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Abstract

Transformers with multi-head self-attention have achieved remarkable success in
sequence modeling and beyond. However, they suffer from high computational and
memory complexities for computing the attention matrix at each head. Recently, it
has been shown that those attention matrices lie on a low-dimensional manifold
and, thus, are redundant. We propose the Transformer with a Finite Admixture of
Shared Heads (FiSHformers), a novel class of efficient and flexible transformers
that allow the sharing of attention matrices between attention heads. At the core
of FiSHformer is a novel finite admixture model of shared heads (FiSH) that
samples attention matrices from a set of global attention matrices. The number
of global attention matrices is much smaller than the number of local attention
matrices generated. FiSHformers directly learn these global attention matrices
rather than the local ones as in other transformers, thus significantly improving
the computational and memory efficiency of the model. We empirically verify
the advantages of the FiSHformer over the baseline transformers in a wide range
of practical applications including language modeling, machine translation, and
image classification. On the WikiText-103, IWSLT’14 De-En and WMT’14 En-
De, FiSHformers use much fewer floating-point operations per second (FLOPs),
memory, and parameters compared to the baseline transformers.

∗ Co-first authors. ∗∗ Co-last authors. Please correspond to: tanmnguyen89@ucla.edu
36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: Our proposed �nite admixture model of shared heads (FiSH) vs. the standard multi-head
(MHA) attention. FiSH samples local attention matrices from a �nite admixture of global attention
matrices. Compared to MHA, FiSH is more ef�cient, saving computation and memory (See Fig. 3
and Section 4).

1 Introduction
Transformers have become the state-of-the-art model for solving many challenging problems in
natural language processing [75, 1, 17, 80, 21, 10, 35, 61] and computer vision [19, 68, 22, 73].
Transformers learn from unlabeled data effectively and take advantage of the pre-trained models on
downstream tasks that involve different data modalities with limited supervision [59, 60, 21, 82, 43].
The success of transformer is credited to the multi-head self-attention (MHA) mechanism as their
fundamental building block. For each token in the sequence, self-attention in transformers aggregates
information from other tokens by computing a weighted average of their feature representations with
a weight proportional to a similarity score between the representations. This attention mechanism
allows arbitrary input-dependent interaction between tokens in the sequence where a token can
pay attention to other tokens and attain a contextual representation [6, 75, 38]. Multi-head self-
attention captures multiple such contextual representations, one at each head, thereby increasing the
representation capacity of the self-attention. It has been argued that the representation capacity of the
attention mechanism [72] and its �exibility in capturing diverse syntactic and semantic relationships
[72, 76, 15, 77, 32] account for the impressive performance of transformers in practice.

1.1 Background: Self-Attention

For a given input sequenceX := [ x 1; � � � ; x N ]> 2 RN � D x of N feature vectors, self-attention
transformsX into the output sequenceH in the following two steps:

Step 1.The input sequenceX is projected into the query matrixQ, the key matrixK , and the value
matrix V via three linear transformations

Q = XW >
Q ; K = XW >

K ; V = XW >
V ;

whereW Q ; W K 2 RD � D x , andW V 2 RD v � D x are the weight matrices. We denoteQ :=
[q1; � � � ; qN ]> ; K := [ k1; � � � ; kN ]> , andV := [ v1; � � � ; vN ]> , where the vectorsqi ; k i ; v i for
i = 1 ; � � � ; N are the query, key, and value vectors, respectively.

Step 2.The output sequenceH := [ h1; � � � ; hN ]> is then computed as follows

H = softmax
� QK >

p
D

�
V := softmax(

A
p

D
)V ; (1)

where the softmax function is applied to each row of the matrixA = ( QK > ). This matrixA 2
RN � N and its componentaij for i; j = 1 ; � � � ; N are called the attention matrix and attention scores,
respectively. For each query vectorqi for i = 1 ; � � � ; N , an equivalent form of Eqn. (1) to compute
the output vectorh i is given by

h i =
NX

j =1

softmax
�

q>
i k j =

p
D

�
v j : (2)

The self-attention computed by Eqn. (1) and (2) is called the scaled dot-product or softmax attention.
In our paper, we call a transformer that uses this attention the softmax transformer. The structure
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that the attention matrixA learns from training determines the ability of the self-attention to capture
contextual representation for each token.

Multi-head Attention (MHA) Each output sequenceH forms an attention head. In MHA, multiple
heads are concatenated to compute the �nal output. LetH be the number of heads andW O 2
RHD � HD be the projection matrix for the output. The multi-head attention is de�ned as

MultiHead(f H gH
i =1 ) = Concat(H 1; : : : ; H H )W O : (3)

1.2 Eigenvalue Analysis of the Attention Matrices

Figure 2: (Left) Histogram of the top 50 eigen values
and (Middle, Right) cumulative sum of eigen values of
the layer-average attention scores covariance matrix.

The multi-head mechanism allows transformers
to capture more diverse attention patterns and
increase the capacity of the model. However,
in many practical tasks, transformers learn re-
dundant heads [47, 78], whose learned attention
matrices lie on a low-dimensional manifold [8].
To con�rm this claim, in Figure 2, we follow
the eigenvalue analysis in [8] and investigate the
eigenvalues of the covariance matrix of vector-
ized attention matrices aggregated over each layer of a transformer model trained on the WikiText-103
dataset for language modeling. We observe that this covariance matrix is low rank with top 200
(1.2%) eigenvalues capturing more than 90% of the energy. This result veri�es that the variability of
learned attention matrices in transformers can be explained by a relatively small number of principal
components, and those attention matrices lie on a low-dimensional manifold. Therefore, in multi-head
attention, the effective number of heads is much smaller than the actual number of heads, and a more
effective way to compute multi-head attention is needed to improve the ef�ciency of transformers.

1.3 Contribution

Leveraging the idea of the �nite admixture model (FAM) [57, 9], we propose a new class of
ef�cient transformer architectures, namely the Transformer with a Finite Admixture of Shared
Heads (FiSHformer). At the core of FiSHformer is to sample local attention matrices from an
admixture of a small number of global attention matrices. This sharing mechanism between heads
helps reduce the computational complexity and the model size compared to the MHA softmax
transformer. Our contribution is three-fold:

1. We construct an admixture model for shared attention matrices between heads and propose
FiSHformer, a novel class of transformers that take advantage of this admixture model to
ef�ciently compute multi-head attention.

2. We introduce a nonlinearity mapping from global heads to local heads into FiSH and
propose the Generalized FiSHformer (GFiSHformer). We then explore different possibilities
to design FiSHformer and GFiSHformer.

3. We empirically verify that FiSHformer and GFiSHformer achieve similar or even better
accuracy but with much less computational cost in terms of FLOPs and smaller model
complexity measured by the number of parameters. The advantages of our methods grow
with the model/feature dimensionD and the input sequence lengthN .

We also show that FiSHformer-based models help reduce head redundancy in our experiments.

Organization: We structure this paper as follows: In Section 2, we develop a �nite admixture model
of shared heads and then present our FiSHformer and its extensions. In Section 2.5, we analyze the
reduction in model complexity and computational cost from FiSH. In Section 3 and 4, we validate
and empirically analyze the ef�ciency and accuracy of FiSHformer, as well as conducting ablation
studies on the model. We discuss related works in Section 5. The paper ends up with concluding
remarks. More results and details are provided in the Appendix.

2 Transformer with a Finite Admixture of Shared Heads
We �rst review the �nite admixture model (FAM) and derive a FAM of shared heads for the multi-head
self-attention. We then de�ne Transformer with a Finite Admixture of Shared Heads (FiSHformer).

2.1 A Probabilistic Viewpoint of Attention Matrices

Let A j denote the attention matrix at thej th head,j = 1 ; 2; : : : ; H . From a probabilistic viewpoint,
to have diversity amongA 1; : : : ; A H , we can assume thatA j comes from a distributionPj for
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all j . Since the distributionsP1; : : : ; PH can have complex forms and be dif�cult to compute, our
approach is to consider approximated distributions ofPj and these approximated distributions have
simple forms. A natural choice for each of these approximated distributions is via a �nite mixture of
Gaussian distributions, which can be summarized in the following lemma below.

Lemma 1. Assume thatP 2 RD 0
is a probability distribution supported on some compact set and

admits differentiable and bounded density estimationp. Then, for any scale parameter� > 0 and
for any � > 0, there exists universal constantC andM � (C log(1=�))D 0

such that we can �nd
a mixture ofM components

P M
i =1 pi N (� i ; � 2I D 0) wherep1; : : : ; pK are weight parameters and

� 1; : : : ; � K are location parameters that satisfy the following inequality

sup
x 2 Rd

jp(x) �
MX

i =1

pi � (xj� i ; � 2I D 0)j � �;

where� (:j�; � 2I ) is Gaussian density function with location parameter� and covariance matrix
� 2I D 0.

The proof of Lemma 1 is in Appendix E. In light of Lemma 1, for each scale parameter
� > 0 and for each distributionPj , we can �nd the corresponding number of componentsM j ,
weight parametersp1j ; : : : ; pM j j , and location parameters� 1j ; : : : ; � M j j such that the mixtures

P0
j =

P M j
i =1 pij N (� ij ; � 2I D 0) can approximate the distributionPj up to a given accuracy� . How-

ever, these approximations still involve
Q H

j =1 M j number of location parameters, which can be
computationally expensive. To overcome this issue, we assume thatM 1 = M 2 = : : : = M H and
the location parameters(� 1j ; : : : ; � M j j ) = ( � 1; : : : ; � M ) for all j , i.e., these approximated mixtures
share a similar set of location parameters. This sharing information of location parameters has a deep
connection to �nite admixture models, which we are going to elaborate in the next sections.

2.1.1 Background

Finite admixture models (FAM) are extensions of �nite mixture models (FMMs), which served as a
workhorse in stochastic modeling. A �nite mixture distribution ofM components for a random array
X 2 RN � J is given by

x j �
MX

k=1

pk f (x ; � k );
MX

k=1

pk = 1 ; pk � 0; (4)

wherex j 2 RN is thej -th row ofX randomly sampled from the mixture distribution,f is a chosen
probability measure, such as a Gaussian distribution,p = f p1; p2; : : : ; pM g are mixture weights, and
� k denotes the parameter values for thek-th component.

A FAM is a generalization of a FMM where rowsx j , j = 1 ; : : : ; H , are drawn from different mixture
distributions that share the componentsf (x ; � k ), k = 1 ; : : : ; M but with different mixture weights

x j �
MX

k=1

pkj f (x ; � k );
MX

k=1

pkj = 1 ; pkj � 0: (5)

2.2 Multi-head as a Finite Admixture Model of Shared Heads (FiSH)

As demonstrated in Section 2.1, we propose a Finite Admixture Model of Shared Heads (FiSH), in
whichA j follows �nite admixture distribution of M components given by

A j �
MX

k=1

pkj f (A ; � k );
MX

k=1

pkj = 1 ; pkj � 0: (6)

HereM < H andf (A ; � k ) are chosen probability measures. In particular, we choosef (A ; � k ) to be
Gaussian distributionsN (A ; G k ; � k ), whereG k = Qk K k

> and� k = � 2
k I are the cluster means

and coveriances, respectively. FiSH is then de�ned as follows:
De�nition 1 (Finite Admixture Model of Shared Heads). The multi-head attention admits a �nite
admixture model of shared heads if the attention matricesA j at thej th head are sampled from the
following �nite admixture model:

A j �
MX

k=1

pkj N (A ; Qk K k
> ; � 2

k I );
MX

k=1

pkj = 1 ; pkj � 0: (7)
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In FiSH de�ned in Def. 1, we callf G k = Qk K k
> gk=1 ;:::;M global attention matrices and

f A j gj =1 ;:::;H local attention matrices. FiSH computesM global attention matricesG k , andH local
attention matricesA j are sampled from FiSH as in Eqn. (7) withM < H .
Remark 1 (FiSH vs. Baseline MHA). The baseline MHA withH heads need to computeH , e.g.
H = 8 , attention matrices, each of which requiresO(N 2) computational costs whereN is the length
of the input sequence. In contrast, FiSH only need to computeM < H , e.g.M = 2 , global attention
matrices, each of which also requiresO(N 2) computational and memory costs. Then FiSH combines
those global attention matrices to form a FAM from whichH , e.g.H = 8 , local attention matrices
are sampled as in Eqn. (7). This second step of sampling local attention matrices from a set of global
attention matrices in FiSH requires very few computations. Thus, FiSH is more ef�cient than MHA.
Remark 2 (Connection to Topic Models). FiSH can be interpreted as a Probabilistic Latent Se-
mantic Analysis (pLSA) model for topic modeling. Considering the documentd that contains the
word w whose topic isc, pLSA models the occurrence of the wordw in the documentd as a mixture
of conditionally independent Multinomial distributionsp(wjd) =

P
c p(cjd)p(wjc): Comparing

this pLSA with Eqn. (7) of FiSH, we can associate the mixture weightspkj and the distribution
N (A ; Qk K k

> ; � 2
k I ) in FiSH with the distributionsp(cjd) andp(wjc) in pLSA, respectively. There-

fore, it can be interpreted that the global attention matrices in FiSH play the role of topics, and the
local attention matrices in FiSH are words sampled from those topics. It is interesting to note that
pLSA is equivalent to the famous Latent Dirichlet Allocation model under a uniform Dirichlet prior
on the per-document topic distributionp(cjd).

2.3 Transformer with a Finite Admixture of Shared Heads

FiSHformers are transformers that use FiSH instead of MHA. FiSH, as de�ned in Def. 1, is not
differentiable, which poses a dif�culty in training FiSHformers. Applying the reparameterization
trick [39], the attention matricesA j can be written in a differentiable form as follows:

A j =
MX

k=1

pkj (Qk K k
> + � k � � j ); � j � N (0; I );

MX

k=1

pkj = 1 ; pkj � 0: (8)

FiSHformers use the formulation of local attention heads in Eqn. (8) to implement FiSH.

Transformer with a Hard Finite Admixture of Shared Heads (Hard FiSHformer) Hard FiSH-
former takes the zero-noise limit of Eqn. (8) to reduce the computational cost. The attention matrices
A j in Hard FiSHformer are then calculated as

A j =
MX

k=1

pkj Qk K k
> ;

MX

k=1

pkj = 1 ; pkj � 0: (9)

Remark 3 (Discriminative Relaxation). To take the advantage of learning from data, the convex
combination condition ofpkj , i.e.

P M
k=1 pkj = 1 ; pkj � 0, can be relaxed, and those mixing

coef�cients are made learnable parameters that are learned from data during training
Remark 4 (Transformers with a Mixture of Shared Heads). A transformer with a mixture of shared
heads (MiSHformer) can be used to reduce the amount of computation with the cost of accuracy
reduction. MiSH is a special case of FiSH when the mixture weightspkj are the same for allj . The
local attention matricesA j in MiSHformer are given by

A j =
MX

k=1

pk (Qk K k
> + � k � � j ); � j � N (0; I );

MX

k=1

pk = 1 ; pk � 0: (10)

An empirical comparison between FiSHformer and MiSHformer is provided in Section 4.

2.4 Transformer with a Generalized Finite Admixture of Shared Heads

In order to increase the representation capacity of attention heads, we follow a common approach in
learning representation by replacing the linear mapping in Eqns. (8) and (9) by a nonlinear mapping
such as a neural network with the recti�ed linear units (ReLU). The Transformer with a Generalized
Finite Admixture of Shared Heads (GFiSHformer) is then formulated as

A j =
MX

k=1

� (pkj (Qk K k
> + � k � � j )) ; � � N (0; I );

where� is a nonlinear mapping andpkj are relaxed to be learnable parameters. Similarly, we
formulate local attention matricesA j in the Transformer with a Generalized Hard Finite Admixture
of Shared Heads (Hard GFiSHformer) asA j =

P M
k=1 � (pkj Qk K k

> ).
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Figure 3: (Left) Training (A) and Inference (B) FLOP ratios between a 2-global-head GFiSHformers with
8-head MHA baselines across different model dimensionsD and sequence lengthsN trained on the WikiText-
103 language modeling task. (Right) Number of parameters (C) and GPU memory usage at test time (D)
ratios between 2-global-head GFiSHformers with 8-head MHA baselines across different model dimensionsD .
2-global-head GFiSHformers are signi�cantly more ef�cient than the baseline asD andN increase, indicating
the bene�ts of our method for long-range and large-scale tasks.

Table 1:Perplexity (PPL) on WikiText-103 compared to the baselines.

Method Valid PPL Test PPL

Softmax 8 heads 33.15 34.29
Softmax 4 heads 34.80 35.85

Hard FiSHformer 4 global heads 33.10 34.11
Hard FiSHformer 2 global heads 34.14 35.24

FiSHformer 4 global heads 33.15 34.16
FiSHformer 2 global heads 34.01 34.96

Hard GFiSHformer 4 global heads 32.70 33.75
Hard GFiSHformer 2 global heads 33.31 34.63

GFiSHformer 4 global heads 32.68 33.71
GFiSHformer 2 global heads 33.21 34.48

2.5 Reduction in Model Complexity and Computational Cost from FiSH

Compared to itsH -head MHA counterpart, a FiSH attention ofM global heads andH local heads
saves[2(H � M )D � 2MH )]N 2 + 2( H � M )D(2D x � 1)N FLOPs in a forward pass and
2(H � M )DD x � HM � M parameters. Detailed derivations are provided in Appendix D.

3 Experimental Results
In this section, we empirically study the advantages of FiSHformer on various tasks and benchmarks,
including language modeling on WikiText-103 (Section 3.1), machine translation on IWSLT' 14
De-En and WMT'14 (Section 3.2), image classi�cation on ImageNet (Section 3.3), time series classi-
�cation on the UEA benchmark (Section 3.4), and reinforcement learning on the D4RL Benchmark
(Section 3.5). We aim to show that: (i) FiSHformers improve the ef�ciency and accuracy upon the
MHA baseline; (ii) FiSH is a universal method that can be applied to state-of-the-art transformer
models to improve their performance on large-scale applications. In Section 4, we also show that
FiSH helps reduce the redundancy between attention heads.

We compare FiSHformers, Hard FiSHformers, GFiSHformers, and Hard GFiSHformers with the
baseline MHA softmax transformers. In our experiments, we apply the discriminative relaxation
explained in Remark 3 on our FiSHformers to make the mixture weightspkj learnable parameters. For
GFiSHformers/Hard GFiSHformers, we choose the nonlinear mapping� to be a ReLU followed by a
linear neural network. All of our results are averaged over 5 runs with different seeds. More details
on datasets, models, and training are provided in Appendix A. Our PyTorch code with documentation
can be found at https://github.com/minhtannguyen/FishFormer.

3.1 WikiText-103 Language Modeling

Models and baselinesWe compare the 2 and 4-global-head FiSHformers with the 8-head softmax
transformers [75]. Each model has 16 layers, and our training follows the setting from [66].

Results Perplexity: Table 3.1 demonstrates that our 2/4-global-head (G)FiSHformers and their
hard versions obtain comparable or better PPLs than the corresponding 8 head MHA baseline on
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Table 2: Machine translation BLEU scores of
2-global-head (G)FiSHformers compared to the 4-
head baseline on the IWSLT14 De-En dataset. Our
methods perform on par or better than the baseline
while being more ef�cient.

Method BLEU score

Softmax 4 heads 34.42

Hard Fishformer 2 global heads 34.31
FiSHformer 2 global heads 34.38
Hard GFiSHformer 2 global heads 34.54
GFiSHformer 2 global heads 34.71

Table 3: Machine translation BLEU scores of
2-global-head (G)FiSH + linear transformers com-
pared to the 4-head baseline linear on the IWSLT14
De-En benchmark. Our methods signi�cantly out-
perform the linear baseline.

Method BLEU score

Linear 4 heads 28.22

Hard LFiSHformer 2 global heads 30.24
LFiSHformer 2 global heads 29.63
Hard GLFiSHformer 2 global heads 29.20
GLFiSHformer 2 global heads 29.46

WikiText-103. Interestingly, the 2-global-head (G)FiSHformers perform on par with the 8-head
baseline even though only 2 global attention matrices are used to span all local attention matrices,
indicating that the attention matrices in MHA are indeed redundant and the representation capacity of
local attention matrices in (G)FiSH, though being generated from only 2 global bases, is comparable
to those in the 8-head MHA.

Ef�ciency: In Fig. 3A and 3B, we presents the reduction ratio of train and test FLOPS, respectively,
of our 2-global-head GFiSHformer vs. the baseline 8-head MHA transformer as functions of model
dimensionD and sequence lengthN . In Fig. 3C and 3D, we show the reduction ratio of model
size and GPU memory usage at test time, respectively, of our 2-global-head GFiSHformer vs. the
same baseline. We observe that the ef�ciency advantage of GFiSHformer over the baseline grows
with D andN , making it more suitable and superior for large-scale applications. Note that the
model size in terms of the number of parameters does not depend on the sequence lengthN , and
from our experiments, we observe that the GPU memory usage reduction ratio is almost the same
for different sequence lengths. More ef�ciency analysis results on this language modeling task are
provided in Section 4 and Appendix C. Also, Figure 5 in Appendix B.2 shows the train and test
PPL of (G)FiSHformers and the MHA softmax transformers. In our experiment, 4-global-head
GFiSHformers obtain the best validation PPL.

3.2 Machine Translation

In this section, we examine the performance of (G)FiSHformer on the neural machine translation
task, an important task in natural language processing in which the sequence lengths of the input are
not the same. We �rst compare (G)FiSHformers with the baselines MHA softmax transformers on
the IWSLT' 14 De-En [11] and then scale up our experiments to the WMT'14 En-De [45]. On these
tasks, we calculate the BLEU scores for evaluation.

Models and baselinesFor the IWSLT' 14 De-En task, we compare 2-global-heads (G)FiSHformers
with the baseline 4-head softmax transformer. Each model consists of 12 layers, 6 layers for an
encoder and the other 6 layers for a decoder. Our experiments follow the setting on fairseq. For the
WMT'14 En-De task, we use similar models as in the IWSLT' 14 De-En task. However, we compare
(G)FiSHformers of 8 and 4 global heads with the 16-head MHA softmax baseline. Our training and
model setting are the same as those in [53].

Results As shown in Table 2 and 4, (G)FiSHformers outperform or at least are on par with the baseline
MHA softmax transformers. Again, these results indicate rich representations of the local attention
matrices generated by (G)FiSH. Furthermore, (G)FiSHformer outperforming Hard (G)FiSHformer
in all settings suggests the positive value of adding noise into the models to turn them into a proper
probabilistic model. Nevertheless, it is worth noticing that Hard (G)FiSHformer is more ef�cient
than (G)FiSHformer. Fig. 4 in Appendix B.1 summarizes the advantage in ef�ciency of 2-global-
head GFiSHformer over the 4-head baseline on the IWSLT' 14 De-En task. These advantages of
GFiSHformer grow with the model dimensionD.

3.3 Image Classi�cation on ImageNet

The advantages of (G)FiSHformers also hold across different data modalities. To illustrate this point,
in this section, we apply (G)FiSH to Swin transformer [44], a state-of-the-art vision transformer
architecture, for the image classi�cation task on the ImageNet dataset [20]. The baseline Swin-T
we use has a total of 12 layers, across 4 stages of transformer blocks with 3, 6, 12, and 24 heads
each. Our GFiSH Swin-T uses 6 and 12 global attention heads at the last two stages. The model and
training follow the settings in [44]. We summarize our results in Table 5. Our GFiSHformer is only
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Table 4:BLEU scores of (G)FiSHformers, with
various numbers of shared heads compared to the
16-head baseline on the WMT'14 En-De machine
translation. Our methods obtain comparable/better
results than the baseline while being more ef�cient.

Method BLEU score

Softmax 16 heads 29.38

Hard FiSHformer 8 global heads 29.32
FiSHformer 8 global heads 29.57
Hard GFiSHformer 8 global heads 29.27
GFiSHformer 8 global heads 29.42

Hard GFiSHformer 4 global heads 28.97
GFiSHformer 4 global heads 29.34

Table 5:ImageNet Image Classi�cation accuracy
scores, FLOPs, and number of parameters on Swin
Transformer, comparing between baseline Swin-T
and our GFiSH Swin-T. Baseline results from [44]
are provided in parentheses. The Swin-T baseline
uses 12 and 24 attention heads in the last two stages
while our GFiSH Swin-T uses only 6 and 12 global
attention heads in the last two stages.

Method Acc Acc FLOPs Params
top-1 top-5 (109)

Softmax-12/24 81.20 95.50 4618.24 28.3M

Hard-GFiSH-6/12 81.11 95.44 4372.48 26.2M

Table 6:The GFiSHformer vs. the baseline soft-
max transformer on the UEA Time Series Classi�-
cation Archive benchmark [5]. The GFiSHformer
performs on par with the baseline while being
more ef�cient. We also include the reported results
from [83] and [81] (in parentheses) in addition
to our reproduced results. The experiment setups
and con�gurations for the baseline and our GFiSH-
former are the same as in [81] (for the PEMS-
SF, SelfRegulationSCP2, UWaveGestureLibrary
datasets) and [83] (for other tasks).

Dataset/Model Baseline softmax GFishformer

ETHANOLCONCENTRATION 32.08 (33.70) 33.70
FACEDETECTION 68.70 (68.10) 68.57
HANDWRITING 32.08 (30.50) 31.55
HEARTBEAT 75.77 (77.60) 76.10
JAPANESEVOWELS 99.46 (99.40) 99.37
PEMS-SF 82.66 (82.10) 82.66
SELFREGULATIONSCP1 91.46 (92.50) 90.56
SELFREGULATIONSCP2 54.72 (53.90) 54.81
SPOKENARABICDIGITS 99.33 (99.30) 99.34
UWAVEGESTUREL IBRARY 84.45 (85.60) 85.01

AVERAGE ACCURACY 72.07 (72.27) 72.17

Table 7:The GFiSHFormer vs. the baseline soft-
max transformer on the continuous control tasks
from D4RL benchmark [29]. The GFiSHFormer
yields comparable results to the baseline while be-
ing more ef�cient. We also include the reported
results from [81] (in parentheses) in addition to our
reproduced results.

Environment/Model Baseline softmax GFiSHFormer

MEDIUM-EXPERT

HALFCHEETAH 91.03 (83.80) 90.25
HOPPER 110.30 (104.40) 110.60
WALKER 108.70 (107.70) 108.30

MEDIUM-REPLAY

HOPPER 85.61 (79.70) 85.89

MEDIUM

HALFCHEETAH 42.28 (42.40) 41.35
HOPPER 61.47 (64.20) 63.44
WALKER 68.68 (70.60) 67.07

AVG REWARD 81.19 (79.00) 80.99

slightly more ef�cient than the baseline in this case because the sequence length N per window for
this task is small, i.e.N = 49. However, like with the previous language tasks and as pointed by
formula of computational cost and model complexity reduction in Section 2.5, these advantages grow
with largerD andN .

3.4 UEA Time Series Classi�cation

We compare the accuracy of the GFiSHformer and the baseline softmax transformers trained on the
UEA Time Series Classi�cation Archive benchmark [5]. In Table 6, we show that GFiSHformers
perform on par with the baselines. For each classi�cation task in this benchmark, the number of
GFiSHformer's global heads is half the number of heads in the baseline softmax transformers. The
experiment setups and con�gurations for the baseline and our GFiSHformer are the same as in [81]
(for the PEMS-SF, SelfRegulationSCP2, UWaveGestureLibrary datasets) and [83] (for other tasks).

3.5 Reinforcement Learning on the D4RL Benchmark

We also demonstrate the bene�ts of GFiSHformers on reinforcement learning. In Table 7, we report
the results of the GFiSHformer and the softmax transformer trained for the continuous control tasks
from D4RL benchmark [29] to evaluate the model performance on the of�ine reinforcement learning.
On average, the 2-global-heads GFiSHformers perform comparably with the 4-head transformer
baselines. For this benchmark, we follow the architecture and training con�guration from [81].

3.6 FiSHformer is more effective than other methods for head-redundancy reduction

To futher demonstrate the effectiveness of our method, we compare FiSHformers against the head-
redundancy reduction method in [16] on the WMT'14 machine translation task. [16] proposes the
adaptively sparse transformer (AST), reducing redundancy within each head by zeroing out low-
attention scores. In comparison, the results further con�rm the effectiveness of our method since the
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Table 8:Layer-Average mean and variance ofL 2

distances between heads of models trained for the
WikiText-103 language modeling task.

Method Mean Variance

Softmax 8 heads 1.62 0.66
Linear 8 heads 1.90 0.06

GFiSHformer 2 global heads 2.93 2.62
GFiSHformer 4 global heads 3.59 3.95
GFiSHformer 6 global heads 3.37 2.78

Table 9:Layer-average number of principal com-
ponents for 95% variance explained of the covari-
ance of attention matrices (WikiText-103 models).

Method Mean

Softmax 8 heads 296
Linear 8 heads 436

GFiSHformer 2 global heads 895
GFiSHformer 4 global heads 1408
GFiSHformer 6 global heads 1228

BLEU score of FiSHformer and GFiSHformer are 27.26 and 27.67, respectively, better than that of
AST, which is 26.93. All models share the same architecture, with 12 transformer layers, 6 encoder,
and 6 decoder layers. Our FiSHformers have 4 global heads and 8 local heads per layer while 8
attention heads are used in each AST layer.

3.7 Beyond Multi-Head Softmax Transformers

We show that (G)FiSH can be applied on top of many transformer architectures to improve their
performance including the linear transformers [37] and the SoTA transformer with noisy back-
translation [26]. More results of combining (G)FiSH with ef�cient transformers are in the Appendix.

Applying (G)FiSH on Linear Transformers Linear transformers [37] is a class of ef�cient trans-
formers that linearize the softmax kernel in Eqns. 1 and 2 when computing attention matrices. We
apply (G)FiSH on linear transformers trained for the IWSLT14 De-En machine translation task and
summarize the results in Table 3. The empirical results verify that applying (G)FiSH using only
2-global heads on a 4-head linear transformer improves the accuracy of the baseline model.

(G)FiSH Improves the State-of-the-Art Noisy Back-TranslationWe apply an 8-global-head
Hard GFiSH on the transformers trained with noisy back-translation [26] for the WMT'14 En-De
translation task and obtain the BLEU score of 33.45. This result is comparable to the SoTA result of
33.52 from the transformers trained with noisy back-translation but our model is more ef�cient.

4 Empirical Analysis

We study models trained for the WikiText-103 language modeling task in this section.

Ef�ciency Analysis In this section, we further investigate the ef�ciency reduction of 2-global-head
GFiSHformers over the 8-head baseline as a function of the number of heads in Fig. 7 and 8 and
compare the ef�ciency of our FiSH-based models in Fig. 6. Fig. 6, 7, 8 and details on our setting
are provided in Appendix C. From Fig. 7 and 8, we observe that when using fewer number of
global heads, GFiSHformers achieve signi�cantly more computation reduction (in both training and
inference). Furthermore, Fig. 6 shows that the ef�ciency measures, i.e. FLOPs, model size, and GPU
memory usage, of all FiSH-based models we study in this paper follow similar patterns.

FiSHformer Helps Reducing Head RedundancyWe show that (G)FiSHformers attain more
signi�cant distances between heads than the baseline. Thus, our models capture more diverse patterns
across heads than the baseline. For a given pre-trained model, we compute the pair-wiseL 2 distances
between heads in the same layer. We show the layer-average mean and variance of distances between
heads in GFiSHformers compared with those in the MHA softmax baselines in Table 8. We provide
additional results for Hard GFiSHformers and Hard FiSHformer in Table 12 in the Appendix.

Eigen AnalysisWe show that heads in GFiSHformer lie on a higher-dimensional subspace compared
to those in FiSHformer. This justi�es our use of nonlinearity mapping to generate local heads
from global heads. Using a pre-trained model, we �rst compute the covariance matrix of the
vectorized attention scores of thel-th layer:Cl = 1

M �H

P M
m =1

P H
h=1 (A l;h

m )(A l;h
m )> . We use spectral

decomposition to representCl in terms of eigenvalues and eigenvectors, namely,Cl =
P n 2

i =1 � i vi v>
i .

Without losing generality, we assume that eigenvalues are sorted in descending order. We illustrate
the layer-average number of principle components that are needed to explain 95% variance in Table 9.
Interestingly, Table 9 shows that attention matrices in all of our proposed FiSH-based models lie on
higher-dimensional subspace than those in the baseline MHA softmax transformers, which indicates
that our models achieve better representational capacity than the baseline, con�rming the advantage
of (G)FiSH over MHA. Table 13 in the Appendix provide additional results for Hard (G)FiSHformer.
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Table 10:Perplexity (PPL) on WikiText-103 of 2-
global-head FiSHformer vs. 2-global-head MiSH-
former compared to the 8-head baseline. MiSH-
former attains worse PPL than FiSHformer.

Method Valid PPL Test PPL

Softmax 8 heads 33.15 34.29

FiSHformer 2 global heads 34.01 34.96
MiSHformer 2 global heads 35.11 36.28

Table 11:Perplexity on WikiText-103 of GFiSH-
former with various number of global heads com-
pared with the 8-head baseline.

Method Valid PPL Test PPL

Softmax 8 heads 33.15 34.29

GFiSHformer 6 global heads 32.80 33.80
GFiSHformer 4 global heads 32.68 33.71
GFiSHformer 2 global heads 33.21 34.48

Admixture vs. Mixture of Heads We compare the transformer with a mixture of heads and the
transformer with an admixture of heads. We show that the transformer with a mixture of heads yields
worse accuracy. We summarize our results on the WikiText-103 language modeling task in Table 10.

Ablation Study on the Effect of the Number of Global Heads on FiSH-based ModelsWe
investigate the accuracy, ef�ciency, and representation capacity of FiSH-based models under different
numbers of global heads on the WikiText-103 language modeling task. Since GFiSH obtains the best
accuracy on this task, we use GFiSH as a study case in this section and report our results on accuracy
in Table 11. Ablation results on ef�ciency are summarized in Fig. 7, 8 in Appendix C, and ablation
results on representation capacity are provided in Table 8, 9.

5 Related Work
Ef�cient Transformers Ef�cient transformers have been developed to reduce the quadratic computa-
tional and memory cost of transformers [62]. A class of ef�cient transformers are sparse transformers
which design the attention matrix to have sparse structure [55, 42, 58, 12, 7]. Another class of
ef�cient transformers are models that integrate different access patterns for better coverage [12, 33].
These access patterns can also be learned from the data [40, 62, 71]. In other works, a side memory
module is used to access multiple tokens simultaneously [41, 69, 3, 7]. Recently, low-rank and
kernelization methods have been proposed to improve the computational and memory ef�ciency of
computing self-attention [74, 79, 37, 14, 50, 67, 52, 56]. Our (G)FiSHformers are complementary to
these methods.

Redundancy in TransformersMost of the neurons and heads in the pre-trained transformer are
redundant and can be pruned when applied on downstream tasks [18, 47, 23]. The contextualized
embeddings in pre-trained networks under this redundancy have also been studied to demonstrate
that the representations learned within these models are highly anisotropic [48, 27]. Knowledge
distillation and sparse approximation have also been used to enhance the ef�ciency of transformers,
including [65, 70, 78, 64]. Our FiSH-based approach are complementary to these methods

Mixture Models for Transformers Recently, mixture models have been employed to study and
enhance transformers. Among these works is switch transformers [28] that uses the routing algorithm
in Mixture of Experts (MoE) to decrease the communication and computational costs in transformers.
[49] derives a GMM for each attention head. Other works that combine mixture models with
transformers include [51, 13, 31, 36].

6 Concluding Remarks
In this paper, we proposed the FiSHformer, a class of transformers that samples local attention
matrices from a �nite admixture of global attention matrices. FiSHformers and their generalized
version GFiSHformers attain better computational cost and model complexity than their baseline
MHA softmax transformer counterparts. Furthermore, (G)FiSHformers help increase the diversity
between attention heads. It is worth noting that there is no potential negative societal impacts of
FiSHformers. Also, global attention matrices in FiSHformers currenly do not have any structure, and
this is a limitation of our model. It is interesting to impose additional structures such as low-rank and
sparsity into the global attention matrices. Finally, establishing theoretical guarantee for optimization
algorithms [25, 24, 34] for solving FiSHformers is also an important future direction to improve the
ef�ciency of FiSHformers.
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Supplement to "Improving Transformer with an Admixture of
Attention Heads"

A Experiment Details

In this section, we provide model and training details for experiments in Section 3. In our experiments,
we consider the number of global attention matrices as a hyper parameter to �netune. We observe
that in all of our experiments, choosing the global attention matrices in FiSH to be 1/4 and 1/2 of the
number attention heads in the original MHA results in models with good accuracy and ef�ciency. All
of our experiments are conducted on a server with 4 NVIDIA A100 GPUs.

A.1 Language Modeling

Datasets and metricsWikiText-103 consists of articles from Wikipedia and is a dataset with long
contextual dependencies. The training set is made up of about28K articles containing103M running
words; this corresponds to text blocks of about 3600 words. The validation and test sets are composed
of 218K and246K running words, respectively. Each of them contains60articles and about268K
words. Our experiment follows the standard setting [46, 66] and splits the training data intoL-word
independent long segments. For evaluation, we use a batch size of 1 and go through the text sequence
with a sliding window of sizeL . We consider only the last position for computing perplexity (PPL)
except in the �rst segment, where all positions are evaluated as in [2, 66].

A.2 Machine Translation

Datasets and metricsThe dataset IWSLT'14 De-En contains about170K training sentence pairs,
7K validation pairs, and7K test pairs. In this task, the model does the translation from German to
English. The WMT dataset is a rich-resource English-German machine translation dataset, containing
about4:5M training sentence pairs. Validation and test data are from the corresponding newest data.
The BLEU score [54] is used to measure the performance of the trained model.

A.3 Image Classi�cation

Datasets and metricsThe ImageNet dataset [63] contains about1:281M training images and50K
validation images, the model learns to predict which one of 1000 classes an image belongs to.
Our Swin Transformer [44] experiments are based on the public code https://github.com/microsoft/
Swin-Transformer, we implemented our Hard GFiSH models with the Swin-T version. We add our
global heads to the last 8 of the total 12 layers of the model, on each layer we set the number of
global heads to half the number of heads, which are 6 and 12 global heads for layers with 12 and 24
heads, respectively. Our experiments were conducted on a server with 1 NVIDIA RTX 3090. We set
the batch size to 128 and the learning rate to 1.25e-4, all models are trained with single precision.

A.4 UEA Time Series Classi�cation

Datasets and metricsThere are 30 datasets in the benchmark [5]. Following [81], to evaluate
our models on temporal sequences, we choose 10 datasets, which vary in input sequence lengths,
the number of classes, and dimensionality. We report the test accuracy as an evaluation for the
benchmark.
Models and baselineThe experiment setups and con�gurations for the softmax and our models
are the same as in [81] 1 (for the PEMS-SF, SelfRegulationSCP2, UWaveGestureLibrary datasets)
and [83] 2 (for the other tasks). In all models, the number of heads is 8, whereas the model dimension
and number of transformer layers are varied. Our GFiSHformer uses 4 global heads to produce 8
local heads.

A.5 Reinforcement learning on the D4RL benchmark

Datasets and metricsThe D4RL benchmark [29] contains the continuous control tasks for of�ine
reinforcement learning. We adapt the selection from [81], including HalfCheetah, Hopper, and Walker
as experiment environments and Medium-Expert, Medium, and Medium-Replay as behavior policies.
Models and baselineThe softmax baseline trained on this benchmark adopts the con�guration
from [81], with 3 transformer layers and 4 heads per layer. The 2-global-head GFiSHformer also
shares the same con�guration and training set-ups.

1Implementation available at https://github.com/thuml/Flowformer.
2Implementation available at https://github.com/gzerveas/mvts_transformer.
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A.6 Applying (G)FiSH on linear transformers

Here we provide the detailed implementation of (G)LFiSHformer, i.e. (G)FiSH + linear transformer,
discussed in Section 3.7 and Table 3 in the main text. The linear transformer reduces the quadratic
computational cost of self-attention to linear complexity, in terms of the sequence length, by lineariz-
ing the softmax kernel [37]. We combine (G)FiSHformer with linear transformer by generating the
globalK T V and then sampling the localK T V from the global ones, resulting in the Transformer
with a Linear Finite Admixture of Shared Heads (LFiSHformer). Similar to (G)FiSHformer, we
derive four different LFiSH-based transformers: LFiSHformer, Hard LFiSHformer, Generalized
LFiSHformer (GLFiSHformer), and Hard Generalized LFiSHformer (Hard GLFiSHformer). Our
LFiSH-variants improve the performance of the linear baseline, as demonstrated in Table 3

B Additional Experimental Results
B.1 A Comparison on the Model Ef�ciency for the IWSLT14 De-En Machine Translation

Task

Fig. 4 summarizes the advantage in ef�ciency of 2-global-head GFiSHformer over the 4-head baseline
on the IWSLT' 14 De-En task.

Figure 4:(Left) Training (A) and Inference (B) real time ratios between a 2-global-head GFiSHformers with
4-head MHA baselines across different model dimensionsD trained on the IWSLT14 De-En machine translation
task. (Right) GPU memory usage at train time (C) and test time (D) and number of parameters (E) ratios between
2-global-head GFiSHformers with 4-head MHA baselines across different model dimensionsD . 2-global-head
GFiSHformers are signi�cantly more ef�cient than the baseline asD increase, indicating the bene�ts of our
method for long-range and large-scale tasks. Note that the ratios do not change much whenN increase for this
task.

B.2 Train and validation PPL of models trained for the WikiText-103 language modeling task

Figure 5 shows the train and valid PPL of 4-global-head FiSH-based models vs . 8-head MHA
Transformer trained for the WikiText-103 language modeling task.

B.3 More Results to Show that FiSHformer Helps Reducing Head Redundancy

Table 12 presents the layer-average mean and variance of distances between heads in Hard FiSHform-
ers and Hard GFiSHformers compared with those in the MHA softmax baselines. Models are trained
for the WikiText-103 language modeling task.

Figure 5:Train and validation PPL of 4-global-head FiSH-based models vs . 8-head MHA Transformer trained
for the WikiText-103 language modeling task.
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