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Abstract

This paper presents a novel optimization framework to address key challenges presented by modern
machine learning applications: High dimensionality, distributional uncertainty, and data heterogene-
ity. Our approach unifies regularized estimation, distributionally robust optimization (DRO), and
hierarchical Bayesian modeling in a single data-driven criterion. By employing a hierarchical Dirichlet
process (HDP) prior, the method effectively handles multi-source data, achieving regularization, distri-
butional robustness, and borrowing strength across diverse yet related data-generating processes. We
demonstrate the method’s advantages by establishing theoretical performance guarantees and tractable
Monte Carlo approximations based on Dirichlet process (DP) theory. Numerical experiments validate
the framework’s efficacy in improving and stabilizing both prediction and parameter estimation accu-
racy, showcasing its potential for application in complex data environments.

1 Introduction

A variety of problems in machine learning and statistics can be recast in terms of the following risk
minimization problem:

min
θ∈Θ

Rp⋆(θ), Rp⋆(θ) := Eξ∼p⋆ [h(θ, ξ)], (1)

where h : Θ × Ξ → [0,K] is a loss function (e.g., the squared error [42, 13], negative log-likelihood [10],
hinge [14], pinball [27], etc.) taking as input a parameter θ ∈ Θ ⊆ Rd and a data point ξ ∈ Ξ ⊆ Rp.1

Moreover, p⋆ is a data-generating distribution on the sample space Ξ (denoted as p⋆ ∈ PΞ), which is in
general unknown. To make problem (1) feasible, one usually approximates Rp⋆(θ) using a random sample

ξ = (ξ1, . . . , ξN ), a common choice being the empirical risk Rp⋆(θ) ≈ Rpξ(θ) := N−1
∑N

i=1 h(θ, ξi).
While empirical risk minimization (ERM) remains popular, its effectiveness is frequently challenged

by contemporary datasets. First, a common feature among such datasets is high dimensionality, which
often requires imposing additional structure on the data-generating mechanism through regularization
techniques. Secondly, the presence of complex generating processes coupled with limited sample sizes can
lead to distributional uncertainty, prompting the need for strategies to mitigate it. Thirdly, data often
display high levels of heterogeneity, for instance when observations are collected from diverse sources with
related, but not identical data-generating processes.

1We assume Ξ is a measurable set and endow it with the relative Borel sigma algebra B(Ξ). Moreover, when relevant,
we silently assume that maps with domain Ξ are measurable.
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In the recent past, several strands of work have focused on addressing each of these challenges sepa-
rately. First, popular strategies in the regularized estimation literature prescribe the penalization of the
parameter complexity (e.g., as measured by different notions of a norm). In regression problems, this
leads to well-known estimators like Ridge [24], LASSO [48], and the Elastic Net [55]. Most of these meth-
ods have also been shown to have a Bayesian interpretation [37, 29], leading to the proposal of further
generalizations and improvements [49, 9]. Second, a large evolving body of literature on distributionally
robust optimization (DRO) has provided several methods to deal with distributional uncertainty in a
variety of optimization tasks (though not always with data-driven applications as the primary focus; see
[39] for a recent review). The prevalent approach is min-max DRO (mM-DRO), whereby a worst-case
risk criterion over an ambiguity set of plausible distributions is minimized [23, 2, 3, 15, 52, 16]. Recent
notable contributions study mM-DRO problems in which the ambiguity set is defined as a Wasserstein
ball of probability measures centered at the empirical distribution [35, 28]. Interestingly, while connec-
tions between these methods and regularization have been established [45, 12, 5, 44, 18], no obvious
way to appropriately model heterogeneous data is available within the mM-DRO framework. Thirdly,
a long-standing tradition in statistics, especially within the Bayesian community, has dealt with data
heterogeneity, primarily via the development of complex hierarchical models [21, 20, 8]. These methods,
however, mostly rely on the specification of a complete generative model, hindering their applicability to
a variety of large-scale optimization-based methods in modern machine learning.

Contributions. In this work, we propose a novel optimization framework that allows to solve prob-
lem (1) in full generality and by simultaneously addressing the need for regularization, distributional
robustness, and borrowing strength across heterogeneous data sources. In particular, assume we observe
data coming from S different sources ξi = (ξi1, . . . , ξiNi), i = 1, . . . , S, and denote by ξN the pooled
sample of size N = N1 + · · · + NS . For example, consider a collection of baseline health conditions
measured on patients at S different hospitals, where we aim to assess the impact of such conditions on
the efficacy of some specific treatment. To accommodate for the likely heterogeneity across groups, we
propose replacing problem (1) with

min
θ∈Θ

V s
ξN

(θ), V s
ξN

(θ) :=

∫
PΞ

ϕ (Rp(θ))Q
s
N (dp)

for each group s = 1, . . . , S. In the above expression, Qs
N denotes the posterior distribution, conditional

on the samples ξ1, . . . , ξS , of the s-th group law ps under a hierarchical Dirichlet process (HDP) prior on
the vector of laws (p1, . . . , pS), while ϕ : R → R is a strictly increasing, convex, and twice continuously
differentiable function [1]. As we show in the rest of the paper, this criterion ensures

1. Regularization, via the prior information encoded in the top-level base measure of the HDP model;

2. Distributional robustness, via the curvature of ϕ inducing ambiguity aversion [1, 26];

3. Borrowing of strength across data sources, via the hierarchical structure of the HDP model.

As we discuss hereafter, our proposal integrates insights from decision theory under ambiguity and re-
cent advancements in Bayesian nonparametric statistics, with the goal of addressing generic data-driven
optimization tasks involving regularization, managing distributional uncertainty, and accommodating
data heterogeneity in a principled way. Importantly, throughout the article, we establish some key ad-
vantages of our criterion, among which (i) its favorable statistical properties in terms of finite-sample and
asymptotic performance guarantees; (ii) the availability of tractable approximations that are amenable to
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standard gradient-based optimization methods; and (iii) its ability to effectively borrow strength across
heterogeneous groups, as well as to both improve and stabilize the out-of-sample performance of standard
learning methods.

The rest of the paper is organized as follows. Section 2 discusses a general Bayesian optimization
framework that naturally allows for the incorporation of borrowing strength and distributional robustness.
In Section 3, we provide finite-sample and asymptotic performance guarantees for the proposed criterion.
Section 4 proposes tractable approximations to our criterion based on Monte Carlo integration and well
known representations of the Dirichlet process. Section 5 presents results from numerical experiments
testing our HDP-based robust method. Finally, Section 6 concludes the paper. The supplementary
material collects technical proofs (Appendix A), further background on the theoretical tools employed
throughout the paper (Appendix B), and further details on the numerical experiments (Appendix C).

2 A Bayesian Approach to Optimization With Heterogeneous Data

Recall the multiple-source optimization problem introduced in Section 1: We have data ξs ∈ ΞNs parti-
tioned in distinct groups indexed s = 1, . . . , S, and we are interested in solving

min
θ∈Θ

Rp⋆s (θ)

for each group s, where (p⋆1, . . . , p
⋆
S) is the vector unknown data-generating processes for the observations

in the S groups. For instance, going back to the scenario with data collected from patients at S hospitals,
assume that each ξsj comprises measurements of baseline health conditions and an indicator of efficacy
for a drug under examination. By choosing h(θ, ξ) as a regression (e.g., squared) loss function tailored to
predict efficacy from baseline conditions, the optimization process described above outputs the best-fitting
parameter vector θs⋆ ∈ argminθ∈ΘRp⋆s (θ).

Two common strategies to tackle the problem in practice are as follows. First, one can assume that
the S groups are completely homogeneous in distribution so that standard ERM would dictate solving
the pooled optimization problem

min
θ∈Θ

1

N

S∑
s=1

Ns∑
j=1

h(θ, ξsj),

whereby each group is assigned the same optimal parameter value outputted by the above procedure.
Second, one can assume that the laws of the distinct groups are completely unrelated to each other, so
that, following the ERM paradigm, one would solve

min
θ∈Θ

1

Ns

Ns∑
j=1

h(θ, ξsj)

separately for each group s = 1, . . . , S. But what if the laws governing the S samples are dependent,
yet not identical? In the running example, although treatment variations across different facilities might
introduce heterogeneity among patients sampled from different hospitals, some degree of similarity is
nonetheless expected. Particularly in smaller sample sizes, it becomes crucial to leverage this partial
homogeneity, as doing so opens the possibility for information borrowing and shrinkage across samples.

We now demonstrate that adopting a Bayesian approach facilitates the acknowledgment and efficient
utilization of this partial homogeneity in a principled manner. Specifically, given the unknown nature
of the group-specific laws, a well-established practice in Bayesian statistics and decision theory [41] is to
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manage uncertainty by specifying a prior Q for the vector of laws (p1, . . . , pS).
2 In particular, we model

the observations as partially exchangeable: For all s = 1, . . . , S and j = 1, . . . , Ns,

ξsj | (p1, . . . , pS)
ind∼ ps,

(p1. . . . , pS) ∼ Q.

This model implies that, while observations are exchangeable (i.e., distributionally homogeneous) within
groups, they might feature different yet dependent laws across groups. Notice that the two extreme cases
of identity in law and unconditional independence are accommodated by this construction by, respectively,
concentrating the mass of Q on the “diagonal” p1 = · · · = pS or specifying it as a product distribution
(i.e., forcing the ps’s to be unconditionally independent).

Given the above Bayesian model, a coherent way to approximate Rp⋆s (θ) is by posterior averaging,
which leads to minimizing

Eps∼Qs
N
[Rps(θ)] = Eps∼Qs

N
[Eξ∼ps [h(ξ, θ)]] ≡ Eξ∼pNs

[h(θ, ξ)], (2)

where Qs
N is the marginal posterior distribution of ps given ξ1, . . . , ξS and

pNs (dξ) :=

∫
PΞ

ps(dξ)Q
N
s (dps)

is the posterior predictive distribution for sample s.

2.1 The Dirichlet Process Prior

In the next Subsection, we specify the prior Q for the vector (p1, . . . , pS) as a hierarchical Dirichlet pro-
cess [46, 47]. A key building block of the latter is the univariate Dirichlet process (DP), the cornerstone
nonparametric prior for a single distribution p [17]. Intuitively, the DP is characterized by the following
finite-dimensional distributions: p ∼ DP(α, P ) implies that (p(A1), . . . , p(Ak)) follows a Dirichlet distri-
bution with parameters αP (A1), . . . , αP (Ak) for any finite measurable partition {A1, . . . , Ak} of Ξ.3 An

important feature of the DP is its almost sure discreteness, which yields p
d
=
∑

j≥1wjδξj for appropriately
defined sequences of random weights (wj)j≥1 and atoms (ξj)j≥1. The DP is also conjugate with respect
to exchangeable sampling, which implies

p ∼ DP(α, P ) ⇒ p | ξ1, . . . , ξn ∼ DP

(
α+ n,

α

α+ n
P +

n

α+ n

1

n

n∑
i=1

δξi

)
.

That is, conditional on the exchangeable sample ξ1, . . . , ξn, p is again a DP with updated concentration
parameter α + n and centered at the predictive distribution α

α+nP + n
α+n

1
n

∑n
i=1 δξi . The latter is a

compromise between the prior guess P and the empirical distribution 1
n

∑n
i=1 δξi , where relative weights

are determined by α and n. The predictive distribution is also related to the celebrated Blackwell-
MacQueen Pólya urn scheme (or Chinese restaurant process), which draws (ξi)i≥1 with law p ∼ DP(α, p0):
Sample ξ1 ∼ P and, for all i > 1 and ℓ < i, set ξi = ξℓ with probability 1/(α+j−1), else (with probability
α/(α+ j − 1)) sample ξi ∼ P [4].

2Note the distinction in notation: When considering the law of group s as a random probability within the Bayesian
framework, we denote it as ps, whereas when viewing it as the fixed but unknown data-generating process, we denote it as
p⋆s .

3Also, E[p(A)] = P (A) and V[p(A)] = (1 + α)−1P (A)[1 − P (A)] for any A ∈ B(Ξ), justifying the names of α and P .
Moreover, under mild assumptions, the DP enjoys full topological support [34], as desirable in our setting.
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2.2 The Hierarchical Dirichlet Process Prior

Recently, there has been increasing interest in the study of priors for dependent distributions, particu-
larly within the realm of Bayesian nonparametric. Many innovative methods have emerged, aiming to
devise dependent large-support priors that maintain tractability in the posterior and predictive structure
[33, 36, 40, 30, 31, 6]. Given our objective of addressing data-driven optimization tasks under minimal
distributional assumptions, we draw inspiration from this literature on nonparametric methods, specifi-
cally focusing on a seminal model in the field: The hierarchical Dirichlet process (HDP) prior [46, 47].
This model is specified hierarchically as follows:

ps | p0
iid∼ DP(αs, p0), s = 1, . . . , S, (3)

p0 ∼ DP(α0, H).

where H is a continuous distribution on (Ξ,B(Ξ)). Intuitively, the HDP prior models the dependent
distributions p1, . . . , pS as conditionally independent DP’s sharing the same centering distribution p0,
which is in turn assigned a DP prior. Dependence among each pair ps and ps̃, then, is cleverly induced
by allowing them to share the same base measure p0 a priori.

Further insight on the dependence induced by HDP priors is gained by considering their popular Chi-
nese restaurant franchise (CRF) representation [47], which relies on the following metaphor: A franchise
comprising S restaurants serves an infinite menu of dishes shared across restaurants and generated by the
centering measure H. Each restaurant has an infinite number of tables, each serving a single dish and ca-
pable of seating an infinite number of customers. The top-level, franchise-wide DP controls the assignment
of customers (observations) to dishes (across-groups clusters), while the bottom-level, restaurant-specific
DP’s controls the assignment of dishes to tables (within-sample latent clusters). This creates a two-stage
clustering procedure that allows different group laws (restaurants) to borrow information from each other
thanks to the common atoms (dishes).

Using the CRF construction (see Appendix B for a detailed derivation), one deduces that, by modeling
the vector of unknown distributions (p1, . . . , pS) as a HDP, the optimization problem (2) simplifies to the
minimization of

Ns

αs +Ns

1

Ns

Ns∑
j=1

h(θ, ξsj)︸ ︷︷ ︸
(a)

+
αs

αs +Ns

[
N

α0 +N

1

N

S∑
ℓ=1

Nℓ∑
j=1

h(θ, ξℓj)︸ ︷︷ ︸
(b)

+
α0

α0 +N
Eξ∼H [h(θ, ξ)]︸ ︷︷ ︸

(c)

]
. (4)

The above formula has the following interpretation. For each sample s, we optimize a compromise
between the within-group empirical risk (a) and some form of overall average risk (more on it later). This
compromise is naturally guided by the sample size Ns and the sample-specific concentration parameter
αs. In particular, for a large sample size Ns, the within-sample empirical risk dominates. Moreover, the
overall average risk component is itself a compromise between the overall across-group empirical risk (b)
and the expected risk (c) with respect to the prior centering distribution H. Also in this case, the balance
between these two components is controlled by the overall sample size N and the top-level concentration
parameter α0. Notice that the completely dependent (pooled optimization) case is obtained by taking
the αs → ∞ limit, while the unconditionally independent (separate optimization) case is obtained by
taking the α0 → ∞ limit. In both scenarios, the empirical risk is also regularized by a term depending
on the centering distribution H. Figure 1 summarizes the key components of the HDP risk proposed
in this work. In the next Subsection, we turn to discuss how to induce the last missing component:
Distributional robustness.
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Distributional Robustness

HDP Criterion

Group 1 Local Risk Group S Local Risk

Vanilla RiskPrior-Regularized Risk

· · ·
Borrowing strength

Nsαs, α0

αs, N

ϕ

Figure 1: Key components of HDP-based optimization.

Example 1. Assume each data point ξ = (y,x⊤)⊤ ∈ Rp+1 consists of the measurement of p features
x⊤ = (x1, . . . , xp) and a response y. If interested in linear prediction, one can choose h(θ, ξ) = (y−x⊤θ)2

for θ ∈ Rp, i.e., the classic quadratic loss. Moreover, assuming H = N (0, I), the ambiguity neutral
criterion in the previous equation is equivalent to

Ns∑
j=1

(ysj − x⊤
sjθ

s)2 +
αs

α0 +N0

S∑
ℓ=1

Nℓ∑
j=1

(yℓj − x⊤
ℓjθ

s)2︸ ︷︷ ︸
Borrowing strength

+
αsα0

α0 +N
∥θs∥22︸ ︷︷ ︸

Ridge penalty

.

In other words, the HDP model with this specific choice of prior centering measure H yields L2-regularized
least squares with borrowing of information [1]: Estimation of θs is guided by information borrowed
from the whole pooled sample ξN as well as the prior-induced L2 penalization.

2.3 Distributional Robustness via Smooth Ambiguity Aversion

Inspired by the seminal decision theory model of [26], [1] recently proposed a novel data-driven opti-
mization framework, alternative to mM-DRO and based on the Bayesian approach adopted here, which
effectively induces distributional robustness (see also [54], [53], [53], and [32] for previous related litera-
ture). Using our notation, the main idea is to transform the risk Rp(θ) through a suitable deterministic
function, before averaging it with respect to the posterior distribution of p. This basic method is easily
adapted to our multiple-source setting by replacing the non-robust problem (2) with

min
θ∈Θ

V s
ξN

(θ), V s
ξN

(θ) :=

∫
PΞ

ϕ (Rp(θ))Q
s
N (dp), (5)

where ϕ : [0,K] → R is a convex, strictly increasing, and twice differentiable transformation. Criterion (5)
incorporates (i) borrowing strength across groups, via the hierarchical structure of HDPs; (ii) regulariza-
tion, via the prior information encoded in the base distribution H; and (iii) distributional robustness, via
the curvature of ϕ. While (i) and (ii) follows from the above discussion on Equation (4) and Example 1,
we illustrate (iii) as follows [1]. Consider the simple case when only two models, p1 and p2, are supported
by a hypothetical posterior Q = 1

2δp1 +
1
2δp2 (for the sake of the illustration, assume there is only one

group, S = 1). Consider also two decisions θ1 and θ2 that, under p1 and p2, yield the expected risks
marked on the horizontal axis of Figure 3 in Appendix B. While

∫
Rp(θ1)Q(dp) =

∫
Rp(θ2)Q(dp) = R∗,

the convexity of ϕ implies
∫
ϕ(Rp(θ1))Q(dp) <

∫
ϕ(Rp(θ2))Q(dp). That is, although θ1 and θ2 yield the

same loss in Q-expectation, the ambiguity-averse criterion favors θ1 because it ensures less variability
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across uncertain distributions p1 and p2.4 In the data-driven context, this translates into a key robust-
ness property that mitigates distributional uncertainty: Given limited amounts of data, one looks for a
procedure yielding (i) good and (ii) not-too-variable out-of-sample performance across distributions over
which there is uncertainty. Choosing a posterior Q with large enough support, then, ensures that this
will hold for the underlying data-generating process as well.

3 Performance Guarantees

In this Section, we provide statistical guarantees on the performance of our robust optimization method.
For each group s = 1, . . . , S, denote by θsN ∈ argminθ∈Θ V s

ξN
a minimizer of the HDP criterion and recall

θs⋆ ∈ argminθ∈ΘRp⋆s (θ), our parameter of interest. In this setting, a natural measure of performance is
the narrowness of the gap between Rp⋆s (θ

s
N ) and Rp⋆s (θ

s
⋆), and Lemma 2 is a first step towards establishing

this type of guarantee.

Lemma 2. Let ϕ be twice continuously differentiable on (0,K), with Fϕ := supt∈(0,K) ϕ
′(t) and Sϕ :=

supt∈(0,K) ϕ
′′(t) ≥ 0. Then

sup
θ∈Θ

|V s
ξN

(θ)− ϕ(Rp⋆s (θ))|

≤ Ns

αs +Ns
Fϕ sup

θ∈Θ
|Rpξs

(θ)−Rp⋆s (θ)|

+
αs

αs +Ns
Fϕ sup

θ∈Θ

∣∣∣∣ N

α0 +N
Rp

ξN
(θ) +

α0

α0 +N
RH(θ)−Rp⋆s (θ)

∣∣∣∣+ K2

2
Sϕ.

Remark 3. Lemma 2 provides insight into the benefits of regularization and borrowing strength as encoded
in the criterion V s

ξN
(θ). The result reveals that the maximum distance between the robust and the true

criterion for sample s can be bounded by a weighted sum of (i) the maximum distance between the naive
empirical risk criterion and the true one, (ii) the maximum distance between a mix of the regularized
and empirical across-group criteria from the true criterion, and (iii) a term depending on the curvature
of ϕ. In particular, this characterization implies that, if group s is similar in distribution to the other
groups, the worst-case distance between our criterion and the ground truth can be improved through the
borrowing of strength enabled by the proposed methodology. The same holds for the regularization term
RH(θ), which can improve worst-case performance if it encodes accurate prior information on the data-
generating process p⋆s (e.g., sparsity, correlation structure, and so on.).

The next Proposition is useful because it reveals the possibility of obtaining finite-sample probabilistic
performance certificates by establishing analogous guarantees for the naive empirical risk of each group
s. The latter is a classic topic in modern statistical learning theory, which has produced a variety of
techniques to ensure ERM convergence by imposing restrictions on the complexity of the function class
H := {h(θ, ·) : θ ∈ Θ}, for instance by controlling its VC dimension, metric entropy, etc. We refer the
reader to [51, 50] for an exhaustive treatment of the topic. We also highlight that such a straightforward
transfer from classical theory to our methodology is a key dividend of the smoothness and tractability of
the proposed criterion.

4Interestingly, [11] also showed a connection between this smooth ambiguity aversion model and mM-DRO. See Appendix
B for further details.
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Proposition 4. For all δ > 0,

P[ϕ(Rp⋆s (θ
s
N ))− ϕ(Rp⋆s (θ

s
⋆)) ≤ δ]

≥ P

[
sup
θ∈Θ

|Rpξs
(θ)−Rp⋆s (θ)| ≤

αs +Ns

Ns

(
δ

2Fϕ
− αs

αs +Ni
K − K2

2

Sϕ

Fϕ

)]
.

Turning to asymptotic convergence results as the sample size Ns increases, note that finite-sample
guarantees on supθ∈Θ |Rpξs

(θ)−Rp⋆s (θ)| are usually of the form

P
[
sup
θ∈Θ

|Rpξs
(θ)−Rp⋆s (θ)| ≤ δ

]
≥ 1− ηn,

with
∑∞

n=1 ηn < ∞. This, in conjunction with the first Borel-Cantelli lemma, implies

lim
Ns→∞

sup
θ∈Θ

|Rpξs
(θ)−Rp⋆s (θ)| = 0

almost surely, which we include as an assumption of the next Proposition proving convergence of optimal
values to the true target. Moreover, we introduce a functional dependence of ϕ on n, and denote ϕ ≡ ϕn

accordingly.5

Proposition 5. Retain the assumptions of Lemma 2 and, for all s = 1, . . . , S, assume

lim
Ns→∞

sup
θ∈Θ

∣∣Rpξs
(θ)−Rp⋆s (θ)

∣∣ = 0

almost surely. Moreover, assume that ϕn satisfies (1) limn→∞ Sϕn = 0, (2) supn≥1Mϕn < ∞, and
(3) limn→∞ supt∈[0,K] |ϕn(t) − t| = 0. Then the next two limits hold almost surely for every sample
s = 1, . . . , S:

lim
Ns→∞

Rp⋆s (θ
s
N ) = Rp⋆s (θ

s
⋆), lim

Ns→∞
VξN (θ

s
N ) = Rp⋆s (θ

s
⋆).

Finally, in the next Proposition, we prove convergence of the robust criterion optimizers to the target
parameter depending on the true unknown data-generating mechanism.

Proposition 6. Let θ 7→ h(θ, ξ) be continuous for all ξ ∈ Ξ and limNs→∞Rp⋆s (θ
s
N ) = Rp⋆s (θ

s
⋆) almost

surely. Then, almost surely and for all samples s = 1, . . . , S, limNs→∞ θsN = θ̄ implies Rp⋆s (θ̄) = Rp⋆s (θ
s
⋆).

4 Monte Carlo Approximate Criterion

Due to the infinite dimensionality of the HDP marginal posterior Qi
N (dp) and the non-linearity of the

convex transformation ϕ, the integral defining V i
ξN

(θ) in Equation (5) is analytically intractable. Hence,

for practical implementation, we need to resort to suitable approximation schemes. The following result
yields a key step in this direction.

5Note that the assumptions imposed on ϕn intuitively (and desirably) require that, as the sample size grows, the ambiguity
aversion of the criterion vanishes (ϕNs converges smoothly to the identity function). The assumptions are met by ϕn(t) =
βn exp(t/βn)− βn, with limn→∞ βn = ∞, which from now on we silently assume to be our choice of ϕ.
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Proposition 7 ([7], Theorems 9 and 10, Example 5). Assume the vector of laws (p1, . . . , pS) is modeled
as in Equation (3) and that the true laws (p1⋆, . . . , p

S
⋆ ) are diffuse. Then

p0 | ξ1, . . . , ξS ∼ DP

(
α0 +N,

N

α0 +N

1

N

S∑
s=1

Ns∑
j=1

δξsj +
α0

α0 +N
H

)
,

ps | p0, ξ1, . . . , ξS
id∼ DP

(
αs +Ns,

Ns

αs +Ns

1

Ns

Ns∑
j=1

δξsj +
αs

αs +Ns
p0

)
, s = 1, . . . , d.

Proposition 7 allows to set up a two-stage procedure to obtain an approximate Monte Carlo sample
from the marginal posterior Qs

N of ps: First, simulate p0 | ξ1, . . . , ξS , then simulate ps | p0, ξ1, . . . , ξS .
Then, the sampled measure ps (which, as a DP realization, is discrete) can be used to compute ϕ(Rps(θ)),
and a Monte Carlo average over many such samples approximate V s

N (θ) =
∫
ϕ(Rps(θ))Q

s
N (dps). More-

over, this two-step procedure is simplified by the fact that, at both levels, we need to approximately
simulate from DP distributions. This is possible by appealing to various DP constructions, e.g., via stick-
breaking (SB) [43, 25] or multinomial-Dirichlet (MD) approximation [22]. In Appendix B, Algorithm 1
spells out the two-step simulation introduced above based on either SB or MD approximations of the DP,
while Algorithms 2 and 3 provide details on SB and MD procedures.

5 Numerical Optimization and Experiments

In this Section, we complement our theoretical analysis with empirical evidence on the benefits of our
method. To the best of our knowledge, there is no obvious benchmark that allows for distributional
robustness and borrowing strength at the same time. Therefore, in our numerical experiments with
data coming from heterogeneous sources, we compare our method to (i) naive (non-robust) estimation
procedures and (ii) the robust DP method of [1]. As neither alternative allows for borrowing strength,
we implement both of them with two settings: By pooling the distinct sources into one single sample,
and by keeping them entirely separate.

Numerical Optimization. Given the approximation strategies we proposed for the HDP criterion, in
practice one ends up minimizing a function of the form

V̂s(θ) =
1

M

M∑
m=1

ϕ

 T∑
j=1

pmj h(θ, ξmj )


for each sample s. Under mild regularity assumptions on the loss function, h(θ, ξ), V̂s is easily optimized
via first-order methods. For instance, assuming we have access to the gradient ∇θh(θ, ξ) for all ξ ∈ Ξ,
a simple yet scalable solution is to adopt a stochastic gradient descent (SGD) algorithm of the following
type: At each iteration t, select a (possibly random) index mt ∈ {1, . . . ,M}, then perform a gradient-
based update of the form

θt = θt−1 − ηt ϕ
′

 T∑
j=1

pmt
j h(θt−1, ξmt

j )

 T∑
j=1

pmt
j ∇θh(θ

t−1, ξmt
j )

︸ ︷︷ ︸
(⋆)

,
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Figure 2: Comparison of out-of-sample performance and estimation accuracy of different methods in high-
dimensional regression experiments. The robust HDP method (in bright red) outperforms the others both
in terms of the average and the variability of performance. Note: Distance from truth is measured as the
square L2 distance between the estimated coefficients and the data-generating ones.

where ηt is a pre-specified step size and (⋆) is an unbiased Monte Carlo estimate of the gradient of
V̂s evaluated at θt−1. This procedure highlights several appealing features of our method. First, the
smoothness of the criterion opens the door for simple, off-the-shelf optimization procedures, which are
not in general available for other DRO methods. Second, the convexity of h is easily seen to be inherited
by V̂s, so that standard SGD convergence results for convex objectives hold [19]. Third, the form of the
gradient allows to choose the truncation step T and the number of Monte Carlo samplesM by interpreting
them as the SGD minibatch size and the number of passes over the data, respectively. In fact, assume
that the number of SGD iterations is chosen as a multiple of M and that mt is chosen deterministically
as follows: m0 = 1 and mt = mt−1+1. Then, the algorithm requires T gradient evaluations at each step,
and it iterates N times over the whole (augmented) data. Finally, because ϕ is convex, ϕ′ is increasing
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so that (⋆) can be interpreted as a form of robustly weighted gradient : The worse the current parameter
value θt−1 performs on the selected minibatch mt, the more the procedure weights the corresponding
gradient step.

Experiments. In the first experiment, we test the performance of the HDP robust criterion in a two-
sample high-dimensional linear regression task, comparing it to OLS and robust DP estimation (both
pooling samples and keeping them separate). In each simulation, we generate two size-100 samples of 95
features and a response, where the latter is linearly influenced by only 5 features. Moreover, the 5 non-
zero coefficients are simulated at each iteration with positive correlation across samples, and we explore
various degrees of dependence. Figure 2a shows the results of the study with 100 simulations, revealing
that the robust HDP method outperforms, both in terms of out-of-sample risk and estimation accuracy,
all of the other methods. Importantly, on top of doing better on average, HDP-robust estimation displays
less variable performance. Figure 5 in Appendix C shows similar results when the degree of dependence
among group laws is made even less or even more pronounced.

In the second simulation experiment, we test the performance of the HDP robust criterion in a two-
sample high-dimensional median linear regression task, comparing it to the same baselines as above.
Instead of recovering the conditional mean structure of the data-generating process, this method aims
to reconstruct the conditional median of the response variable as a linear function of the features, which
makes estimation more robust to outlier data points [27]. Using a data-generating process analogous to
the first experiment, we test the ability of our HDP robust model to improve and stabilize performance
when varying degrees of dependence are induced across heterogeneous groups. Figure 2b (and Figure 6
in Appendix C) show results in line with those of the linear (mean) regression above, with our robust
HDP method in general outperforming the baselines on average and in terms of variability.

6 Discussion

In this paper, we put forward a data-driven optimization procedure that leverages hierarchical Dirich-
let processes and a recently introduced Bayesian DRO framework to effectively induce regularization,
distributional robustness, and borrowing strength among heterogeneous data sources. In particular, we
provided performance guarantees of the proposed criterion, introduced Monte Carlo approximations that
are easily optimized via gradient-based methods, and demonstrated the framework’s efficacy through
numerical experiments. While our results are promising, a few limitations are to be noted and leave
room for further research on our method. For instance, additional testing on different loss functions, such
as those used in deep learning architectures, would be beneficial to enhance applicability to a broader
domain of learning algorithms. On the other hand, we believe in the possibility of obtaining more specific
results (e.g., on rates of convergence and computationally efficient optimization solutions) for particular
loss functions, such as the widely used squared loss for linear regression or, more generally, negative
log-likelihoods of generalized linear models. Finally, the theoretical analysis may be made more general
by relaxing some restrictive assumptions such as the boundedness of the loss function. While interesting,
all of these points are beyond the scope of this work and thus left to future research.
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Supplementary Material of “Borrowing Strength in

Distributionally Robust Optimization via Hierarchical

Dirichlet Processes”
This Supplement to “Borrowing Strength in Distributionally Robust Optimization via Hierarchical

Dirichlet Processes” is organized as follows. In Appendix A, we collect the proofs of all results presented
in the main text. In Appendix B, we provide further background on smooth ambiguity aversion, the hi-
erarchical Dirichlet process prior, Dirichlet process representations, and algorithms. Finally, in Appendix
C, we describe in detail the experiments presented in the paper.

A Technical Proofs

Proof of Lemma 2. First note that, by the stated assumptions, it follows from Taylor’s theorem that

ϕ(Rp(θ)) = ϕ(Rp⋆i
(θ)) + ϕ′(Rp⋆i

(θ))[Rp(θ)−Rp⋆i
(θ)] +

ϕ′′(cp,θ)

2
[Rp(θ)−Rp⋆i

(θ)]2

for all p ∈ PΞ and θ ∈ Θ and for some cp,θ ∈ [0,K]. Then

sup
θ∈Θ

|V i
ξN

(θ)− ϕ(Rp⋆i
(θ))| = sup

θ∈Θ

∣∣∣∣ϕ′(Rp⋆i
(θ))

∫
PΞ

[Rp(θ)−Rp⋆i
(θ)]Qi

ξN
(dp)

+

∫
PΞ

ϕ′′(cp,θ)

2
[Rp(θ)−Rp⋆i

(θ)]2Qi
ξN

(dp)

∣∣∣∣
≤ Ni

αi +Ni
Fϕ sup

θ∈Θ
|Rpξi

(θ)−Rp⋆i
(θ)|

+
αi

αi +Ni
Fϕ sup

θ∈Θ

∣∣∣∣ N

α0 +N
Rp

ξN
(θ) +

α0

α0 +N
RH(θ)−Rp⋆i

(θ)

∣∣∣∣
+

K2

2
Sϕ.

Proof of Proposition 4. Notice the following decomposition:

ϕ(Rp⋆i
(θiN ))− ϕ(Rp⋆i

(θi⋆))︸ ︷︷ ︸
≥0

(6)

= ϕ(Rp⋆i
(θiN ))− V i

ξN
(θiN ) + V i

ξN
(θiN )− V i

ξN
(θi⋆)︸ ︷︷ ︸

≤0

+V i
ξN

(θi⋆)− ϕ(Rp⋆i
(θi⋆))

≤ 2 sup
θ∈Θ

|V i
ξN

(θ)− ϕ(Rp⋆i
(θ))|.

Then, Lemma 2 implies that, for all δ > 0,

P[ϕ(Rp⋆i
(θiN ))− ϕ(Rp⋆i

(θi⋆)) ≤ δ]

≥ P
[
sup
θ∈Θ

|V i
ξN

(θ)− ϕ(Rp⋆i
(θ))| ≤ δ/2

]
= P

[
sup
θ∈Θ

|Rpξi
(θ)−Rp⋆i

(θ)| ≤ αi +Ni

Ni

(
δ

2Fϕ
− αi

αi +Ni
K − K2

2

Sϕ

Fϕ

)]
.
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Proof of Proposition 5. Since

lim
Ni→∞

sup
θ∈Θ

|Rpξi
(θ)−Rp⋆i

(θ)| = 0

almost surely and given assumptions 1. and 2. on ϕn, by Lemma 2 we obtain

lim
Ni→∞

sup
θ∈Θ

|VξN (θ)− ϕNi(Rp⋆i
(θ))| = 0

almost surely. Then, by decomposition (6),

lim
Ni→∞

ϕNi(Rp⋆i
(θiN ))− ϕNi(Rp⋆i

(θi⋆)) = 0

almost surely and
lim

Ni→∞
VξN (θ

i
N )− VξN (θ

i
⋆) = 0

almost surely. As a consequence,

lim
Ni→∞

|VξN (θ
i
N )− ϕNi(Rp⋆i

(θi⋆))|

≤ lim
Ni→∞

[
|VξN (θ

i
N )− VξN (θ

i
⋆)|+ |VξN (θ

i
⋆)− ϕNi(Rp⋆i

(θi⋆))|
]

≤ lim
Ni→∞

[
|VξN (θ

i
N )− VξN (θ

i
⋆)|+ sup

θ∈Θ
|VξN (θ)− ϕNi(Rp⋆i

(θ))|
]

= 0

almost surely. Now recall assumption 3., i.e., the sequence (ϕn)n≥1 converges uniformly to the identity
map. Then, in light of the previous observations and by noticing that

|Rp⋆i
(θiN )−Rp⋆i

(θi⋆)| ≤ |Rp⋆i
(θiN )− ϕNi(Rp⋆i

(θiN ))|+ |ϕNi(Rp⋆i
(θiN ))− ϕNi(Rp⋆i

(θi⋆))|
+ |ϕNi(Rp⋆i

(θi⋆))−Rp⋆i
(θi⋆)|

and
|VξN (θ

i
N )−Rp⋆i

(θi⋆)| ≤ |VξN (θ
i
N )− ϕNi(Rp⋆i

(θi⋆))|+ |ϕNi(Rp⋆i
(θi⋆))−Rp⋆i

(θi⋆)|,

the two desired almost sure limits follow:

lim
Ni→∞

Rp⋆i
(θiN ) = Rp⋆i

(θi⋆), lim
Ni→∞

VξN (θ
i
N ) = Rp⋆i

(θi⋆).

Proof of Proposition 6. We have

Rp⋆i
(θi⋆) ≤ Rp⋆i

(θ̄) = Eξ∼p⋆i
lim

Ni→∞
h(θiN , ξ) = lim

Ni→∞
Rp⋆i

(θiN ) = Rp⋆i
(θi⋆)

almost surely, where the first equality follows from the continuity of θ 7→ h(θ, ξ) and the second one from
the Dominated Convergence Theorem. Then, Rp⋆i

(θ̄) = Rp⋆i
(θi⋆) almost surely, proving the result.
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Figure 3: Graphical display of smooth ambiguity aversion at work [1]. Although θ1 and θ2 yield the same
loss R∗ in Q-expectation, the ambiguity averse criterion favors the less variable decision θ1. Graphically,
this is because the orange line connecting ϕ(Rp1(θ1)) to ϕ(Rp2(θ1)) lies (point-wise) below the line
connecting ϕ(Rp1(θ2)) to ϕ(Rp2(θ2)).

B Further Background and Algorithms

B.1 Connections Between Smooth Ambiguity and mM-DRO

[11] showed that the smooth ambiguity aversion (SmAA) model belongs to a general class of ambiguity-
averse preferences, which admit a common utility function representation. For SmAA preferences with
ϕ(t) = β exp(β−1t) − β (with β > 0 and under additional technical assumptions), this representation
implies the equivalence of problem

min
θ∈Θ

∫
PΞ

ϕ(Rp(θ))Q(dp)

with
min
θ∈Θ

max
P :P≪Qξn

{
Ep∼P [Rp(θ)]− βKL(P∥Q)

}
,

where KL(·∥·) is the Kullback-Leibler divergence and ≪ denotes absolute continuity. The above result
further clarifies the mechanism through which distributional robustness is induced by ϕ: Intuitively,
instead of directly averaging over p ∼ Q, one computes a worst-case scenario w.r.t. the mixing measure,
penalizing distributions that are further away from Q – the latter, which in our case coincides with a
posterior distribution, acts as a reference probability measure. Moreover, in the limiting case β → 0, the
mM-DRO setup is recovered, with ambiguity set

C =

{
p ∈ PΞ : ∃P ≪ Q, p =

∫
PΞ

qP (dq)

}
.

In the other limiting case β → ∞ (with the convention 0 · ∞ = 0), the ambiguity-neutral Bayesian
criterion is instead recovered.
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B.2 The Hierarchical Dirichlet Process Prior and its Chinese Restaurant Franchise
Construction

The hierarchical Dirichlet process [46, 47] serves as a prior on a vector of dependent probability measures
(p1, . . . , pS), and is specified as follows:

ξsj | (p1, . . . , pS)
ind∼ ps, s = 1, . . . , S, j = 1, . . . , Nj

ps | p0
iid∼ DP(αs, p0), s = 1, . . . , S,

p0 ∼ DP(α0, H).

whereH is a continuous distribution on (Ξ,B(Ξ)) and DP(α, P ) denotes the distribution of a Dirichlet
process (DP) with concentration parameter α > 0 and centering distribution P . This construction implies
that the observations ξsj are partially exchangeable: Exchangeability (i.e., distributional invariance under
index permutations) holds within each group s, but not necessarily across different groups s ̸= s′, thus
allowing for (partial) heterogeneity.

In order to derive expression (4), we need a characterization of the predictive distribution for group s,
that is, E[ps | ξ1, . . . , ξd]. This is possible by leveraging the Chinese restaurant franchise construction of
[46]. The metaphor goes as follows: A franchise of S restaurants shares dishes (unique values) drawn from
a franchise-wide menu p0, which is a weighted collection of dishes drawn from a DP with base measure
H (the latter can be thought of as an infinitely rich source of recipes). Each restaurant has infinite
capacity, meaning that it contains an infinite number of tables, each able to host an infinite number of
customers – the only restriction is that customers seating at the same table will share the same dish.
Now fix a restaurant s and assume we are given the configuration of the Ns customers (ξs1, . . . , ξsNs) into
Ts tables: Table θs1 seats ts1 customers, table θs2 seats ts2 customers, etc., with the obvious constraint∑Ts

j=1 tsj = Ns. Each table corresponds to an iid draw θsj from the franchise-level menu p0, which we hold
fixed for now. Then, because the HDP model places a DP(αs, p0) at the level of restaurant s, the Chinese
restaurant construction of the DP [4] implies that the next customer (observation) of restaurant s will
be seated to table θsj with probability proportional to tsj , or to a yet unoccupied table with probability
proportional to αs. In formulas,6

ξsNs+1 | ts,θs, p0 ∼
Ts∑
j=1

tsj
Ns + αs

δθsj +
αs

Ns + αs
δθnew ,

with θnew ∼ p0 | ts,θs. This procedure takes care of partitioning customers into tables within each
restaurant. Notice that, because different tables can be assigned the same dish (Ξ value), the table
configuration is only latent and instrumental to describe the predictive structure of the HDP.

Given the customer-table configurations of all restaurants, assume there are K distinct dishes being
served in the whole franchise. That is, the tables θsj only feature K unique values ξ⋆1 , . . . , ξ

⋆
K , with

mk tables serving dish ξ⋆k and, clearly,
∑K

k=1mk =
∑S

s=1 Ts. Then, because the HDP model places a
DP(α0, H) prior on p0, the Chinese restaurant process predictive construction of the DP implies7

θnew ∼
K∑
k=1

mk∑K
ℓ=1mℓ + α0

δξ⋆k +
α0∑K

ℓ=1mℓ + α0

H.

6To keep the notation parsimonious, we identify the customer label ϕ with the table θ at which they sit.
7Again for parsimony of notation, we identify each table with the dish served at it.
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See Figure 4 for a graphical illustration of this construction. Now recall our assumptions that the
data is generated from a continuous distribution, implying that there are no ties among observations:
ξsj ̸= ξs′j′ for all s, s′ = 1, . . . , S, j = 1, . . . , Ns, and j′ = 1, . . . , Ns′ . This immediately implies that the
only consistent table configuration in the Chinese restaurant franchise metaphor is the one in which all
customers seat at a different table, each eating a different dish. In turn, this implies the predictive

E[ps | ξ1, . . . , ξd] =
Ns

αs +Ns

1

Ns

Ns∑
j=1

δξsj +
αs

αs +Ns

[
N

α0 +N

1

N

S∑
ℓ=1

Nℓ∑
j=1

δξℓj +
α0

α0 +N
H

]
,

yielding expression (4). This observation on the simplification of the table configuration in our continuous
setting also yields the posterior characterization of Proposition 7. In fact, [7] provided a two-stage
posterior characterization of the HDP that relies on the same type of latent table configuration appearing
in the Chinese restaurant franchise. However, the no-ties assumptions in our setting makes it possible to
simplify the characterization as in Proposition 7.

θ11 = ξ⋆1 θ12 = ξ⋆2 θ13 = ξ⋆1 · · ·

ξ11 ξ13

ξ14 ξ18

ξ12 ξ15

ξ16

ξ17

θ21 = ξ⋆1 θ22 = ξ⋆3 θ23 = ξ⋆2 θ24 = ξ⋆2 · · ·

ξ21

ξ22

ξ23

ξ24

ξ26 ξ25 ξ27

ξ28

θ31 = ξ⋆2 θ32 = ξ⋆4 · · ·
ξ31

ξ32

ξ35

ξ36

ξ33

ξ34

Figure 4: Illustration of the Chinese restaurant franchise construction of the HDP prior. In this example,
there are S = 3 restaurants (represented by the rectangles) each hosting, at the current stage of the
generative process, respectively 8, 8, and 6 customers. The restaurants seat their customers at 3, 4, and
2 tables, respectively, and a total number of K = 4 dishes ξ⋆1 , . . . , ξ

⋆
4 is served in the whole franchise.

Monte Carlo Approximation for the HDP Robust Criterion. Algorithm 1 summarizes the simu-
lation strategy for the HDP robust criterion outlined in Section 4: Given (i) the posterior characterization
of the HDP in the case with no ties among observations (see Proposition 7) and (ii) a method to simulate
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from the DP (see the next two paragraphs for examples of such methods), one can repeatedly (a) simulate
from the posterior of the top-level distribution p0, and (b) given the realization of p0, simulate from the
posterior of the group-level distributions ps. Finally, each group-specific criterion is approximated as a
Monte Carlo average of the risks computed with respect to the simulated group-level distributions.

Algorithm 1 Monte Carlo Approximate HDP Criterion for Group s (HDP-MCs)

Input: Data ξ1, . . . , ξd, loss function h, function ϕ, concentration parameters αs, α0, top-level centering
probability H, approximation type AP ∈ {SB, MD}, truncation criteria Ts (s ∈ {1, . . . , S}) and T0,
number of MC samples M
for m = 1 to M do
(pm0j , ξ

m
0j)

T0
j=0 = AP

(
α0 +N, α0

α0+NH + N
α0+N

1
N

∑S
ℓ=1

∑Nℓ
j=1 δξℓj , T0

)
p̂m0 =

∑T0
j=0 p

m
0jδξm0j

(pmsj , ξ
m
sj)

Ti
j=0 = AP

(
αs +Ns,

αs
αs+Ns

p̂m0 + Ns
αs+Ns

1
Ns

∑Ns
j=1 δξsj , Ts

)
end for
Return: θ 7→ M−1

∑M
m=1 ϕ

(∑Ts
j=0 p

m
sjh(θ, ξ

m
sj)
)

Stick-Breaking Construction of the Dirichlet Process. [43] proved that Ferguson’s 1973 Dirichlet
process enjoys the following “stick-breaking” representation

p ∼ DP(α, P ) =⇒ p
d
=

∞∑
j=1

pjδxj ,

where

xj
iid∼ P, j = 1, 2, . . . ,

p1 = B1,

pj = Bj

j−1∏
i=1

Bi, j = 2, 3, . . . ,

Bj
iid∼ Beta(1, α), j = 1, 2, . . .

The name of the procedure comes from the analogy with breaking a stick of length 1 into two pieces of
length B1 and 1−B1, then the second piece into two sub-pieces of length (1−B1)B2 and (1−B1)(1−B2),
and so on. Algorithm 2, then, presents a truncated version of the stick-breaking procedure, which stops
at step T . The remaining portion of the stick is then allocated to one further atom drawn from the
centering measure P .

Multinomial-Dirichlet Construction of the Dirichlet Process. Another finite-dimensional ap-

proximation of p ∼ DP(α, P ) is pT =
∑T

j=1 pjδxj , with xj
iid∼ P and (p1, . . . , pj) ∼ Dirichlet(T ;α/T, . . . , α/T ).

As T → ∞, pT approaches p [see Theorem 4.19 in 22]. Hence, one can approximately sample from a
DP as in Algorithm 3. For all of our experiments (see Appendix C), we choose to simulate from the
DPs at both levels of the hierarchy of the HDP via the multinomial-Dirichlet approximation. This is
because, even for moderate T , this method tends to assign more balanced weights than the stick-breaking
constructions, making practical optimization of the HDP robust criterion more stable.
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Algorithm 2 Truncated Dirichlet Process Stick-Breaking Algorithm (SB)

Input: Concentration parameter α, centering probability P , truncation criterion T ∈ N
Set

∏0
k=1(1−Bk) ≡ 1

for j = 1 to T do
Draw ξj ∼ π
Draw Bj ∼ Beta(1, α)

Set pj = Bj
∏j−1

k=1(1−Bk)
end for
Draw ξ0 ∼ π
Set p0 =

∏T
k=1(1−Bk)

Return: (pj , ξj)
T
j=0

Algorithm 3 Truncated Dirichlet Process Multinomial-Dirichlet Algorithm (MD)

Input: Concentration parameter α, centering probability P , truncation criterion T ∈ N
Initialize p = (p1, . . . , pT ) ∈ RT

for j = 1 to T do
Sample ξj ∼ P
Update pj ∼ Gamma(α/T, 1)

end for
Normalize p = p∑n

j=1 pj

Return: (pj , ξj)
T
j=1

C Experiments

High-Dimensional Sparse Linear Regression Simulation Study. In this experiment, we take
h(θ, ξ) to be the squared loss (as usual in linear regression tasks) and conduct simulations as follows.
Denote by s = 1, 2 two distinct yet related samples consisting of n = 100 observations per sample, where
each observation consists of p = 95 features, collected in a matrix Xs ∈ Rn×p, and a target, collected in
a vector ys ∈ Rn. Observations are generated according to the following hierarchical model:

y1 | X1,β1 ∼ N(X1β1, σ2In),

y2 | X2,β2 ∼ N(X2β2, σ2In),

Xs
i
iid∼ N(0,Σp×p), i = 1, . . . , n, s = 1, 2,

where Σp×p takes value 1 on its diagonal and 0.3 off-diagonal, and σ = 0.5. In order to induce dependence
across samples 1 and 2, we generate the coefficient vectors β1 and β2 as follows. First, to ensure sparsity,
we set the last 90 coordinates of both vectors equal to 0. Second, we generate the first 5 coordinates as
follows (denote by β1

5 and β2
5 the sub-vectors of active coefficients):

(β1
5,β

2
5) ∼ N(110, c · V 10×10),

where V 10×10 takes value 1 on its diagonal and 0.3 off-diagonal, while c ∈ {0.1, 0.2, 0.4, 0.5} controls
the degree of dependence among coefficients both across and within samples (the smaller c, the larger
the correlation among coefficients). Finally, we take H = N(0, In) (prior centering distribution), ϕ(t) =
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Algorithm 4 Stochastic Gradient Descent Algorithm (SGD)

Input: Approximate criterion parameters {(pmj , ξmj ) : j = 1, . . . , T, m = 1, . . . ,M}, loss function h,

function ϕ step size schedule (ηt)t≥1, starting value θ0, number of iterations I
for t = 1 to I do
Choose mt ∈ {1, . . . ,M}
Update θt = θt−1 − ηtϕ

′
(∑T

j=1 p
mt
j h(θt−1, ξmt

j )
)∑T

j=1 p
mt
j ∇θh(θ

t−1, ξmt
j )

end for
Return: θI

exp(t) − 1 (i.e., β = 1), Ts = T0 = 100 (Multinomial-Dirichlet approximation steps at both levels of
the hierarchy), M = 300 (number of MC samples from the HDP posterior), and set the SGD step size
ηt = 500/(100 +

√
t). We run SGD until visually-inspected convergence, which takes around 2 seconds

per run on our infrastructure (see Appendix D).
We first conduct 10 simulations through which we select the optimal concentration parameter values

for the HDP procedure, the separate-samples DP procedure, and the pooled-samples DP procedure, across
a grid of plausible values. The selection is performed by fitting the models on training samples generated
as above, then computing the out-of-sample risk on 10,000 additional simulated test observations. Using
the optimized parameter values, we run 100 more simulations and, for each of these, compute (1) the
excess8 out-of-sample loss (mean squared error) and (2) the squared L2 distance between the estimated
and true coefficient vectors. Figure 5, which shows results for c ∈ {0.1, 0.5}, confirms the results of
Figure 2a in the main body, which shows results for c ∈ {0.2, 0.4}: Even in the presence of more extreme
dependence structures (i.e., very low dependence or very high dependence, based on the more extreme
values of c), the HDP method does better both on average and in terms of reduced variability, compared
to the alternatives.9

High-Dimensional Sparse Linear Median Regression Simulation Study. In this experiment,
we take h to be the pinball loss with quantile parameter 0.5, h(θ, ξ) = |y−θ⊤x|, which aims to recover the
conditional median of the response variable y given the feature vector x. In terms of generative process
and simulation setting, we keep everything as in the previous experiment on linear (mean) regression.
We also keep the DP and HDP robust criterion parameters as before, and set the SGD step size ηt =
500/(100 +

√
t). We run SGD until visually-inspected convergence, which takes around 12 seconds per

run on our infrastructure (see Appendix D).
Figures 2b and 6 report the results from 100 simulation after 10 initial ones for parameter selection

(analogously to the previous experiment). The Figure 2b in the main text reports results for low and
high across-groups dependence regimes (c ∈ {0.2, 0.4}), and in Figure 6 these regimes are taken to even
larger extremes. In both cases, the qualitative conclusions highlighted for the linear regression experiment
hold as well: The HDP-robust method, compared to the baseline robust DP and naive ERM estimation
strategies, is effective at (i) borrowing information across groups to an optimal extent, and (ii) managing
distributional uncertainty by reducing performance variability.

8The word “excess” refers to the risk computed at the true underlying parameter, which, in the context of simulation
studies like this, we obviously have access to.

9Notice that the Figures do not report results for the separate-samples OLS procedures. This is because, both in terms
of average performance and its variability, this method performs worse than the others by one order of magnitude, and
including it in the plots would distort relative comparisons among the other methods. Nevertheless, we refer the reader to
our code for results on this procedure as well.
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Figure 5: Out-of-sample performance and estimation accuracy of different methods in the high-
dimensional linear regression experiment. The HDP method (in bright red) outperforms the others
both in terms of the average and the variability of performance. Distance from truth is measured as the
square L2 distance between the estimated coefficients and the data-generating ones. Note: OLS estima-
tion was performed using the Python library scikit-learn [38].
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Figure 6: Out-of-sample performance and estimation accuracy of different methods in the high-
dimensional linear median regression experiment for dependence parameter values c ∈ {0.1, 0.5}. The
HDP method (in bright red) outperforms the others in terms of performance variability, and does as well
on average. Distance from truth is measured as the square L2 distance between the estimated coefficients
and the data-generating ones. Note: unregularized estimation was performed using the Python library
scikit-learn [38].
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D Computational Infrastructure

All experiments were performed on a desktop with 12th Gen Intel(R) Core(TM) i9-12900H, 2500 Mhz,
14 Core(s), 20 Logical Processor(s) and 32.0 GB RAM.
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