
1)

)
z2

]
=

1

2
E
[(

tanh

(
−α1b1

σ2
σ2z +

α2
1b
∗
1b1
σ2

)

)
+ tanh

(
α1b1
σ2

σ2z +
α2

1b
∗
1b1
σ2

)

))
y2

]
≥ 0,

where the last step follows from the numerical inequality that tanh(c+ x) + tanh(−c+ x) ≥ 0 for all x ≥ 0 and
any real number c. Combining pieces, we obtain that A ≥ 0 and hence S ≥ b∗1

σ2+‖β∗‖2R as desired.
Finally, note that κ2(θ) is increasing with respect to θ. It follows that κ2(θ) < κ2(π/2) = 1 for all θ ∈ [0, π/2),

and that κ2(θ) ≤ κ2(π
3

) =
(√

1 + η2

1+η2

)−1

when θ ≤ π
3
. This proves the last part of Theorem 4.
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7.2 Proof of Theorem 3
We restate the theorem below for readers’ convenience.

Theorem 3 (Cosine Convergence). When 0 ≤ θ < π
2
, the population EM iteration (4) satisfies

cos(θ′) ≥ κ1(θ) cos(θ), (9)

where κ1(θ) =

√
1 + sin2(θ)

cos2(θ)+ 1
2

(1+η−2)
. In particular, when θ ≥ π

3
, we have κ1(θ) ≥

√
1 + η2

2
3

+η2
. Consequently,

if cos(θ0) = Θ(1/
√
d), after T = O

(
max(1, η−2) log d

)
iterations, we get θT < π/3 or equivalently cos(θT ) ≥ 1

2
.

Proof. Theorem 4 establishes that sin θ′ ≤ κ2(θ) sin(θ) for all θ ∈ [0, π
2

), with κ2(θ) =
(√

1 + 2η2

1+η2
cos2(θ)

)−1

.
It follows that

cos(θ′) =
√

1− sin2(θ′)

≥
√

1− κ2(θ)2 sin2(θ)

=
√

cos2(θ) + (1− κ2(θ)2) sin2(θ)

= cos(θ)

√
1 +

1− κ2(θ)2

cos2(θ)
sin2(θ) (31)

= cos(θ)

√
1 +

sin2(θ)
1
2
(1 + η−2) + cos2(θ)

= cos(θ)κ1(θ).

Since κ1(θ) is increasing with respect to θ, it follows that κ1(θ) ≥ κ1(π
3

) when θ ∈ [π
3
, π

2
).

7.3 Proof of Theorem 5
We first state a lemma that is essential for the proof of Theorem 5. Recall the notations defined in Section 2.
Also recall the explicit expression (5) for the population EM update, which involves the quantities S and R:

S :=Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
R :=(σ2 + ‖β∗‖2)Eα1,z

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
.

Lemma 12 (Property of b′1). b′1 is increasing in b1. Consequently, b′1 is upper bounded by the limit value

lim
b1→∞

b′1 =
2

π

(
b∗1 tan−1

(
b∗1
σ2

)
+ σ2

)
. (32)

Proof. We first show that b′1 is increasing in b1 by making use of the expression (21a) for b′1 previously derived.
Differentiating b′1 with respect to b1 gives

db′1
db1

= Eα1,α2EY |α1,α2

[
tanh′

(
b1α1

σ2
Y

)
Y 2α2

1

]
≥ 0. (33)

Next, we show the limit value of b′1. Recall that b′1 = b∗1S+R by equation (5) in Lemma 1. Applying Stein’s
lemma with respect to z, we may rewrite the term R as

R =
σ2 + ‖β∗‖2

σ2
Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
zα1

]
.

In the limit b1 →∞, tanh function becomes sign function, hence

lim
b1→∞

R =
σ2 + ‖β∗‖2

σ2
Eα1,z[sign(α1(σ2z + α1b

∗
1))zα1]

=
σ2 + ‖β∗‖2

σ2

[
1

π

∫ ∞
0

2α1e
−
α2
1
2

(∫ ∞
α1b
∗
1

σ2

ze−
z2

2 dz

)
dα1

]
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=
σ2 + ‖β∗‖2

σ2

[
2

π

∫ ∞
0

α1e
−
α2
1b
∗2
1

2σ22 e−
α2
1
2 dα1

]

=
σ2 + ‖β∗‖2

σ2

2

π

σ2
2

b∗21 + σ2
2

=
2σ2

π
. (34)

Turning to the term S, we observe that limc→∞ cx tanh′(cx) = 0 for all x. It follows that

lim
b1→∞

S =Eα1,z [sign(α1(σ2z + α1b
∗
1))]

=
1

π

∫ ∞
0

∫ α1b
∗
1

σ2

−
α1b
∗
1

σ2

e−
z2

2 dz

 e−
α2
1
2 dα1

=
2

π

∫ ∞
0

∫ α1b
∗
1

σ2

0

e−
z2

2 dz

 e−
α2
1
2 dα1 =

2

π
tan−1(b∗1/σ2). (35)

Plugging equations (34) and (35) into limb1→∞ b
′
1 = b∗1 limb1→∞ S + limb1→∞R, we obtain the limit value of b′1,

thereby completing the proof of the lemma.

We are now ready to prove Theorem 5, which is restated below.

Theorem 5 (`2 Contraction). Suppose we have that θ < π/8. Recall the shorthands b1 := ‖β‖, b∗1 := ‖β∗‖ cos(θ),
b∗2 := ‖β∗‖ sin(θ) and σ2

2 := σ2 + b∗22 . The following holds for the population EM iteration (4):

• If b∗2 < σ or σ2
2
σ2 b1 < b∗1, then

‖β′ − β∗‖ ≤ κ3(θ)‖β − β∗‖+ κ3(θ)(16 sin3 θ)‖β∗‖ η2

1 + η2
, (11a)

where κ3(θ) =

(√
1 + min

(
σ2
2
σ2 b1, b

∗
1

)2

/σ2
2

)−1

.

• If b∗2 ≥ σ and σ2
2
σ2 b1 > b∗1, we have

‖β′ − β∗‖ ≤ 0.6‖β − β∗‖. (11b)

Proof. Using the basis system introduced in Section 2.1, we can write ‖β − β∗‖2 = |b′1 − b∗1|2 + |b′2 − b∗2|2. The
second term |b′2 − b∗2| can be as

0 ≤ (b∗2 − b′2) = (1− S)b∗2 ≤

(√
1 + min

(
σ2

2

σ2
b1, b∗1

)
b∗1/σ

2
2

)−1

b∗2 ≤ κ3(θ)b∗2, (36)

where we use the lower bound of S from Lemma 6.
It remains to upper bound |b′1 − b∗1|. We shall make use of the following consistency property of the

population EM update: When b1 = σ2

σ2
2
b∗1, the expression (22) for b′1 gives that

b′1 = Eα1α1

[
EY |α1∼N (α1b

∗
1 ,σ

2
2) tanh

(
α1b
∗
1

σ2
2

Y

)
Y

]
= Eα1 [α2

1b
∗
1] = b∗1. (37)

We separate the analysis into three cases.

Case I. b1 ≤ σ2

σ2
2
b∗1: In this case, we have

b′1 −
σ2

2

σ2
b1

(i)
= Eα1

α1E Y |α1

∼N (α1b
∗
1 ,σ

2
2)

tanh

α1(
σ2
2
σ2 b1)

σ2
2

Y

Y

− α1E Y |α1

∼N (α1
σ22
σ2
b1,σ

2
2)

tanh

α1(
σ2
2
σ2 b1)

σ2
2

Y

Y




(ii)

≥
(
b∗1 −

σ2
2

σ2
b1

)
Eα1

α2
1 min
µ∈(

σ22
σ2
b1,b
∗
1)

∂

∂µ

Ez∼N (0,1)

tanh

α1(
σ2
2
σ2 b1)

σ2
2

(z + µ)

 (z + µ)
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(iii)

≥
(
b∗1 −

σ2
2

σ2
b1

)
Eα1

α2
1

1− exp

−α2
1min

(
σ2
2
σ2 b1, b

∗
1

)2

2σ2
2



 , (38)

where in step (i) we use the consistency property in equation (37), in step (ii) we use mean-value theorem along
with the case assumption, and in step (iii) we apply Lemmas 7 and 8. Consequently, after some algebra we
obtain that

0
(i)

≤ b∗1 − b′1 ≤ κ3
3(θ)

(
b∗1 −

σ2
2

σ2
b1

)
≤ κ3

3(θ)(b∗1 − b1) ≤ κ3(θ)(b∗1 − b1), (39)

where the inequality (i) holds thanks to Lemma 12, which states that b′1 is increasing in b1. Combining the
bounds (36) and (39), we obtain that

‖β∗ − β′‖ ≤ κ3(θ)‖β∗ − β‖.

Case II. b1 > σ2

σ2
2
b∗1, σ > b∗2: Following a similar procedure as above in equation (38), we have

0 ≤ b′1 − b∗1 ≤ κ3
3(θ)

(
σ2

2

σ2
b1 − b∗1

)
= κ3

3(θ)(b1 − b∗1) + κ3
3(θ)

b∗2
2

σ2
b1. (40)

By the case condition, we κ3(θ) =

(√
1 +

b∗1
2

σ2
2

)−1

=
√

σ2+b∗2
2

σ2+‖β∗‖2 . We further divide the analysis into two

subcases:
Case II(a): Suppose that b1 > 2b∗1 or equivalently, b1 < 2(b1 − b∗1). Then we have

b′1 − b∗1 ≤ κ3
3(θ)(b1 − b∗1)

(
1 + 2

b∗2
2

σ2

)
= κ3(θ)(b1 − b∗1)

(
σ2 + b∗2

2

σ2 + ‖β∗‖2

)(
1 +

2b∗2
2

σ2

)
= κ3(θ)

(
σ2 + b∗2

2

σ2 + b∗1
2 + b∗2

2

σ2 + 2b∗2
2

σ2

)
︸ ︷︷ ︸

A

(b1 − b∗1).

Note that the term A is less than 1 since the nominator is no bigger than the denominator. Indeed, we have

σ2(σ2 + b∗21 + b∗22 − (σ2 + b∗22 )(σ2 + 2b∗22 )

= σ2(b∗21 − 2b∗22 )− 2b∗42

(i)

≥ σ2(b∗21 − 4b∗22 )
(ii)

≥ 0,

where step (i) holds because b∗2 < σ and step (ii) holds because b∗2
b∗1

= tanh(θ) = tan π
8
< 1/2. It follows that

0 ≤ b′1 − b∗1 ≤ κ3(θ)(b1 − b∗1),

in which case we have ‖β′ − β∗‖ ≤ κ3(θ)‖β − β∗‖ as desired.
Case II(b): Suppose that b1 < 2b∗1. Note that we can assume that b1

b∗2
2

σ2 ≥ ( 1
κ2
3(θ)
− 1)(b1 − b∗1). Otherwise,

we can easily get 0 ≤ b′1 − b∗1 ≤ κ3(b1 − b∗1) similarly by plugging the condition b1
b∗2

2

σ2 ≤ ( 1
κ2
3(θ)
− 1)(b1 − b∗1) into

the inequality (40). Squaring both sides of the inequality (40), we obtain that

(b′1 − b∗1)2 ≤ κ6
3(θ)(b1 − b∗1)2 + κ6

3(θ)

(
2

(
b∗2
σ

)2

b1(b1 − b∗1) +

(
b∗2
σ

)4

b21

)

≤ κ6
3(θ)(b1 − b∗1)2 + κ6

3(θ)

(
b∗2
σ

)4

b21

(
2κ2

3(θ)

1− κ2
3(θ)

+ 1

)
= κ6

3(θ)(b1 − b∗1)2 + κ6
3(θ)

(
b∗2
σ

)4

b21

(
2σ2 + 2b∗2

2 + b∗1
2

b∗1
2

)
︸ ︷︷ ︸

B

.
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We bound the term B as follows:

B = κ6
3(θ)

(
b∗2
σ

)4

b21

(
2σ2 + 2b∗2

2 + b∗1
2

b∗1
2

)
= κ2

3(θ)

(
b∗2
σ

)4

b21

(
2σ2 + 2b∗2

2 + b∗1
2

b∗1
2

)(
σ2 + b∗2

2

σ2 + ‖β∗‖2

)2

= κ2
3(θ)b∗2

4

(
b21
b∗1

2

)(
2σ2 + 2b∗2

2 + b∗1
2

σ2 + b∗2
2 + b∗1

2

)(
(σ2 + b∗2

2)2

σ4

)
1

σ2 + ‖β∗‖2
(i)

≤ κ2
3(θ)b∗2

4 · 4 · 2 · 4 ·
(

1

σ2 + ‖β∗‖2

)
= κ2

3(θ)
32b∗2

2

σ2 + ‖β∗‖2 b
∗
2

2
,

where the inequality (i) follows from the assumption that b1 < 2b∗1 and b∗2 < σ. Therefore, we get (b′1 − b∗1)2 ≤
κ2

3(θ)(b1 − b∗1)2 + κ2
3(θ)

32b∗2
2

σ2+‖β∗‖2 b
∗
2

2. Combining this bound with (b′2 − b∗2)2 ≤ κ2
3(θ)(b2 − b∗2)2, we obtain

‖β′ − β∗‖2 ≤ κ2
3(θ)‖β − β∗‖2 + κ2

3(θ)
32b∗2

2

σ2 + ‖β∗‖2 b
∗
2

2
.

We further upper bound the last right hand side using the inequality
√
a2 + b2 ≤ a+ b2

2a
. Doing so and recalling

the definition of the SNR η := ‖β∗‖
σ

gives

‖β′ − β∗‖ ≤ κ3(θ)‖β − β∗‖+ κ3(θ)
16b∗2

2

σ2 + ‖β∗‖2
b∗2

‖β − β∗‖ b
∗
2

≤ κ3(θ)‖β − β∗‖+ κ3(θ)(16 sin3 θ)‖β∗‖ η2

1 + η2
,

where we use the fact that b∗2 = ‖β∗‖ sin(θ) and b∗2
‖β−β∗‖ =

b∗2√
(b1−b∗1)2+(b∗2)2

≤ 1.

Case III. b1 > σ2

σ2
2
b∗1, σ < b∗2: In this case, we are able to establish a constant rate of contraction in local

region with high SNR.
First note that b′1 ≥ b∗1 and the difference (b′1 − b∗1) is increasing in b1. Therefore, invoking Lemma 12 yields

b′1 − b∗1 ≤
2

π

(
σ2 + b∗1 tan−1

(
b∗1
σ2

))
− b∗1

≤ 2

π

(
σ2 + b∗1 tan−1

(
b∗1
b∗2

))
− b∗1

≤ 2

π
(
√

2− θ cot θ)b∗2,

where we use the fact that σ2
2 = σ2 + b∗2

2 ≤ 2b∗2
2, tan−1

(
b∗1
b∗2

)
= π

2
− θ, and b∗1 = b∗2 cot θ. One can verify that

θ cot θ is decreasing in [0, π
2

]. It follows that

b′1 − b∗1 ≤
2

π

(√
2− π

8
cot

π

8

)
b∗2 ≤ 0.3b∗2.

On the other hand, we have

b∗2 − b′2 = (1− S)b∗2 ≤
b∗2√

1 + (b∗1/σ2)2

≤ b∗2√
1 + 1

2
(b∗1/b

∗
2)2

=
b∗2√

1 +
cot2 π

8
2

≤ 0.51b∗2.

Combining the above two bounds, we obtain that

‖β′ − β∗‖ ≤ 0.6b∗2 ≤ 0.6‖β − β∗‖,

thereby completing the proof of Theorem 5.
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7.4 Proof of Corollary 1
We restate the corollary below for readers’ convenience.

Corollary 1 (`2 Convergence). Suppose that the initial solution satisfies θ0 < π/8. There exists a constant
κ < 1 such that after T iterations of the population EM, we have the error bound

‖βT − β∗‖ < κT ‖β0 − β∗‖+ TκT ‖β∗‖ η2

1 + η2
. (12)

In particular, the constant κ can be taken to be the maximum among

0.6,

√(
1 +
‖β0‖2
σ2

)−1

,

√
1− 0.8η2

1 + η2
. (13)

Proof. Recall that θ is the angle between the current iterate and β∗, and that θ′ is the angle between the
next iterate and β∗. The sine convergence result in Theorem 4 ensures that θ′ < θ. Recall Theorem 5, which
establishes contraction of the `2 distance in each iteration. We shall first show that the contraction ratio
decreases as angle gets smaller, that is, κ3(θ′) ≤ κ3(θ) or equivalently

min

(
σ
′2
2

σ2
b′1, b

′∗
1

)2

/σ
′2
2 ≥ min

(
σ2

2

σ2
b1, b

∗
1

)2

/σ2
2 . (41)

Since θ′ < θ, we have b
′∗
1 > b∗1, b

′∗
2 < b∗2 and σ′2 < σ2. The analysis is divided into two cases.

• If σ
2
2
σ2 b1 ≥ b∗1, then the right hand side of equation (41) is b∗21 /σ

2
2 . From equation (40), we have b′1 ≥ b∗1.

Thus the left hand side of equation (41) satisfies

min

(
σ
′2
2

σ2
b′1, b

′∗
1

)2

/σ
′2
2 ≥ min

(
σ
′2
2

σ2
b∗1, b

∗
1

)2

/σ2
2 ≥ b∗21 /σ

2
2 .

• If σ
2
2
σ2 b1 < b∗1, then the right hand side of equation (41) is σ2

2
σ2 b1/σ

2. From equation (38), we have b′1 >
σ2
2
σ2 b1.

Thus the left hand side of equation (41) satisfies

min

(
σ
′2
2

σ2
b′1, b

′∗
1

)2

/σ
′2
2 ≥ min

(
σ2

2

σ2
b1, b

∗
1

)2

/σ2
2 =

σ2
2

σ2
b1/σ

2.

Combining the above two cases, we have shown that κ3(θ′) ≤ κ3(θ). This result implies that the `2
contraction ratio κ3(θt) for the t-th iteration can be uniformly upper bounded by κ3(θ0). We also recall
that κ2(θ0) is the corresponding contraction ratio for the sine convergence. We claim that their maximum,
max(κ3(θ0), κ3

2(θ0)), is upper bounded by the quantity κ defined in the statement of Corollary 1. Indeed, we
have the bound

max(κ3(θ0), κ3
2(θ0))

(i)

≤max

0.6,


√√√√

1 +
min(

σ2
2
σ2 b1, b

∗
1)2

σ2
2


−1

,

√1 +
2b∗1

2

σ2 + ‖β∗‖2

−3


≤max

0.6,

(√
1 +
‖β0‖2
σ2

)−1

,

(√
1 +

η2 cos2 θ0

1 + η2 sin2 θ0

)−1

,

(√
1 +

2η2 cos2 θ0

1 + η2

)−3


(ii)

≤ max

(
0.6,

(√
1 +
‖β0‖2
σ2

)−1

,

√
1− 0.8η2

1 + η2

)
:= κ.

Here step (i) holds because the first two quantities correspond to the two possible contraction rates in Theorem 5,
and the third quantity corresponds to κ2(θ0)3; step (ii) holds since θ0 < π/8.

With the above bound on the contraction ratios, we can then apply Theorem 5 to the t-th iteration of
population EM to obtain

‖βt+1 − β∗‖ ≤ κ‖βt − β∗‖+ κ(16 sin3 θt)‖β∗‖
η2

1 + η2
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≤ κ2‖βt−1 − β∗‖+ 2κ2(16 sin3 θt−1)‖β∗‖ η2

1 + η2

...

≤ κT ‖β0 − β∗‖+ TκT (16 sin3 θ0)‖β∗‖ η2

1 + η2

≤ κT ‖β0 − β∗‖+ TκT ‖β∗‖ η2

1 + η2
,

where the recursion step above holds because Theorem 4 ensures that sin3(θt) ≤ κ3
2(θt−1) sin(θt−1) ≤

κ3
2(θ0) sin(θt−1) ≤ κ sin3(θt−1) for all t ≥ 1, and the last inequality above holds because θ0 < π/8. This

completes the proof of Corollary 1.

8 Proofs for Finite-Sample EM in Middle-High SNR Regimes
In this section, we prove the technical results in Section 4 on finite-sample EM. We need the following norm
conditions for the estimator can be naturally met as the EM iteration proceeds:

Lemma 13 (Norm Bounds). If ‖β̃‖ ≤ ‖β∗‖/10, then

‖β̃′‖ ≥ ‖β̃‖(1 + d1 ·min{1, (‖β̃‖/σ)2}).

Otherwise, if ‖β̃‖ ≥ ‖β∗‖/10, then we have

‖β̃′‖ ≥ ‖β
∗‖

10
(1 + d2 ·min{1, η2}).

for some universal constants d1, d2 > 0. Furthermore, for every β̃ ∈ Rd, we have ‖β̃′‖ ≤ 3
√
‖β∗‖2 + σ2.

Lemma 13 states that if we start from ‖β∗‖/10, then we stably remain above ‖β∗‖/10. On the other hand,
if we start from small initialization, then we can wait for initial O(min(1, ‖β̃‖/σ)−2) iterations for the starting
estimator to become larger than ‖β∗‖/10. We defer the proofs to Appendix A.4.

8.1 Proof of Lemma 4
We restate the lemma below for readers’ convenience.

Lemma 4. With probability at least 1− δ, the following holds for all β satisfying ‖β‖ ≤ C
√
‖β∗‖2 + σ2 for

some universal constant C > 0:

cos(θ̃′) ≥ κ1(θ)(1− 10εf ) cos(θ)− εf , (17)

sin2(θ̃′) ≤ κ2
2(θ) sin2(θ) +O(εf ), (18)

where κ1(θ) =
√

1 + sin2 θ

cos2 θ+ 1
2

(1+η−2)
≥ 1, and κ2(θ) =

(
1 + 2η2

1+η2
cos2 θ

)−1

< 1.

Proof. Since n ≥ d log2(n/δ)/ε2f with εf := c
√
d log2(n/δ)/n, with probability at least 1− δ, from Lemma 3 it

follows that ∣∣∣〈β̃′ − β′,β∗〉∣∣∣ ≤ ‖β∗‖‖β‖ ·O (εf ) , (42)

‖β̃′ − β′‖ ≤ ‖β‖ ·O(εf ). (43)

The cosine of the angle between β̃′ and β∗ can be bounded as follows,

cos θ̃′ =
〈β̃′,β∗〉
‖β̃′‖ ‖β∗‖

=
〈β′,β∗〉
‖β̃′‖ ‖β∗‖

+
〈β̃′ − β′,β∗〉
‖β̃′‖ ‖β∗‖

= cos θ′
‖β′‖
‖β̃′‖

+
〈β̃′ − β′,β∗〉
‖β̃′‖ ‖β∗‖

≥ cos θ′
(

1− ‖β̃
′ − β′‖
‖β̃′‖

)
− |〈β̃

′ − β′,β∗〉|/‖β∗‖
‖β̃′‖
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where the last step from the triangle inequality. To proceed, we apply the concentration bounds (42) and (43);
we also make use of Lemma 13 which ensures ‖β̃′‖ = O(‖β‖). It follows that

cos θ̃′ ≥ cos θ′(1−O(εf ))−O (εf )

≥ κ(θ)(1−O(εf )) cos θ −O (εf ) , (44)

where the last step follows from Theorem 3 on the cosine convergence of population EM.
Turning to the sine of the angle, we have that

sin2 θ̃′ = 1− cos2 θ̃′

≤ 1− cos2 θ′ + cos2 θ′ − cos2 θ̃′

(i)
= sin2 θ′ +O(εf )

(ii)
≤ κ′(θ) sin2 θ +O(εf ), (45)

where in step (i) we use a similar approach as before to obtain the bound | cos2 θ′−cos2 θ̃′| ≤ 2| cos(θ′)−cos(θ̃′)| =
O(εf ), and in step (ii) we use Theorem 4 on the sine convergence of population EM.

8.2 Proof of Corollary 2
We restate the corollary below for readers’ convenience.

Corollary 2. If εf ≤ c1 min(1, η2) for a sufficiently small constant c1 > 0, then with probability 1− δ, we have
θ̃′ < θ in each iteration of Phases 2, and θ̃′ ≤ π

25
in Phase 3.

Proof. We consider three cases for θ. When θ ≥ π
3
, by inequality (17) we have

cos(θ̃′) ≥κ1(θ)(1− 10εf ) cos(θ)−O (εf )

(i)
≥κ1(θ)(1− 10εf ) cos(θ)− cos(θ)O(εf )

(ii)
≥ cos(θ)

(
κ1

(π
3

)
(1− 10εf )−O(εf )

)
where step (i) holds since the output of Phase 1 satisfies cos(θ) = Ω

(
max(1, η−2) · εf

)
, and step (ii) holds

since κ1(θ) is increasing in θ. Since εf ≤ c1 min(1, η2) for a sufficiently small c1 by assumption, we have
κ1(π

3
)(1− 10εf )−O(εf ) > 1 and hence θ̃′ < θ in Phase 2 as desired.

When π
25
≤ θ < π

3
, againby inequality (18) we have

sin2(θ̃′) ≤κ2(θ) sin2(θ) +O(εf )

≤κ2

(π
3

)
sin2(θ) +O(εf ),

where the last step holds because κ2(θ) is increasing in θ). Under our assumption on εf and the case assumption
on θ, we have κ2

(
π
3

)
sin2(θ) +O(εf ) < sin2(θ) and hence θ̃′ < θ in Phase 3 as desired.

Finally, when θ ≤ π
25
, again by inequality (18) we have

sin2(θ̃′) ≤ κ2(θ) sin2(θ) +O(εf )

≤ κ2

( π
25

)
sin2

( π
25

)
+O(εf ),

where the last step holds by the increasing property of κ2(·) and the case assumption on θ. Under our assumption
on εf , we have κ2

(
π
25

)
sin2

(
π
25

)
+O(εf ) ≤ sin2( π

25
) and hence θ̃′ ≤ π

25
in Phase 3 as desired.

8.3 Proofs of Theorem 6
We first prove Theorem 6, which is restated below for readers’ convenience.

Theorem 6 (Cosine Convergence, Finite-Sample). Suppose that β̃(0) is an iterate obtained from Phase 1. We
run the finite-sample EM with n = max(1, η−2)d/ε2f samples. As long as θ̃(t) > π/25 for all t < T , there exists
an universal constant c1 > 0 such that with probability 1− δ,

cos(θ̃(t)) ≥
(
1 + c1 ·min(1, η2)

)
· cos(θ̃(t−1)). (19)

In particular, if cos(θ̃(0)) = Θ(1), then we have cos(θ̃(T )) ≥ 0.95 after T = O
(

max(1, η−2) log d
)
iterations.
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Proof. The key idea in the above theorem is that when we bound the statistical error of cosine value, we need
to bound an error in one fixed direction u := β∗/‖β∗‖ instead of all directions in Rd to bound `2 norm. More
specifically, we first express the cosine value after one-step iteration:

cos θ̃′ =
(β∗)>β̃′

‖β̃′‖‖β∗‖

=
u>(β′ − β̃′)
‖β̃′‖

+
u>β′

‖β′‖
‖β′‖
‖β̃′‖

,

≥ −max

(
εf√
d
, ε2f

)
· r

‖β̃′‖
+
u>β′

‖β′‖
‖β′‖

‖β′‖+ rεf

≥ κt cosαt

(
1− rεf
‖β′‖

)
−max

(
εf√
d
, ε2f

)
r

‖β′‖ − rεf
,

where the last inequality comes from Theorem 3 for the population EM.
We need to show that we have r/‖β′‖ = O(1). If this is true, we can set εf as some sufficiently small

absolute constant (that does not depend on η). To show this, we apply Lemma 3 for several values of
r = C0, C02−1, ..., C02−l+1, C02−l where C0 = 3C and l = O(log(n/d)). We can replace δ by δ/ log(n/d) for
union bound, which does not change the order of statistical error. Pick k such that C02−k ≤ ‖β‖ ≤ C02−k+1 = r.

When ‖β‖ ≤ ‖β∗‖/10, we can apply the Lemma 13 to see

r/‖β′‖ ≤ C02−k+1/(C02−k) = 2,

where we used r = 2−k+1. Therefore, r/‖β′‖ = O(1). On the other hand, if ‖β‖ ≥ ‖β∗‖/10, then we divide the
cases when ‖β∗‖ ≥ 1/max(3, c2) where c2 > 0 satisfies the lower bound given in Lemma 5:

‖β′‖ ≥ ‖β‖(1− 4‖β‖2)− c2‖β‖‖β∗‖2.

When ‖β∗‖ ≥ 1/max(3, c2) and ‖β‖ ≥ ‖β∗‖/10, by Lemma 13 we have r/‖β′‖ ≤ C0 max(3, c2) = O(1) since
all parameters here are universal constants. On the other hand, if ‖β∗‖ ≤ 1/max(3, c2) and ‖β‖ ≥ ‖β∗‖/10,
then from Lemma 13 we have

‖β′‖ ≥ ‖β‖(1− 3‖β‖2)− c2‖β‖‖β∗‖2 ≥ ‖β‖/2.

Therefore, r/‖β′‖ ≤ C02−k+1/(C02−k−1) = 4 = O(1).
From the above case study, we have that

cos θ̃t+1 ≥ κt cos θ̃t(1− c1εf )− c2 max

(
εf√
d
, ε2f

)
,

for some absolute constants c1, c2 > 0. Now observe that as long as sin θt > cθ, κt = 1 + c3 min{1, η2} for some
sufficiently small constant cθ, c3 > 0. Also, recall that we are considering the middle-to-high SNR regime when
η2 ≥ cη

√
d log2(n/δ)/n for some sufficiently large constant cη > 0, whereas εf ≤ c

√
d log2(n/δ)/n for another

fixed constant c > 0. Therefore, there exists a universal constant c4 > 0 such that for all cos θ̃ ≥ εf , we have

cos θ̃t+1 ≥ (1 + c4 min(1, η2)) cos θ̃t.

After t = O(η−2 log(d)) iterations starting from cos θ̃0 = 1/
√
d, we have cos θ̃t ≥ 0.95 or sin θ̃t ≤ 0.1.

8.4 Stability and Convergence after Alignment
In this subsection, we see how the alignment is stabilized and the norm increases in case we start from small
initialization.

Sine stays below some threshold. Once β and β∗ are well-aligned, using sin2 θ = 1− cos2 θ, similar
arguments can be applied for sin values:

sin2 θ̃′ ≤ (1− c1 min(1, η2)) sin2 θ̃, if sin2 θ̃ ≥ c2
sin2 θ̃′ ≤ c2, else sin2 θ̃ ≤ c2,

for some absolute constants c1 > 0 and sufficiently small 0 < c2 < 0.01 given that cos θ̃ > 0.95.
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Initialization from small estimators after alignment. After the angle is aligned such that sin θ ≤ c2.
We see how fast ‖β‖ enters the desired initialization region that Theorem 7 requires, when ‖β‖ ≤ 0.9‖β∗‖.

Let us first consider the case 0.1‖β∗‖ ≤ ‖β‖ ≤ 0.9‖β∗‖. We recall Theorem 5 such that

‖β∗ − β′‖ ≤ κ‖β − β∗‖+ 16κ · sin2 θ‖β − β∗‖ η2

1 + η2

≤ κ(1 + (16 sin2 θ)η2)‖β − β∗‖,

where κ < 1− c3η2 for some absolute constant c3. By appropriately setting c2 and c3, we have

‖β∗ − β′‖ ≤ (1− c4 min(1, η2))‖β − β∗‖,

for some constant c4 > 0. Since we are in the regime η2 ≥ cη
√
d log2(n/δ)/n for sufficiently large cη, by

appropriately setting the constants we have ‖β̃′−β∗‖ ≤ (1− c5 min(1, η2))‖β−β∗‖ for some absolute constant
c5 > 0, as long as we are in the region 0.1‖β∗‖ ≤ ‖β‖ ≤ 0.9‖β∗‖. Hence after O(max(1, η−2)) iterations, we
reach to the desired initialization region.

Now we consider the case ‖β‖ ≤ 0.1‖β∗‖. In this case, by Lemma 13, we can show that

‖β′‖ ≥ ‖β‖(1 + c6 min{1, ‖β‖2, ‖β∗‖2}),

for some universal constant c6 > 0. After O(max{‖β‖−2, ‖β∗‖−2}) iterations, we enter ‖β‖ ≥ ‖β∗‖/10. Note
that when we start with ‖β̃0‖ = Ω(1), ‖β̃t‖ will stay above min{Ω(1), ‖θ∗‖/10} throughout all iterations due
to Lemma 13 and Lemma 5.

8.5 Proof of Theorem 7
We restate the theorem below for readers’ convenience.

Theorem 7 (`2 Convergence, Finite-Sample in Middle-to-High SNR Regimes). Suppose that β̃0 is an iterate
obtained from Phase 2 whose angle with β∗ satisfies θ̃0 <

π
25
. Furthermore, suppose that ‖β̃0‖ ≥ 0.9‖β∗‖. Then,

for any δ > 0, there exist universal constants C1, C2 > 0 such that with probability at least 1− δ,

‖β̃T − β∗‖ ≤ C1σmax{1, η−1}
(
d log2(nη/δ)/n

)1/2
after T ≥ C2 max{1, η−2} log(nη/d) iterations.

To prove the theorem, we consider two cases when η ≥ 1 and η ≤ 1.
Case (i) 1 ≤ η = O(1): Given the initialization conditions in Theorem 7, we can get the following corollary

of Theorem 5.

Corollary 3. When η ≥ 1 and sin θ < 0.1, we have

‖β′ − β∗‖ < 0.9‖β − β∗‖.

Furthermore, from the uniform concentration Lemma 3 for all β : ‖β − β∗‖ ≤ O(‖β∗‖), we have

‖β̃′ − β′‖ ≤ C‖β∗‖
√
d log2(n/δ)/n,

with probability 1− δ for some universal constant c > 0. From here, with η = O(1), we can check that

‖β − β∗‖ . 0.9t‖β − β∗‖+O

(
σ

√
d log2(n/δ)/n

)
.

Case (ii) C(d log2(n/δ)/n)1/4 ≤ η ≤ 1: In this case, the result of Theorem 5 shows that:

Corollary 4. When η ≤ 1 and sin θ < 0.1, we have

‖β′ − β∗‖ ≤
(

1− 1

8
η2

)
‖β − β∗‖. (46)
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In order to analyze the convergence of finite-sample EM operator, we first divide the iterations into several
epochs. Let C̄0 = ‖β̃0−β∗‖. We consider that in each lth epoch, β satisfies C̄02−l−1 ≤ ‖β−β∗‖ ≤ C̄02−l. Note
that such consideration of dividing into several epochs is only conceptual, and does not affect the implementation
of the EM algorithm.

Consider we are in lth epoch such that C̄02−l−1 ≤ ‖β − β∗‖ ≤ C̄02−l. The key idea is that in each epoch,
EM makes a progress toward the ground truth as long as the improvement in population operator overcomes
the statistical error, i.e.,

1

8
η2‖β − β∗‖ ≥ 2cr

√
d log2(n/δ)/n,

where c is a constant in Lemma 3. Here, since ‖β‖ ≤ ‖β∗‖+ ‖β − β∗‖, we can set r = ‖β∗‖+ C̄02−l. This in
turn implies that in lth epoch, if the following is true:

1

8
η2C̄02−l−1 ≥ 2cr

√
d log2(n/δ)/n ≥ 4c(‖β∗‖+ C̄02−l)

√
d log2(n/δ)/n,

then we have

‖β̃′ − β∗‖ ≤
(

1− 1

16
η2

)
‖β − β∗‖,

due to the concentration of finite-sample EM operators. Arranging the terms, we require that

C̄02−l
(
η2 − c1

√
d log2(n/δ)/n

)
≥ c2‖β∗‖

√
d log2(n/δ)/n,

for some universal constants c1, c2 > 0. Recall that we are in middle SNR regime where (with appropriately set
constants)

η2 ≥ (c1 + 1)

√
d log2(n/δ)/n.

Therefore, β is guaranteed to move closer to β∗ as long as

C̄02−l ≤ c2‖β∗‖η−2 ·
√
d log2(n/δ)/n ≤ c2η−1 · σ

√
d log2(n/δ)/n.

Note that each epoch takes O(η−2) iterations to enter the next epoch. We can conclude that after l = O(log(n/d))

epochs, we enter the region where ‖β − β∗‖ ≤ c2η−1σ
√
d log2(n/δ)/n for some absolute constant c2 > 0.

For δ probability bound, we can replace δ with δ/ log(n/d) and take a union bound of the uniform deviation
of finite-sample EM operators given in Lemma 3 for all epochs. This does not change the complexity in the
final statistical error.

Finally, the required number of iterations in each epoch is O(η−2) to make ‖β − β∗‖ a half. Since the
total number of epoch we require is O(log(n/d)), the total number of iterations is at most O(η−2 log(n/d)),
concluding the proof in middle-high SNR regime.

Remark 2. When ‖β∗‖ � σ so that η = ω(1), we have to show that the final statistical error is only
proportional to σ. For this case, we are not aware of how to give a good uniform concentration bound on the
finite-sample based EM operator. Furthermore, the analysis have to take a completely different path using a
event-wise concentration (e.g., [19]) to tighten the statistical fluctuation of EM operators. See our conference
version [21] for more details on how we handle this case in the high SNR regime.

8.6 Proof of Theorem 8
We restate the theorem below for readers’ convenience.

Theorem 8 (`2 Convergence, Finite-Sample in Low SNR Regime). Suppose η ≤ C(d log2(n/δ)/n)1/4 and
‖β̃0‖ = O(σ). Then there exist universal constants C1, C2 > 0 such that with probability at least 1− δ, we have

‖β̃T − β∗‖ ≤ C1σ(d log2(n/δ)/n)1/4

after T ≥ C2 log(log(n/d))
√
n/(d log2(n/δ)) iterations of finite-sample EM.

We divide the phases into two when ‖β̃0‖ is greater than 0.2σ, and then study when we start from the norm
smaller than 0.2σ. Note that we start from ‖β̃0‖ = O(σ).

29



8.6.1 Proof for the Case ‖β̃0‖ ≥ 0.2σ

First, suppose ‖β‖ ≥ 2/3σ. Then,

‖β′‖ ≤ sup
u∈Sd−1

E
[
(X>β∗)(X>u) tanh

(
Y X>β

σ2

)]
+ E

[
z(X>u) tanh

(
Y X>β

σ2

)]
≤ sup
u∈Sd−1

√
E[(X>β∗)2]E[(X>u)2] + E[|z(X>u)|],

≤ ‖β∗‖+ E[|z(X>u)|] ≤ ‖β∗‖+ 2σ/π.

where z ∼ N (0, σ2) such that Y = X>β∗ + z. Since the uniform deviation of finite-sample EM is given by
Lemma 3 as 2‖β‖

√
d log2(n/δ)/n, we can conclude that

‖β̃′‖ ≤ ‖β′‖+O

(
σ

√
d log2(n/δ)/n

)
≤ ‖β∗‖+ 2/π +O

(
σ

√
d log2(n/δ)/n

)
≤ 2/3σ.

Next, suppose 0.2σ ≤ ‖β‖ ≤ 2/3σ. Let v1 = β/‖β‖, and v2 is orthogonal to v1 such that span(v1,v2) =
span(β,β∗). We can start from

β′ = E
[
Y α1 tanh

(
Y α1‖β‖
σ2

)]
v1 + E

[
Y α2 tanh

(
Y α1‖β‖
σ2

)]
v2,

where α1 = X>v1 and α2 = X>v2. We will see in Appendix A.1 that 〈β′,v2〉 ≤ 1
2
‖β‖η2 ≤ c0σ

√
d log2(n/δ)/n

for some absolute constant c0 > 0. Therefore, we focus on bounding the first term.
Let a = 4, and define event E := {α2

1 + (z/σ)2 ≤ a}. We expand β′ as follows:

β′>v1 ≤
‖β‖
σ2

E[y2α2
11E ] + E[|Y α1|1Ec ]

≤ ‖β‖
σ2

E[z2α2
11E ] + E[|zα1|1Ec ] +O(‖β∗‖).

By converting the above expression to Rayleigh distribution with α1 = r cosw, (z/σ) = r sinw, we can more
explicitly find the values of the expectations in the above equation. That is,

E[(z/σ)2α2
11E ] =

1

2π

∫ 2π

0

cos2 w sin2 wdw

∫ 4

0

r5 exp(−r2/2)dr ≈ 1− 0.013,

and

E[|(z/σ)α1|1Ec ] =
1

2π

∫ 2π

0

| cosw sinw|dw
∫ ∞

4

r3 exp(−r2/2)dr ≤ 0.002,

Therefore, using ‖β‖ > 0.2σ,

〈β′,v1〉 ≤ ‖β‖(1− 0.013) +O(σ + ‖β∗‖) ≤ γ‖β‖,

where γ = 0.997 < 1. Since the deviation of finite-sample EM operator is in order σ
√
d log2(n/δ)/n, we can

conclude that

‖β′‖ ≤ γ‖β‖+O

(
σ

√
d log2(n/δ)/n

)
.

Hence we can conclude that after T = O(1) iterations, ‖β̃T ‖ ≤ 0.2σ.

8.6.2 Convergence after ‖β0‖ ≤ 0.2σ

As mentioned in the main text, the core idea of the low SNR regime is that EM essentially cannot distinguish
the cases between β∗ = 0 and β∗ 6= 0. Therefore, instead of studying the contraction of population EM operator
to β∗, we study its contraction to 0.

From Lemma 3, we immediately have that

sup
‖β‖≤r

‖β̃′ − β′‖ ≤ cr
√
d log2(n/δ)/n,
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for some universal constant c > 0. Given the contraction of population EM operator and the deviation bound
between the sample and population EM operators, we are ready to study the convergence behaviors of EM
algorithm under the low SNR regime. Our proof argument follows the localization argument used in Case (ii) of
middle SNR regime. In particular, let the target error be εn := c

√
d log2(n/δ)/n with some absolute constant

c > 0. We assume that we start from the initialization region where ‖β‖/σ ≤ εα0
n for some α0 ∈ [0, 1/2).

The localization argument proceeds as the following: suppose that εαl+1
n ≤ ‖β‖/σ ≤ εαln at the lth epoch for

l ≥ 0. We let c > 0 sufficiently large such that

εn ≥ 4cuη
2 + 4 sup

β∈B(β∗,rl)
‖β̃′ − β′‖/rl,

with rl = ε
αl
n . During this period, from Lemma 5 on contraction of population EM, and Lemma 3 concentration

of finite sample EM, we can check that

‖β̃′‖ ≤ ‖β‖ − 0.5‖β‖(‖β‖/σ)2 + cu‖β‖η2 + sup
β∈B(β∗,r)

‖β̃′ − β′‖

≤ ‖β‖ − σ

2
ε
3αl+1
n +

σ

4
εαl+1
n .

Note that this inequality is valid as long as εαl+1
n ≤ ‖β‖ ≤ εαln . Now we define a sequence αl using the following

recursion:

αl+1 =
1

3
(αl + 1). (47)

The limit point of this recursion is 1/2, which will give εα∞n ≈ (d/n)1/4 as argued in the main text. Hence
during the lth epoch, we have

‖β̃′‖ ≤ ‖β‖ − σ

4
εαl+1
n .

Furthermore, the number of iterations required in lth epoch is

tl := (εαln − ε
αl+1
n )/εαl+1

n ≤ ε−1
n .

After getting out of lth epoch, it gets into (l + 1)th epoch which can be analyzed in the same way. From this,
we can conclude that after going through l epochs in total, we have ‖β‖ ≤ εαl+1

n . Note that the number of EM
iterations taken up to this point is lε−1

n .
It is easy to check αl = (1/3)l(α0 − 1/2) + 1/2 from (47). We can set l = C log(1/β) for some universal

constant C such that αl is 1/2− β for arbitrarily small β > 0. In conclusion,

‖β̃t‖/σ ≤ ε1/2−βn ≤ c · (d ln2(n/δ)/n)1/4−β/2,

with high probability as long as t ≥ ε−1
n l &

√
d/n log(1/β) where c is some universal constant. Hence we can

set β = C/ log(d/n) to get a desired result ‖β̃t‖ ≤ cσ · (d ln2(n/δ)/n)1/4. Since ‖β∗‖ ≤ C0σ(d ln2(n/δ)/n)1/4,
it implies ‖β̃t − β∗‖ ≤ c1σ(d ln2(n/δ)/n)1/4 where c1 is some universal constant.

Note that we need the union bound of the concentration of sample EM operators for all l = 1, ..., C log(1/β),
such that the argument holds for all epochs. For this purpose, we can replace δ by δ/ log(1/β). This does not
change the order of εn, hence the proof is complete.

9 Conclusion
In this paper, we studied the EM algorithm for a mixture of two linear regression models. In the large sample
limit, we showed that EM converges to true parameters globally without any specialized initialization. In finite
sample case, we showed that EM enjoys the same convergences behavior, with the optimal statistical rates in
all SNR regimes of interest, matching the lower bounds provided in [8].

We believe that this work builds a ground for the analysis of the EM algorithm, as well as the landscape
of MLE problems for a mixture of two Gaussian-style distributions. One potential direction is to analyze the
EM algorithm in more general mixture models. This includes models with unequal mixing weights; in the
case of mixture of two Gaussians, this has been done in [33], a follow-up of this paper. Considering mixture
models with more general noise covariance and more than two mixture components, is also of interest and
would require additional techniques due to the existence of sub-optimal local minima [14]. Another interesting
regime is the high-dimensional case with sparse parameters [32, 39, 5], aiming to achieve the minimax rates in
all SNR regimes, which may exhibit additional challenges due to statistical-computational trade-off [4]. We
leave them as interesting future work.
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Appendices
A Technical Lemmas for Finite-Sample EM
In this Appendix, we give several deferred proofs for the main theorem. For the simplicity of the presentation,
we assume here that σ = 1, but original results hold with proper scaling.

A.1 Proof of Lemma 5
Let α1 = X>v1 and α2 = X>v2, where v1 = β/‖β‖ and span(v1,v2) = span(β,β∗).

Upper Bound: We first bound the first coordinate of the population operator from equation (3):

〈β′, v1〉 = Eα1,α2,Y [tanh(Y α1‖β‖)α1Y ] ,

We will expand the above equation using Taylor series bound of x tanh(x):

x2 − x4

3
≤ xtanh(x) ≤ x2 − x4

3
+

2x6

15
. (48)

Now we unfold the equation above, we have

〈β′, v1〉 =
1

‖β‖Eα1,α2,Y [tanh(Y α1‖β‖)Y α1‖β‖]

≤ 1

‖β‖Eα1,α2,Y

[
(Y α1‖β‖)2 − (Y α1‖β‖)4

3
+

2(Y α1‖β‖)6

15

]
≤ 1

‖β‖Eα1,z

[
(α1‖β‖(z + α1b

∗
1 + α2b

∗
2))2 − (α1‖β‖(z + α1b

∗
1 + α2b

∗
2))4

3

+
2(α1‖β‖(z + α1b

∗
1 + α2b

∗
2))6

15

]
,

where z ∼ N (0, 1) and we used Y = α1b
∗
1 + α2b

∗
2 + z with b∗1 = 〈β∗,v1〉 and b∗2 = 〈β∗,v2〉. Note here that, any

(constantly) higher order terms of Gaussian distribution is constant. Hence instead of computing all coefficients
explicitly for all monomials, we can simplify the argument as

〈β′, v1〉 ≤
1

‖β‖Eα1,z

[
(α1‖β‖z)2 − (α1‖β‖z)4

3
+

2(α1‖β‖z)6

15

]
+ c1‖β‖‖β∗‖2,

= ‖β‖(1− 3‖β‖2 + 30‖β‖4) + c1‖β‖‖β∗‖2, (49)

for some universal constant c1 > 0. Since we assumed ‖β‖ < 0.2, we have 3‖β‖2−30‖β‖4 ≥ ‖β‖2. We conclude
that

〈β′,v1〉 ≤ ‖β‖(1− ‖β‖2 + c1‖β∗‖2).

Then we bound the value in the second coordinate of the population operator:

〈β′,v2〉 = Eα1,α2,Y [tanh(Y α1‖β‖)Y α2] ,

where Y |(α1, α2) ∼ N (α1b
∗
1 + α2b

∗
2, 1). In order to derive an upper bound for the above equation, we rely on

the following equation which we defer the proof to the end of this section:

E [tanh(Y α1‖β‖)Y α2] = b∗2 E
[
α2

1 tanh(α1‖β‖(z + α1b
∗
1))− ‖β‖b∗1α2

1 tanh′(α1‖β‖(z + α1b
∗
1))
]
, (50)
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where z ∼ N (0, 1 + b∗2
2) with subsuming α2 from the equation. From (50), we can check that

E [tanh(Y α1‖β‖)Y α2] ≤ b∗2 E
[
α2

1 tanh(α1‖β‖(z + α1b
∗
1))
]

=
b∗2
2
E
[
α2

1 tanh(α1‖β‖(z + α1b
∗
1)) + α2

1 tanh(α1‖β‖(−z + α1b
∗
1))
]

≤ b∗2E
[
α2

1 tanh(α2
1‖β‖b∗1)

]
,

≤ ‖β‖b∗1b∗2E
[
α4

1

]
≤ 1

2
‖β‖‖β∗‖2,

where we used tanh(a+ x) + tanh(a− x) ≤ 2 tanh(a) for any a > 0 and x ∈ R.
From the above results, we have shown that

‖β′‖ ≤ |〈β′,v1〉|+ |〈β′,v2〉| ≤ ‖β‖
(
1− ‖β‖2 + c‖β∗‖2

)
, (51)

for some universal constant c > 0.

Lower Bound: To prove the lower bound of the population EM operator, we again expand the equation
using Taylor series (48):

‖β′‖ ≥ |〈β′,v1〉| ≥ ‖β‖(1− 3‖β‖2)− c2‖β‖‖β∗‖2. (52)

The result follows immediately with some absolute constant c2 > 0.

Proof of equation (50): For the left hand side, we apply the Stein’s lemma with respect to α2. It gives
that

E[tanh(‖β‖α1Y )Y α2] = E
[
d

dα2
tanh(‖β‖α1Y )Y

]
= E

[
d

dα2
tanh(‖β‖α1(z̄ + α1b

∗
1 + α2b

∗
2))(z̄ + α1b

∗
1 + α2b

∗
2)

]
= E[b∗2 tanh(‖β‖α1(z̄ + α1b

∗
1 + α2b

∗
2))

+ (‖β‖α1b
∗
2)(z̄ + α1b

∗
1 + α2b

∗
2) tanh′(‖β‖α1(z̄ + α1b

∗
1 + α2b

∗
2)]

= b∗2 E[tanh(‖β‖α1(z + α1b
∗
1)) + ‖β‖α1(z + α1b

∗
1) tanh′(‖β‖α1(z + α1b

∗
1)))]

where z̄ ∼ N (0, 1) and z ∼ N (0, 1 + b∗2
2). For the right hand side, we apply the Stein’s lemma with respect to

α1. First, we check the first term in the right hand side that

E[α2
1 tanh(‖β‖α1(z + α1b

∗
1))]

= E
[
d

dα1
(α1 tanh(‖β‖α1(z + α1b

∗
1)))

]
= E

[
tanh(‖β‖α1(z + α1b

∗
1)) + α1

d

dα1
tanh(‖β‖α1(z + α1b

∗
1)

]
= E

[
tanh(‖β‖α1(z + α1b

∗
1)) + ‖β‖α1(z + 2α1b

∗
1) tanh′(‖β‖α1(z + α1b

∗
1)
]
.

Plugging this into (50) and subtracting the remaining term gives the result that matches to the left hand side.

A.2 Proof of Lemma 3
For this result, we need the following lemma:

Lemma 14. Suppose ‖β∗‖ ≤ ρ for some universal constant ρ > 0. Then for any given r > 0, with probability
at least 1− δ, we have

sup
β:‖β‖≤r

∥∥∥∥∥ 1

n

n∑
i=1

yixi tanh
(
yix
>
i β
)
− E

[
YX tanh(YX>β)

]∥∥∥∥∥ ≤ cr
√
d ln2(n/δ)

n
, (53)

for some universal constant c > 0.
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Proof of Lemma 3. Let us assume that n ≥ Cd for sufficiently large constant C > 0. To simplify the notation,
we use Σ̂n = 1

n

∑
i xix

>
i . Observe that

‖β̃′ − β′‖ ≤ |||Σ̂−1
n |||op‖

1

n

n∑
i=1

yixi tanh(yix
>
i β)− β′‖+ |||Σ̂−1

n − I|||op‖β′‖.

The first term can be bounded by c1r
√
d log2(n/δ)/n with some absolute constant c1 > 0 using the results of

Lemma 14.
For the second term, since X ∼ N (0, I), from a standard concentration of measure we directly get

|||Σ̂−1
n − I|||op = |||Σ̂−1

n |||op|||Σ̂n − I|||op ≤ c2
√
d ln(1/δ)/n,

for some universal constant c2 > 0. If we can show that ‖β′‖ ≤ O(r), then we are done. To see this, first we
check that

‖β′‖ = ‖E[YX tanh(YX>β)]‖ ≤ ‖β‖|||E[Y 2XX>]|||op.

It is easy to check that E[Y 2XX>] = I + 2β∗β∗>, hence |||E[Y 2XX>]|||op = 1 + 2‖β∗‖2 ≤ 1 + 2C2 = O(1).
Therefore, ‖β′‖ ≤ c3‖β‖ ≤ c3r with a constant c3 = (1 + 2C2). This completes the proof of Lemma 3.

A.3 Proof of Lemma 14
Proof. We start with the standard discretization argument for bounding the concentration of measures in l2
norm. Let Z(β) := 1

n

∑n
i=1 yixi tanh

(
yix
>
i β
)
− β′. The standard symmetrization argument gives that [31].

P
(

sup
‖β‖≤r

‖Z(β)‖ ≥ t
)
≤ 2P

(
sup
‖β‖≤r

∥∥∥∥∥ 1

n

n∑
i=1

εiyixi tanh
(
yix
>
i β
)∥∥∥∥∥ ≥ t/2

)
, (54)

where εi are independent Rademacher random variables. We define a good event E := {∀i ∈ [n], |yi| ≤
τ, |x>i β∗| ≤ Cτ} as before, where τ = Θ

(√
log(n/δ)

)
. Then the probability defined in (54) can be decomposed

as

P

(
sup
‖β‖≤r

∥∥∥∥∥ 1

n

n∑
i=1

εiyixi tanh
(
yix
>
i β
)∥∥∥∥∥ ≥ t/2

∣∣∣∣E
)

+ P (Ec).

We are interested in bounding the following quantity for Chernoff bound:

E

[
exp

(
sup
‖β‖≤r

λ

n

∥∥∥∥∥
n∑
i=1

εiyixi tanh
(
yix
>
i β
)∥∥∥∥∥
)∣∣∣∣E

]
,

where we used Chernoff-Bound with some λ > 0 for the last inequality. We first go some steps before we
can apply the Ledoux-Talagrand contraction arguments [22], with fi(β) := tanh

(
|yi|x>i β

)
. First, we use

discretization argument for removing l2 norm inside the expectation.

E

[
exp

(
sup
‖β‖≤r

λ

n

∥∥∥∥∥
n∑
i=1

εiyixi tanh
(
yix
>
i β
)∥∥∥∥∥
)∣∣∣∣E

]

≤ E

[
exp

(
sup
u∈Sd

sup
‖β‖≤r

λ

n

n∑
i=1

εiyi(x
>
i u) tanh

(
yix
>
i β
))∣∣∣∣E

]

≤ E

[
exp

(
sup
j∈[M ]

sup
‖β‖≤r

2λ

n

n∑
i=1

εiyi(x
>
i uj) tanh

(
yix
>
i β
))∣∣∣∣E

]

≤
M∑
j=1

E

[
exp

(
sup
‖β‖≤r

2λ

n

n∑
i=1

εiyi(x
>
i uj) tanh

(
yix
>
i β
))∣∣∣∣E

]
,

where M is 1/2-covering number of the unit sphere S and {u1, ..., uM} is the corresponding covering set. Now
for each uj , we can apply the Ledoux-Talagrand contraction lemma since |fi(β1)− fi(β2)| ≤ |yi||x>i β1−x>i β2|
for β ∈ B(0, r):

E

[
exp

(
sup
‖β‖≤r

2λ

n

n∑
i=1

εiyix
>
i uj tanh

(
yix
>
i β
))∣∣∣∣E

]
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= E

[
exp

(
sup
‖β‖≤r

2λ

n

n∑
i=1

εi|yi|x>i uj tanh
(
|yi|x>i β

))∣∣∣∣E
]

≤ E

[
exp

(
sup
‖β‖≤r

2λ

n

n∑
i=1

εiy
2
i (x>i β)(x>i uj)

)∣∣∣∣E
]

≤ E

[
exp

(
sup

v∈Sd−1

2rλ

n

n∑
i=1

εiy
2
i (x>i v)(x>i uj)

)∣∣∣∣E
]
, (55)

where we define v := β/‖β‖. Again, we can apply the 1/2-covering number argument to bound this by

M∑
k=1

E

[
exp

(
4rλ

n

n∑
i=1

εiy
2
i (x>i uk)(x>i uj)

)∣∣∣∣E
]
.

Note that yi(x>i uj)|E is sub-Gaussian with Orcliz norm O(τ(1 + ‖β∗‖)) = O(τ). Since the multiplication of
two sub-Gaussian variables is sub-exponential, it implies that y2

i (x>i uk)(x>i uj)|E is sub-exponential with Orcliz
norm O(τ2) [30]. Now we need the lemma for the exponential moment of sub-exponential random variables
from [30].

Lemma 15 (Lemma 5.15 in [30]). Let X be a centered sub-exponential random variable. Then, for t such that
t ≤ c/ ‖X‖ψ1

, one has

E[exp(tX)] ≤ exp(Ct2 ‖X‖2ψ1
),

for some universal constant c, C > 0.

Finally, note that εiy2
i (x
>
i v)(x>i u1) is a centered sub-exponential random variable with the same Orcliz

norm. Equipped with the lemma, we can obtain that

E

[
exp

(
4λr

1

n

n∑
i=1

εiy
2
i (x>i uk)(x>i u1)

)∣∣∣∣E
]
≤ exp(Cλ2r2τ4/n), ∀|λr/n| ≤ c/τ2,

which yields

E

[
exp

(
sup
‖β‖≤r

λ

n

∥∥∥∥∥
n∑
i=1

εiyixi tanh
(
yix
>
i β
)∥∥∥∥∥
)∣∣∣∣E

]
≤ exp

(
Cλ2r2τ4/n+ C′d

)
, ∀|λ| ≤ n/cτ2r,

where we used logM = O(d) with some C,C′, c > 0. Combining all the above, we have that

P
(

sup
β∈B(β∗,r)

‖Z(β)‖ ≥ t
)
≤ exp

(
C0λ

2r2τ4/n+ C1d− λt/2
)

+ P(Ec).

From here, we can optimize for λ = O(t/r2τ4) with setting t = O
(
r
√
dτ4/n

)
. Since t = O

(
r
√
d log2(n/δ)/n

)
,

this concludes the proof.

A.4 Lower Bound on the Norm: Proof of Lemma 13
Let α = ∠(β,β∗). We recall here that b∗1 = β∗ cosα, b∗2 = β∗ sinα.

Case (i): cosα ≤ 0.2. This case we essentially give a norm bound for cosα = 0. Suppose that ‖β‖ ≤ ‖β∗‖/10.
We can first check that

‖β′‖ ≥ |〈β′, v1〉| = Eα1,α2,Y [tanh(Y α1‖β‖)Y α1]

= Eα1,α2,z[tanh((α1b
∗
1 + α2b

∗
2 + z)α1‖β‖)(α1b

∗
1 + α2b

∗
2 + z)α1],

where α1, α2, z ∼ N (0, 1). The above quantity is larger than the following b∗1 = 0 case:

Eα1,α2,z[tanh((α2b
∗
2 + z)α1‖β‖)(α2b

∗
2 + z)α1] = Eα1,z̄[tanh(z̄α1‖β‖)z̄α1],

where z̄ ∼ N (0, 1 + (b∗2)2) = N (0, σ2
2). We can lower bound the following quantity such that

Eα1,z̄[tanh(z̄α1‖β‖)z̄α1] ≥ σ2Eα1,z[tanh(σ2zα1‖β‖)zα1]
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≥ σ2Eα1,z[tanh(zα1‖β‖)zα1].

If ‖β‖ > 0.5, then through the numerical integration we can check that Eα1,z[tanh(0.5zα1)zα1] > 1/π. Hence,
we immediately have that

|〈β′, v1〉| ≥
1

π
σ2 ≥

sinα

π
‖β∗‖ ≥ 1

5
‖β∗‖,

since sinα > 0.9 in this case. Since we are considering the case when ‖β‖ ≤ ‖β∗‖/10, clearly we have

‖β′‖ ≥ ‖β‖(1 + 1 ·min(1, ‖β‖2)).

If ‖β‖ < 0.5, then we get a lower bound using Taylor expansion:

Eα1,z̄[tanh(z̄α1‖β‖)z̄α1] ≥ σ2

(
Eα1,z[‖β‖(zα1)2]− 1

3
Eα1,z[‖β‖

3(zα1)4]

)
= σ2‖β‖(1− 3‖β‖2) = ‖β‖

√
1 + 0.96η2(1− 3‖β‖2),

where ‖β∗‖ = η. Here, we consider three cases when η ≥ 5, 5 ≥ η ≥ 1, 1 ≥ η. When η ≥ 5, then we immediately
have |〈β′, v1〉| ≥ 1.25‖β‖. In case 5 ≥ η ≥ 1, we first note that since ‖β‖ ≤ ‖β∗‖/10, we check the value of

‖β‖
√

1 + 0.96η2(1− 0.03η2).

We can again, numerically check that
√

1 + 0.96η2(1− 0.03η2) ≤ 1.25 for 1 ≤ η ≤ 5. Finally, when η ≤ 1, then
a simple algebra shows that

‖β‖
√

1 + 0.96η2(1− 0.03η2) ≥ ‖β‖(1 + 0.3η2).

Combining all, we can conclude that when ‖β‖ ≤ ‖β
∗‖

10

‖β′‖ ≥ ‖β‖(1 + 0.25 ·min(1, ‖β∗‖2)) ≥ ‖β‖(1 + 0.25 ·min(1, ‖β‖2)).

Now note that 〈β′, v1〉 increases in ‖β‖, hence for all ‖β‖ ≥ ‖β∗‖/10, it holds that

‖β′‖ ≥ ‖β
∗‖

10
(1 + 0.25 ·min(1, ‖β∗‖2)).

Case (ii): cosα ≥ 0.2. Again, we can only consider when ‖β‖ ≤ ‖β∗‖/10 since the other case will
immediately follow. Their claim in this case is that |〈β′, v1〉| ≥ min

(
σ2

2‖β‖, b∗1
)
. Hence we consider two cases

when σ2
2‖β‖ = (1 + η2 sin2 α)‖β‖ ≤ b∗1 = ‖β∗‖ cosα and the other case.

In the first case when σ2
2‖β‖ ≤ b∗1, it can be shown that (see equation (39))

b∗1 − 〈β′, v1〉 ≤ κ3(b∗1 − σ2
2‖β‖),

where κ ≤
√

1 + (b∗1)2
−1

. Rearranging this inequality, we have

〈β′, v1〉 ≥ ‖β∗‖(1− κ3) cosα+ κ3(1 + η2 sin2 α)‖β‖

≥ ‖β‖2(1− κ3) + κ3(1 + η2 sin2 α)‖β‖

≥ ‖β‖+ (1− κ3)‖β‖.

Note that 1−κ3 ≥ c1 min(1, b21) for some constant c1 > 0. On the other side, if σ2
2‖β‖ ≥ b∗1, then we immediately

have

〈β′, v1〉 ≥ ‖β∗‖/5 ≥
‖β∗‖

10
(1 + 1 ·min(1, ‖β∗‖2)) ≥ ‖β‖(1 + 1 ·min(1, ‖β‖2)).

Combining two cases, we have that

‖β′‖ ≥ ‖β‖(1 + c1 ·min(1, ‖β‖2)).

Now similarly to Case (i), since 〈β′, v1〉 is increasing in ‖β‖, when ‖β‖ ≥ ‖β∗‖/10, we have

‖β′‖ ≥ ‖β
∗‖

10
(1 + c2 ·min(1, ‖β∗‖2)),

where c2 = c1/100. Collecting all results in two cases, we have Lemma 13.
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B Auxiliary Lemmas

B.1 Random Angle of a Gaussian
The following lemma characterizes the quality of a random initial iterate for EM.

Lemma 16 (Angle between a Gaussian and a fixed vector). Let X ∈ Rd be a random vector with independent
standard Gaussian entries. With probability at least 0.9− 2 exp(−cd), we have | cos(∠(X, e1)| = β(1/

√
d), where

e1 := (1, . . . , 0) is the first standard basis vector in Rd.

Proof. Note that cos(∠(X, e1)) = α1/
√∑d

i=1 x
2
i . Since the x2

i ’s are independent sub-exponential random
variables, By standard concentration result ensures that

P

(∣∣∣∣ d∑
i=1

x2
i − d

∣∣∣∣ > δd

)
≤ 2 exp(−cdδ2),

for some absolute constant c > 0. On the other hand, since α1 ∼ N (0, 1), we have |α1| ∈ (0.01, 2) with
probability at least 0.9. Combining, we conclude that with probability 0.9− 2 exp(−0.01cd),

0.01√
1.1d

≤ |α1|√∑d
i=1 x

2
i

≤ 2√
0.9d

.

B.2 Concentration of Second Order Moments
Lemma 17. With probability at least 1− δ, we have

||| 1
n

n∑
i=1

y2
ixix

>
i − I|||op = O

(
(‖β∗‖+ 1)2

√
d ln2(n/δ)

n

)
, (56)

Proof. Let εi be an independent Rademacher variable and zi = N (0, 1). We can write yi = εix
>
i β
∗ + zi.

We use the truncation argument for the of concentration of higher order moments. First define the good
event E := {∀i ∈ [n], |zi| ≤ τ, |x>i β∗| ≤ τ2|}. We will decide the order of τ later such that P (E) ≥ 1 − δ.
Let Ỹ ∼ Y |E , X̃ ∼ X|E and (ỹi, x̃i) be independent samples of (Ỹ , X̃). It is easy to check that Ỹ X̃ is a
sub-Gaussian vector with Orlicz norm O(τ + τ2) [30]. To see this,∥∥∥Ỹ X̃∥∥∥

ψ2

= sup
u∈Sd−1

sup
p≥1

p−1/2E
[
|Y (X>u)|p|E

]1/p
(57)

≤ (τ + τ2) sup
u∈Sd−1

sup
p≥1

p−1/2E
[
|X>u|p1E

]1/p
/P(E)1/p (58)

≤ (τ + τ2)K, (59)

for some universal constant K > 0 and the last inequality comes from the pth moments of Gaussian is O((2p)p/2)
and P (E) ≥ 1− δ.

Now we decompose the probability as the following:

P

(
||| 1
n

n∑
i=1

y2
ixix

>
i − I|||op ≥ t

)
≤ P

(
||| 1
n

n∑
i=1

y2
ixix

>
i − I|||op ≥ t|E

)
+ P(Ec)

≤ P

(
||| 1
n

n∑
i=1

ỹ2
i x̃ix̃

>
i − E[ỹ2x̃x̃>]|||op ≥ t/2

)
︸ ︷︷ ︸

(a)

+ P
(
|||E[Ỹ 2X̃X̃>]− I|||op ≥ t/2

)
︸ ︷︷ ︸

(b)

+P(Ec)︸ ︷︷ ︸
(c)

.
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We can use a measure of concentration for random matrices for (a) given that n ≥ Cd for sufficiently large
C > 0 [30], and bound by exp

(
− nt2

C(τ+τ2)4
+ C′d

)
for some constants C,C′ > 0. The bound for (c) is given by

n exp(−τ2), hence we set
τ = Θ

(√
log(n/δ)

)
, τ2 = ‖β∗‖τ.

Finally, for (b), we first note that

E[Y 2XX>] = E[Ỹ 2X̃X̃>]P (E) + E[Y 2XX>1Ec ].

Rearranging the terms,

|||E[Ỹ 2X̃X̃>]− I|||op ≤ |||E[Ỹ 2X̃X̃>]|||opP (Ec) +
√

sup
u∈Sd

E[Y 4(X>u)4]
√
P (Ec)

≤ (τ + τ2)2n exp(−τ2/2) + 3(τ + τ2)2√n exp(−τ2/4) ≤
√

1/n.

We can set t = O
(

(‖β∗‖+ 1)2
√
d log2(n/δ)/n

)
and get the desired result.

B.3 Initialization with Spectral Methods
Lemma 18. Let M = 1

n

∑n
i=1 y

2
ixix

>
i − I. Let the largest eigenvalue and corresponding eigenvector of M be

(λ1,v1). Then, there exists universal constants c0, c1 > 0 such that

|λ1 − ‖β∗‖2| ≤ c0(‖β∗‖2 + 1)

√
d log2(n/δ)

n
.

Furthermore, if ‖β∗‖ ≥ c1(d log2(n/δ)/n)1/4, then

sin∠(v1,β
∗) ≤ c0

(
1 +

1

‖β∗‖2

)√
d log2(n/δ)

n
≤ 1

10
.

Proof. The lemma is a direct consequence of Lemma 17 and matrix perturbation theory [31]. Note that
E[y2

ixix
>
i ] = I + 2β∗β∗> (e.g., see Lemma 1 in [41]).

The above lemma states that when ‖β∗‖ is not too small, we can always start from the well-initialized
point where it is well aligned with ground truth β∗. In low SNR regime where ‖β∗‖2 . (d/n)1/2, we cannot
guarantee such a well-alignment with β∗ since the eigenvector is perturbed too much. However, the largest
eigenvalue can still serve as an indicator that ‖β∗‖ is small. Hence in all cases, we can initialize the estimator
with β̃0 = max{0.2,

√
λ1}v1 to satisfy the initialization condition that we required in Phase 1.
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