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Abstract

Starting with the Fourier integral theorem, we present natural Monte Carlo estimators of
multivariate functions including densities, mixing densities, transition densities, regression
functions, and the search for modes of multivariate density functions (modal regression).
Rates of convergence are established and, in many cases, provide superior rates to current
standard estimators such as those based on kernels, including kernel density estimators and
kernel regression functions. Numerical illustrations are presented.
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1. Introduction

Nonparametric function estimation allows for a data driven form for the estimator with lit-
tle to no constraints on shape. Early work included kernel density estimators; Rosenblatt
(1956) and Parzen (1962) and regression estimators; Nadaraya (1964) and Watson (1964).
Other nonparametric estimators include those of a mixing density, Laird (1978), hazard and
cumulative hazard functions and other related functions.

While there are many approaches to function estimation, such as polynomials, basis func-
tions and splines for regression functions; see Donoho and Johnstone (1998), Fan (1993), Fan
and Gijbels (1996), Green and Silverman (1994), Stone (1985), Tibshirani (2014), Tsybakov
(2009), Wahba (1990), and Wasserman (2006), kernel methods remain popular.

Contribution. The main contribution of the paper is multivariate kernel smoothing, and, in
particular, for regression and mode clustering, which have found applications in statistics and
machine learning; Li et al. (2007); Chaudhuri and Dasgupta (2010); Rinaldo and Wasserman
(2010); Brabanter et al. (2011); Chen (2016); Chen et al. (2016a); Arias-Castro et al. (2016);
Feng et al. (2020). The Gaussian kernel is used almost exclusively and a number of authors
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advocate its use in the multivariate setting. However, even in the bivariate case, a number of
issues arise regarding the covariance matrix; see Wand and Jones (1993, 1994). Some authors
advocate a diagonal matrix, e.g., Wand (1994), for the ease of computation reasons, though for
regression function estimation such a plan can be problematic. On the other hand, selecting
a bandwidth covariance matrix is also a non trivial problem; see Wand (1992), Staniswalis
et al. (1993) and Chacón and Duong (2018).

In the one dimensional case, a number of authors have considered various kernels, K(u),
the main condition being that ∫ ∞

−∞
K(u) du = 1.

With this in mind, the Fourier kernel is given byK(u) = π−1 sin(u)/u, and has been mentioned
and looked in early work by Parzen (1962) and Davis (1975) for density estimation.

For reasons unclear to us, there is no, as far as we can ascertain, use of the Fourier kernel
for regression smoothing or mode hunting. The Gaussian kernel dominates here due to the
possibility of incorporating a covariance structure in the multivariate case when there are
multiple predictor variables. There seems little room for such a covariance matrix within the
Fourier kernel. However, as we shall highlight, there is no need for one in the multivariate
case; a product of Fourier kernels suffice, which is not so for the Gaussian kernel.

First we will introduce the key idea lightly and then be more formal. The unique aspect of
the Fourier kernel is that is satisfies the Fourier integral theorem; i.e., for all suitable functions
m(x), with x ∈ Rd,

m(y) =
1

π
lim
R→∞

∫ d∏
j=1

sin(R(yj − xj))
yj − xj

m(x) dx. (1)

There are two distinct features with equation (1). First, the product of sin functions does not
converge to a single point mass when R goes to infinity, which is different from the multivariate
Gaussian kernels or other popular multivariate kernels. Therefore, the approximation based on
the product of sin kernels in equation (1) is non-trivial. Second, the product of sin kernels over
dimensions in equation (1) preserves the covariance or dependence structure, automatically,
lying within m(x). There is no need to seek out a covariance or dependence structure, as there
is with the Gaussian kernel which does not satisfy equation (1). Hence, for the Gaussian kernel
to preserve good approximations, the product of independent kernels over the dimensions
would need some attention, such as the inclusion of a covariance structure.

It could well be that the lack of ability of placing a covariance structure suitably within
the Fourier kernel is the reason why it has not been looked at in multidimensional problems.
However, we have just argued, through equation (1), it is not required. Furthermore, equation
(1) provides a natural Monte Carlo estimator for m(·).

To be more formal, consider the Fourier integral theorem in one dimension,

m(y) =
1

2π
lim
R→∞

∫ R

−R

∫ ∞
−∞

cos(s(y − x))m(x) dx ds, (2)

for m ∈ L1(R). This is an application of the Fourier and Fourier inverse transforms; see
for example Wiener (1933). Hence, an approximation based on the choice of a finite R, and
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integrating over s, yields

mR(y) =
1

π

∫ ∞
−∞

sin(R(y − x))

y − x
m(x) dx.

In particular, if m = p0 is a density function, and X1, . . . , Xn are an i.i.d. sample from p0,
then a Monte Carlo estimate of the density is

f̂n,R(x) =
1

nπ

n∑
i=1

sin(R(x−Xi)

x−Xi
.

The extension to higher dimensions Rd is a simple procedure, based on

p0(y) =
1

(2π)d
lim
R→∞

∫ R

−R
. . .

∫ R

−R

∫
Rd

cos(s>(y − x)) p0(x) dx ds, (3)

where now x = (x1, . . . , xd). Proceeding along similar lines, and making multiple use of the
expansion of cos(A+B), we get

p0(y) = lim
R→∞

1

πd

∫
Rd

d∏
j=1

sin(R(yj − xj))
yj − xj

p0(x)dx (4)

and

f̂n,R(x) =
1

nπd

n∑
i=1

d∏
j=1

sin(R(x−Xij))

x−Xij
, (5)

where x = (x1, . . . , xd) and Xi = (Xi1, . . . , Xid) for all i. So note the natural use of the
product of one dimensional Fourier kernels. We call the estimator f̂n,R as Fourier density
estimator.

The same basic idea equally applies to nonparametric kernel regression; so suppose we
observe (Xi, Yi)

n
i=1 such that Yi = m(Xi) + σεi, with E ε = 0 and Var ε = 1. Then, as before,

m satisfies equation (2), and we can again approximate one side with the following term;

mR(y) =
1

π

∫ ∞
−∞

sin(R(y − x))

y − x
m(x) dx.

The Monte Carlo estimate of the right side then yields

m̂n,R(x) =

∑n
i=1 YiKR(x−Xi)∑n
i=1KR(x−Xi)

,

where KR(u) = sin(Ru)/u. This estimator can be considered as the Fourier version of the
Nadaraya–Watson kernel estimator for nonparametric regression.

Again, the extension to the multivariate case (multiple predictors) follows along the same
lines which led to equation (5). That is,

m̂n,R(x) =

∑n
i=1 Yi

∏d
j=1KR(xj −Xij)∑n

i=1

∏d
j=1KR(xj −Xij)

. (6)
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There is no need for any setting of a covariance structure between variables.
While noting the sufficiency of the product of kernels, we demonstrate that when the data

density function is suitably smooth, the mean (integrated) square errors of the Monte Carlo
estimators have faster convergence rates than those from standard kernel density estimators.
Improved rates for other types of functions are also demonstrated.

Organization. The paper is organized as follows. In Section 2, we study the mean inte-
grated square error (MISE) of the Fourier density estimator and its derivatives under various
tail conditions of the true density function. Then, we also provide (uniform) confidence inter-
val of the true density function based on the Fourier density estimator. In Section 3, we study
an application of Fourier integral theorem to estimate mixing density under the deconvolu-
tion settings. We further extend the idea of Fourier integral theorem to the nonparametric
regression, mode hunting applications, and dependent data in Sections 4-7. Illustrations with
the proposed Monte Carlo estimators are in Section 8. Proofs of key results are in Section 9
while the remaining proofs are in Appendix A. We end the paper with some discussion with
future work in Section 10.

Notation. For any n ∈ N, we denote [n] = {1, . . . , n}. For any set X , we denote Diam(X )
the diameter of set X . For any vector x = (x1, . . . , xd) ∈ Rd, we denote

‖x‖max = max
1≤i≤d

{|x1|, . . . , |xd|},

the maximal norm of x. For any r ≥ 1 and any set X , we denote Cr(X ) the set of functions on
X that have bounded integrable continuous derivatives up to the r-th order. For any x ∈ Rd
and subset A of Rd, we define d(x,A) = infy∈A ‖x−y‖2. For any symmetric matrix M ∈ Rd×d,
we denote λi(M) as the i-th largest eigenvalue of M , i.e., λ1(M) ≥ λ2(M) ≥ . . . ≥ λd(M).
For any subset A of Rd and r > 0, we denote A⊕r = {y : minx∈A ‖x−y‖2 ≤ r}. The notation

X
p→ Y and X

d→ Y respectively mean X converge to Y in probability and distribution. For
any sequence an and bn, the notation an = O(bn) means that an ≤ Cbn for all n ≥ 1 where
C is some universal constant. Furthermore, the notation an = o(bn) means that an/bn → 0
as n→∞. Finally, we denoted by p0 a true (density) function and p̂0 the Fourier transform
of p0.

2. Fourier density estimator

In this section, we assume X1, . . . , Xn ∈ X ⊆ Rd are an i.i.d. sample from p0 and we would
like to estimate the density function p0 based on the Fourier density estimator f̂n,R given in

equation (5). Based on equation (4), we know that when R goes to infinity, the bias of f̂n,R(x)
goes to 0. However, we would like to investigate the vanishing rate of the bias. To do that, we
first define two important tail behaviors on the Fourier transform of the density function p0,
which serve as sufficient conditions for the Fourier transform to be integrable and to obtain
the vanishing rate of the bias.

Definition 1. (1) We say that p0 is upper-supersmooth (lower-supersmooth) of order α if there
exist universal constants C,C ′, C1, C2 such that as long as we have the following inequalities
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for almost all x ∈ Rd

Upper-supersmooth: |p̂0(x)| ≤ C exp

−C1

 d∑
j=1

|xj |α
 ,

Lower-supersmooth: |p̂0(x)| ≥ C ′ exp

−C2

 d∑
j=1

|xj |α
 .

Here, p̂0 denotes the Fourier transform of p0.
(2) The density p0 is upper-ordinary smooth (lower-ordinary smooth) of order β if there exist
universal constants c, c′ such that for almost all x ∈ Rd, we have

Upper-ordinary smooth: |p̂0(x)| ≤ c ·
d∏
j=1

1

(1 + |xj |β)
,

Lower-ordinary smooth: |p̂0(x)| ≥ c′ ·
d∏
j=1

1

(1 + |xj |β)

Popular examples of upper-and lower-supersmooth densities include multivariate Gaussian,
multivariate Cauchy distributions, and their mixtures. The examples of upper-ordinary
smooth densities include continuous density functions that have continuous and integrable
partial derivatives or product of univariate Laplace distributions. For the lower-ordinary
smooth densities, the examples include multivariate Laplace distribution and univariate Beta
distribution. Finally, we would like to note that under the univariate setting of the den-
sity p0, we can slightly relax the upper-ordinary smooth condition in Definition 1 as follows;
|p̂0(x)| ≤ c/|x|β for almost all x ∈ R. This relaxation allows the upper-ordinary smooth def-
inition to cover more popular univariate distributions, such as Beta distribution. Later, our
results for upper-ordinary smooth univariate settings can be understood to also hold under
this relaxation as well.

2.1 Risk analysis with Fourier density estimator

Based on the smoothness definitions of p0, we have the following result regarding the bias and
variance of the Fourier density estimator f̂n,R:

Theorem 1. (a) Assume that p0 is an upper–supersmooth density function of order α > 0
and ‖p0‖∞ <∞. Then, there exist universal constants C and C ′ such that while R ≥ C ′, for
almost all x we find that∣∣∣E [f̂n,R(x)

]
− p0(x)

∣∣∣ ≤ CRmax{1−α,0} exp (−C1R
α) ,

var
[
f̂n,R(x)

]
≤ ‖p0‖∞

πd
· R

d

n
,

where C1 is the universal constant associated with the supersmooth density function p0 from
Definition 1.
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(b) Assume that p0 is an upper–ordinary smooth density function of order β > 1 and ‖p0‖∞ <
∞. Then, there exists a universal constants c such that for almost all x we obtain∣∣∣E [f̂n,R(x)

]
− p0(x)

∣∣∣ ≤ c

Rβ−1
,

var
[
f̂n,R(x)

]
≤ ‖p0‖∞

πd
· R

d

n
.

The proof of Theorem 1 is given in Section 9.1. Given the result of Theorem 1, we have the
following upper bounds on the mean integrated squared errors (MISE) of the Fourier density
estimator f̂n,R:

(i) When p0 is an upper–supersmooth density function of order α > 0, we have

MISE(f̂n,R) =

∫ [(
E
[
f̂n,R(x)

]
− p0(x)

)2
+ var

[
f̂n,R(x)

]]
dx

≤ C2Rmax{2−2α,0} exp (−2C1R
α) +

‖p0‖∞
πd

· R
d

n
,

where C and C1 are the constants in part (a) of Theorem 1. The choice of R that minimizes
the upper bound of MSE is the solution of the equation

C2Rmax{2−2α,0} exp(−2C1R
α) =

‖p0‖∞
πd

· R
d

n
.

Therefore, we can choose R such that 2C1R
α = log n. With this choice of R, we have

MISE(f̂n,R(x)) ≤
(
C2 +

‖p0‖∞
πd

)
(log n)max{d/α,2/α−2}

n
,

which is better than the well-known MISE rate n−4/(4+d) for the kernel density estimator
(KDE), when the density function p0 has bounded second derivatives (Wasserman, 2006;
Tsybakov, 2009).

(ii) When p0 is an upper–ordinary smooth density function of order β > 1, we find that

MISE(f̂n,R(x)) ≤ c2

R2(β−1)
+
‖p0‖∞
πd

· R
d

n
,

where c is the constant given in part (b) of Theorem 1. Hence, by choosing R such that

Rd+2(β−1) = c2πdn/‖p0‖∞, we obtain MISE(f̂n,R(x)) ≤ C̄n−
2(β−1)

2(β−1)+d , where C̄ is some univer-

sal constant. As long as β > 3, the MISE rate of f̂n,R is also better than the rate n−4/(4+d)

of the KDE, when the density function has bounded second derivatives.

2.2 Concentration of Fourier density estimator

In this section, we first provide concentration bounds for Fourier density estimator f̂n,R(x)
under various smoothness assumptions of the true density function p0 for almost all x ∈ X .
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Proposition 1. For almost all x ∈ X , there exist universal constants C and c such that:
(a) If p0 is an upper–supersmooth density function of order α > 0 and ‖p0‖∞ <∞, then for
any R ≥ C ′ where C ′ is some universal constant, we obtain

P

(∣∣∣f̂n,R(x)− p0(x)
∣∣∣ ≥ C (Rmax{1−α,0} exp (−C1R

α) +

√
Rd log(2/δ)

n

))
≤ δ.

Here, C1 is universal constant given in part (a) of Theorem 1.
(b) If p0 is an upper–ordinary smooth density function of order β > 1 and ‖p0‖∞ <∞, then

P

(∣∣∣f̂n,R(x)− p0(x)
∣∣∣ ≥ c(R1−β +

√
Rd log(2/δ)

n

))
≤ δ.

Proof. An application of the triangle inequality yields∣∣∣f̂n,R(x)− p0(x)
∣∣∣ ≤ ∣∣∣f̂n,R(x)− E

[
f̂n,R(x)

]∣∣∣+
∣∣∣E [f̂n,R(x)

]
− p0(x)

∣∣∣ .
Denote Yi = 1

πd

∏d
j=1

sin(R(xj−Xij)
xj−Xij for all i ∈ [n]. It is clear that |Yi| ≤ Rd for all i ∈ [n] and

var(Yi) ≤ CRd (cf. Theorem 1) where C > 0 is some universal constant. For any t ∈ (0, C],
an application of Bernstein’s inequality shows that

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi − E [Y1]

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

2CRd + 2Rdt/3

)
.

By choosing t = C̄
√
Rd log(2/δ)/n, where C̄ is some universal constant, we find that

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi − E [Y1]

∣∣∣∣∣ ≥ t
)
≤ δ.

Combining the above probability bound with the upper bounds of
∣∣∣E [f̂n,R(x)

]
− p0(x)

∣∣∣ from

Theorem 1, we reach the conclusion of the theorem.

The results of Proposition 1 only hold for point–wise x ∈ X . In certain applications,
such as mode estimation, it is desirable to establish the uniform concentration bound for the
Fourier density estimator f̂n,R, namely, supx∈X |f̂n,R(x)−p0(x)|. Our next result provides such
a uniform concentration bound when X is bounded and the density function p0 is continuous.
Note, the assumption that p0 is continuous is to guarantee that the bounds of the bias in
Theorem 1 hold for all x ∈ X .

Theorem 2. Assume that X is a bounded subset of Rd. Then, there exist universal constants
C and c such that the following holds:
(a) When p0 is a continuous upper–supersmooth density function of order α > 0 and ‖p0‖∞ <
∞, for any R ≥ C ′ where C ′ is some universal constant we have

P

(
sup
x∈X

∣∣∣f̂n,R(x)− p0(x)
∣∣∣ ≥ C (Rmax{1−α,0} exp (−C1R

α) +

√
Rd logR (log(2/δ))

n

))
≤ δ.
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Here, C1 is universal constant given in part (a) of Theorem 1.

(b) When p0 is a continuous upper–ordinary smooth density function of order β > 1 and
‖p0‖∞ <∞, we obtain

P

(
sup
x∈X

∣∣∣f̂n,R(x)− p0(x)
∣∣∣ ≥ c(R1−β + C̄

√
Rd logR(log(2/δ))

n

))
≤ δ.

Proof. By the triangle inequality, we have

sup
x∈X

∣∣∣f̂n,R(x)− p0(x)
∣∣∣ ≤ sup

x∈X

∣∣∣f̂n,R(x)− E
[
f̂n,R(x)

]∣∣∣+ sup
x∈X

∣∣∣E [f̂n,R(x)
]
− p0(x)

∣∣∣ .
To bound supx∈X

∣∣∣f̂n,R(x)− E
[
f̂n,R(x)

]∣∣∣, we use Bernstein’s inequality along with the brack-

eting entropy under L1 norm of the functions in the space X (Wainwright, 2019). In particular,

by denoting Yi = 1
πd

∏d
j=1

sin(R(xj−Xij)
xj−Xij for all i ∈ [n], we have |Yi| ≤ Rd and E(|Yi|) ≤ 1 for

all i ∈ [n]. Therefore, when t ≤ 2CRd, we find that

P
(

sup
x∈X

∣∣∣f̂n,R(x)− p0(x)
∣∣∣ > t

)
≤ 4N[]

(
t/8,F ′,L1(P )

)
exp

(
−96nt2

76Rd

)
,

where the functional space F ′ = {fx : Rd → R : fx(t) = 1
πd

∏d
i=1

sin(R(xi−ti))
xi−ti for all x ∈ X , t ∈

Rd} and N[] (t/8,F ′,L1(P )) is the bracketing number of the functional space F ′ under L1(P ).
For any functions fx1 and fx2 in F ′, we can check that

|fx1(y)− fx2(y)| ≤ dRd+1‖x1 − x2‖2,

for all y ∈ Rd. Since X is a bounded subset of Rd, we obtain that

N[]

(
t/8,F ′,L1(P )

)
≤

(
4d
√
d ·Diam(X )Rd+1

t

)d
.

Putting the above results together, by choosing

t = C̄
√
Rd (log(2/δ) + d(d+ 1) logR+ d(log d+ Diam(X )) /n,

where C̄ is some universal constant, we have

P
(

sup
x∈X

∣∣∣f̂n,R(x)− p0(x)
∣∣∣ > t

)
≤ δ.

The above uniform concentration bound of supx∈X

∣∣∣f̂n,R(x)− E
[
f̂n,R(x)

]∣∣∣ and the upper

bounds of supx∈X

∣∣∣E [f̂n,R(x)
]
− p0(x)

∣∣∣ in Theorem 1 lead to the conclusion of the theo-

rem.
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2.3 Derivatives of Fourier density estimator

In this section, we provide the risk analysis for the derivatives of the Fourier density estimator
f̂n,R. This analysis is useful for our study with mode estimation in Sections 4 and 6. For
any r ≥ 1, the mean integrated squared errors of the r-th derivatives of the Fourier density
estimators are defined as follows:

MISE(∇rf̂n,R) =

∫
E
[
‖∇rf̂n,R(x)−∇rp0(x)‖22

]
dx

=

∫
‖E
[
∇rf̂n,R(x)

]
−∇rp0(x)‖22dx+

∫
E
[
‖∇rf̂n,R(x)− E

[
∇rf̂n,R(x)

]
‖22
]
dx.

The first term can be thought as mean-squared bias while the second term can be thought
of as the mean-squared version of the variance (or in short mean-squared variance). The
following result provides upper bounds for the mean-squared bias and variance of ∇rf̂n,R(x)
for estimating ∇rp0(x).

Theorem 3. For any given r ≥ 1, assume that p0 ∈ Cr(X ). Then, the following holds:
(a) When p0 is an upper–supersmooth density function of order α > 0, there exist universal
constants {C ′i}ri=1 and {C̄i}ri=1 such that while R ≥ C ′, where C ′ is some universal constant
and 1 ≤ i ≤ r, we find that

sup
x∈X
‖E
[
∇if̂n,R(x)

]
−∇ip0(x)‖max ≤ C ′iRmax{1+i−α,0} exp (−C1R

α) ,

sup
x∈X

E
[
‖∇if̂n,R(x)− E

[
∇if̂n,R(x)

]
‖22
]
≤ C̄i ·

R2i+d

n
,

where C1 is the universal constant associated with the supersmooth density function p0 from
Definition 1.
(b) When p0 is an upper–ordinary smooth density function of order β > 1 + r, there exist
universal constants {ci}ri=1 such that for any 1 ≤ i ≤ r we obtain

sup
x∈X
‖E
[
∇if̂n,R(x)

]
−∇ip0(x)‖max ≤

ci

Rβ−(i+1)
,

sup
x∈X

E
[
‖∇if̂n,R(x)− E

[
∇if̂n,R(x)

]
‖22
]
≤ C̄i ·

R2i+d

n
.

The proof of Theorem 3 is in Section 9.2. Given the results in Theorem 3, we obtain the
following results with the MISE of ∇rf̂n,R:
(i) When p0 is an upper–supersmooth density function of order α > 0, the result in part (a)
in Theorem 3 demonstrates that

MISE(∇rf̂n,R) ≤ (C ′r)
2Rmax{2(1+r−α),0} exp (−2C1R

α) + C̄rR
2r+d/n,

where C ′r and C̄r are given constants in part (a). This upper bound suggests that we can
choose R such that 2C1R

α = log n. Then, we have

MISE(∇rf̂n,R) ≤ C n−1 (log n)max{(d+2r)/α,2(1+r−α)/α},
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where C is some universal constant.

(ii) When p0 is an upper–ordinary smooth density function of order β > 1 + r, we have

MISE(∇rf̂n,R) ≤ c2
r

R2(β−(r+1))
+ C̄rR

2r+d/n,

where cr is given constant in part (b). By choosing R such that Rd+2(β−2) = c2
rn/C̄r, we obtain

MISE(∇rf̂n,R) ≤ cn
− 2(β−r−1)
d+2(β−1) , where c is some universal constant. When β > r + 3, then the

MISE rate of the r-th order derivatives of the Fourier density estimator is better than the
MISE rate n−4/(d+2r+4) of the KDE estimator when the density function p0 ∈ Cr(X ) (Chacón
et al., 2011).

Thus, we have provided the uniform upper bounds for the difference between E
[
∇rf̂n,R(x)

]
and ∇rp0(x). In certain applications, such as mode estimation (cf. Section 4), it is also im-
portant to understand the concentration behaviors of ∇rf̂n,R(x) around ∇rp0(x) uniformly
for all x ∈ X . The following result provides the bounds on these behaviors when X is a
bounded subset of Rd.

Theorem 4. For any given r ≥ 1, assume that p0 ∈ Cr(X ) and X is a bounded subset of Rd.
Then, there exist universal constants C and c such that the following holds:

(a) When p0 is an upper–supersmooth density function of order α > 0, as long as R ≥ C ′

where C ′ is some universal constant and 1 ≤ i ≤ r, we find that

P
(

sup
x∈X

∥∥∥∇if̂n,R(x)−∇ip0(x)
∥∥∥

max
≥ C

(
Rmax{1+i−α,0} exp (−C1R

α)

+

√
R(d+2i) logR (log(2/δ))

n

))
≤ δ,

where C1 is the universal constant in part (a) of Theorem 3.

(b) When p0 is an upper–ordinary smooth density function of order β > r+1, for any 1 ≤ i ≤ 2
we obtain

P

(
sup
x∈X

∥∥∥∇if̂n,R(x)−∇ip0(x)
∥∥∥

max
≥ c

(
R−β+(i+1) +

√
R(d+2i) logR (log(2/δ))

n

))
≤ δ.

The proof of Theorem 4 is in Section 9.3.

Based on the result of Theorem 4, we can choose the radius R similar to those in the
discussion after Theorem 3 and obtain the similar uniform upper bounds for the concentration
of ∇rf̂n,R(x) around ∇rp0(x) for any r ∈ N.

2.4 Confidence interval and confidence band of Fourier density estimator

In this section, we study the confidence interval and confidence band of p0 based on the Fourier
density estimator.

10
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2.4.1 Confidence interval

In order to establish the point-wise confidence interval for p0(x) for each x ∈ X , we first study
the asymptotic property of the following term as n→∞:

f̂n,R(x)− p0(x)√
var(f̂n,R(x))

=
f̂n,R(x)− E

[
f̂n,R(x)

]
√

var(f̂n,R(x))
+

E
[
f̂n,R(x)

]
− p0(x)√

var(f̂n,R(x))
:= A1 +A2. (7)

For the term A1, from the central limit theorem, as n→∞ we obtain

A1 =

√
n
(
f̂n,R(x)− E

[
f̂n,R(x)

])
√

var(Y )

d→ N (0, 1), (8)

where Y = 1
πd

∏d
j=1

sin(R(xj−X.j))
xj−X.j and X = (X.1, . . . , X.d) ∼ p0. From the result of Theorem 1,

var(Y )→ 0 as R→∞. The non-asymptotic upper bound on the variance of Y in Theorem 1
provides a tight dependence on R but not on other constants. To obtain a tight asymptotic
behavior of var(Y ), we assume that p0 ∈ C1(X ) and X is a bounded subset of Rd. Then,
simple algebra shows that E2(Y ) ≤ ‖p0‖2∞. Furthermore, from the Taylor expansion up to
first order we have

E
[
Y 2
]

=
Rd

π2d

∫
Rd

d∏
j=1

sin2(tj)

t2j
p0

(
x− t

R

)
dt =

Rd

π2d

∫
Rd

d∏
j=1

sin2(tj)

t2j

(
p0(x) +O

(
t

R

))
dt

=
p0(x)Rd

πd
+O(Rd−1).

Collecting the above results, we find that limR→∞ var(Y )/Rd = p0(x)/πd. Combining this
result with the central limit theorem result in equation (8), when p0 ∈ C1(X ) and R→∞ we
obtain that √

n

Rd

(
f̂n,R(x)− E

[
f̂n,R(x)

])
d→ N

(
0,
p0(x)

πd

)
. (9)

For the term A2, when p0 is an upper–supersmooth density function of order α > 0, the result
of part (a) of Theorem 1 shows that

A2 ≤
C ·Rmax{1−α,0} exp (−C1R

α)

var(f̂n,R(x))
,

where C and C1 are some universal constants. By choosing the radius R such that 2C1R
α =

log n and the MISE rate of f̂n,R is at the order n−1 (up to some logarithmic factor), we have
A2 → 0 as n → ∞. Putting the above results together, we obtain the following asymptotic
result of equation (7) when p0 is an upper-supersmooth density function.

Proposition 2. Assume that p0 is an upper–supersmooth density function of order α > 0
and p0 ∈ C1(X ) where X is a bounded subset of Rd. Then, for each x ∈ X , by choosing the
radius R such that Rα = C log n where C is some universal constant, as n→∞ we have√

n

Rd

(
f̂n,R(x)− p0(x)

)
d→ N

(
0,
p0(x)

πd

)
.

11
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The result of Proposition 2 suggests that we can choose the radius R such that the MISE rate
of f̂n,R obtains the best possible rate n−1 (up to some logarithmic factor) and no bias term

in the limit of f̂n,R to p0(x). It is different from the standard kernel density estimator when
we essentially need to undersmooth the estimator, i.e., we choose the bandwidth to trade-off
the MISE rate and the bias term (Wand and Jones, 1994; Wasserman, 2006). It shows the
benefit of using Fourier density estimator for estimating the density function p0 when it is
upper–supersmooth.

Based on the result of Theorem 2, for any τ ∈ (0, 1) we can construct the 1− τ point-wise
confidence interval for p0(x) as follows:

f̂n,R(x)± z1−τ/2

√
Rdp0(x)

nπd
,

where z1−τ/2 stands for critical value of standard Gaussian distribution at the tail area τ/2.
Note that, since p0(x) is generally unknown, we can replace the above confidence interval by
the following plug-in confidence interval:

CI1−τ (x) = f̂n,R(x)± z1−τ/2

√
Rd max{f̂n,R(x), 0}

nπd
. (10)

Since max{f̂n,R(x), 0} is a consistent estimate of p0(x) as Rα = O(log n) and n → ∞, the
confidence interval CI1−τ (x) in equation (10) satisfies

lim
n→∞

P (p0(x) ∈ CI1−τ (x)) ≥ 1− τ.

Therefore, CI1−τ (x) is also a valid 1− τ confidence interval of p0(x) for each x ∈ X .
When p0 is an upper–ordinary smooth density function of order β > 1, the result of part

(b) of Theorem 1 leads to the following bound of A2:

A2 ≤
c

Rβ−1 var(f̂n,R(x))
,

where c is some universal constant. If we choose the optimal radius Rd+2(β−1) = O(n) such
that the MISE of f̂n,R(x) obtains the best possible rate (cf. the discussion after Theorem 1),
A2 goes to c̄(x) as n → ∞ where c̄(x) is some universal constant depending on p0(x) and
can be possibly different from 0. Plugging this result and the result (9) into equation (7), as
Rd+2(β−1) = O(n) we have√

n

Rd

(
f̂n,R(x)− p0(x)

)
d→ N

(
c(x),

p0(x)

πd

)
.

Therefore, under the upper-ordinary smooth setting of p0, we need to undersmooth the Fourier
density estimator, i.e., we choose Rd+2(β−1) = o(n), as the standard kernel density estimator to
make sure that c(x) = 0. It can be undesirable as the MISE rate is not optimal if we choose
sub-optimal radius, which means that the Fourier density estimator becomes less precise.
As a consequence, under this case of p0, we may only use the asymptotic result for A1 in
equation (9) to obtain a point-wise confidence interval for the expectation of f̂n,R.

12
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2.4.2 Confidence band

In this section, we establish the confidence band of p0 based on the bootstrap approach,
which has been widely employed to construct the confidence band based on the standard
kernel density estimator; see Section 3 in Chen (2017) for a summary of this method. We
will only focus on the upper–supersmooth setting of p0 since the argument is similar for the
upper-ordinary smooth case of p0. We first define a Gaussian process used to approximate

the uniform error supx∈X

∣∣∣f̂n,R(x)− E
[
f̂n,R(x)

]∣∣∣. We denote the function class

F :=

{
fx : Rd → R : fx(t) =

1

πd

d∏
i=1

sin(R(xi − ti))
R(xi − ti)

for all x ∈ X , t ∈ Rd
}
. (11)

Then, we define a Gaussian process B on F with the covariance matrix given by:

cov(B(f1, f2)) = E [f1(X)f2(X)]− E [f1(X)]E [f2(X)] , (12)

for any f1, f2 ∈ F . We denote the maximum of the Gaussian process B as follows: B :=√
Rd supf∈F |B(f)|. Then, we have the following result regarding the approximation of

sup
x∈X

∣∣∣f̂n,R(x)− E
[
f̂n,R(x)

]∣∣∣
based on B.

Proposition 3. Assume that X is a bounded subset of Rd and p0 is upper-supersmooth density
function of order α > 0. Then, as Rα = C log n where C is some universal constant depending
on d and n→∞ we have

sup
t≥0

∣∣∣∣P(√ n

Rd
sup
x∈X

∣∣∣f̂n,R(x)− E
[
f̂n,R(x)

]∣∣∣ < t

)
− P (B < t)

∣∣∣∣ ≤ C ′ (log n)(7+d)/8

n1/8
,

where C ′ is some universal constant.

Proof. The proof of Proposition 3 is based on the tools developed from the seminal works
of Chernozhukov et al. (2014a,b). For the simplicity of the presentation, given the functional
space F defined in equation (11), we define the following empirical process:

Gn(f) =
1√
n

(
n∑
i=1

f(Xi)− E [f(X1)]

)
, (13)

for any f ∈ F . We first show that F is a VC-type class of functions. Indeed, for any x1, x2 ∈ X
we have |fx1(t)− fx2(t)| ≤ dR‖x1 − x2‖2, for all t ∈ Rd. Since X is a bounded subset of Rd,
we have

sup
P
N2 (t/8,F , P ) ≤ sup

P
N[] (t/8,F ,L2(P )) ≤

(
4d
√
d ·Diam(X )R2

t

)d
,

13
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where N2 (t/8,F , P ) is the t/8-covering of F under L2 norm. Since the envelope function of
F is 1/πd, it shows that F is a VC-type class of functions.

In order to facilitate the ensuing discussion, we denote A = 1
2d
√
dDiam(X )R2. Direct

calculation shows that supf∈F E
[
f2(X)

]
≤ 1/Rd = σ2. Furthermore, we can choose the

envelope function of F to be 1. Then, for any γ ∈ (0, 1), an application of Corollary 2.2
in Chernozhukov et al. (2014b) shows that

P

(∣∣∣∣∣sup
f∈F

Gn(f)− sup
f∈F
|B(f)|

∣∣∣∣∣ > Kn

γ1/2n1/4
+

√
σK

3/4
n

γ1/2n1/4
+
σ2/3K

2/3
n

γ1/3n1/6

)
≤ C

(
γ +

log n

n

)
, (14)

where C is some universal constant. Here, Kn = cd(log n∨log(A/σ)) where c is some universal
constant. Since R = O(log n), as n is sufficiently large, we find that

P

(∣∣∣∣∣sup
f∈F

Gn(f)− sup
f∈F
|B(f)|

∣∣∣∣∣ > C1
(log n)2/3

γ1/3Rd/3n1/6

)
≤ C2γ,

where C1 and C2 are some universal constants depending on d. The above result is also
equivalent to

P

(∣∣∣∣√ n

Rd
sup
x∈X

∣∣∣f̂n,R(x)− E
[
f̂n,R(x)

]∣∣∣−B

∣∣∣∣ > C1
Rd/6(log n)2/3

γ1/3n1/6

)
≤ C2γ. (15)

Combining the above result (15) with the result of Lemma 2.3 in Chernozhukov et al. (2014b),
for any γ ∈ (0, 1), when n is sufficiently large we obtain that

sup
t≥0

∣∣∣∣P(√ n

Rd
sup
x∈X

∣∣∣f̂n,R(x)− E
[
f̂n,R(x)

]∣∣∣ < t

)
− P (B < t)

∣∣∣∣ ≤ C3E [B]
Rd/6(log n)2/3

γ1/3n1/6
+ C4γ,

where C3 and C4 are some universal constants. From Dudley’s inequality for Gaussian process,
we have E [B] ≤ C5

√
log n where C5 is some universal constant. Putting the above results

together, by choosing γ = Rd/8(log n)7/8/n1/8, we obtain the conclusion of the proposition.

The distribution of B depends on the knowledge of the unknown density function p0.

Therefore, it is non-trivial to construct confidence band for E
[
f̂n,R

]
based on the result of

Proposition 3. To account for this issue, we utilize bootstrap idea. In particular, we denote
X∗1 , . . . , X

∗
n the i.i.d. sample from the empirical distribution Pn = 1

n

∑n
i=1 δXi . Then, we

construct a Fourier density estimator f̂∗n,R based on X∗1 , . . . , X
∗
n. Our next result provides the

asymptotic behavior of supx∈X

∣∣∣f̂∗n,R(x)− f̂n,R(x)
∣∣∣ given the data X1, . . . , Xn.

Proposition 4. Assume that X is a bounded subset of Rd and p0 is upper-supersmooth density
function of order α > 0. Then, as Rα = C log n where C is some universal constant depending
on d and n→∞ we have

sup
t≥0

∣∣∣∣P(√ n

Rd
sup
x∈X

∣∣∣f̂∗n,R(x)− f̂n,R(x)
∣∣∣ < t

∣∣ X1, . . . , Xn

)
− P (B < t)

∣∣∣∣ = OP

(
(log n)(7+d)/8

n1/8

)
.
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Algorithm 1 Bootstrap Fourier estimator

Input: Data X1, . . . , Xn.

Step 1. Drawing B bootstrap samples (X
∗(1)
1 , . . . , X

∗(1)
n ), . . . , (X

∗(B)
1 , . . . , X

∗(B)
n ) from the

empirical measure Pn = 1
n

∑n
i=1 δXi .

Step 2. Contructing Fourier density estimators f̂
∗(1)
n,R , . . . , f̂

∗(B)
n,R from the B bootstrap

samples.

Step 3. Computing Ti =
√

n
Rd

supx∈X

∣∣∣f̂∗(i)n,R (x)− f̂n,R(x)
∣∣∣ for i ∈ [B].

Step 4. Choosing η1−τ (x) such that 1
B

∑B
i=1 1{Ti>η1−τ (x)} = τ for each x ∈ X and τ ∈ (0, 1).

Step 5. Constructing the uniform confidence interval for p0(x) as follows:

UCI1−τ (x) = f̂n,R(x)± η1−τ (x)

√
Rd

n
. (16)

Output: UCI1−τ (x).

The proof of Proposition 4 is in Appendix A.4.
The results of Propositions 3 and 4 suggest the bootstrap procedure in Algorithm 1 for

constructing the confidence interval UCI1−τ (x) in equation (16) for E
[
f̂n,R(x)

]
uniformly for

all x ∈ X . The following result showing that UCI1−τ (x) is a valid 1− τ confidence band for
p0:

Corollary 1. Assume that p0 is an upper–smooth density function of order α > 0 and X is
a bounded subset of Rd. When Rα = C log n where C is some universal constant, for any
τ ∈ (0, 1) we obtain that

lim
n→∞

P (p0(x) ∈ UCI1−τ (x) for all x ∈ X ) ≥ 1− τ.

The proof of Corollary 1 is a direct consequence of Propositions 3 and 4 and the fact that
supx∈X A2 → 0 in equation (7) as n→∞ when Rα = O(log n); therefore, it is omitted.

3. Estimating a mixing density with deconvolution

In this section we employ the idea of Fourier density estimator to the deconvolution prob-
lem. For previous works on estimating a mixing density via maximum likelihood, see the
works (Laird, 1978) and Lindsay (1983), and for deconvolution approaches (Carroll and Hall,
1988; Zhang, 1990; Stefanski and Carroll, 1990). These latter papers only consider the one–
dimensional case and we demonstrate improved rates of estimating mixing densities. Specifi-
cally, throughout this section, we assume that p0(x) =

∫
Θ f(x− θ)g(θ)dθ, i.e., X1, . . . , Xn are

i.i.d. samples from p0 which is the convolution between f and g. Here, Θ is a given subset of
Rd. In the deconvolution setting, the function f is corresponding to the density function of
“noise” on Rd, which is assumed fully specified. Popular examples of f include multivariate
Gaussian or Laplace distributions with a given covariance matrix. The mixing density g is
unknown and to be estimated. Finally, we assume throughout this section that X = Rd and
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f is a symmetric density function around 0, namely, f(x) = f(−x) for all x ∈ Rd. This
assumption is to guarantee that the Fourier transform f̂(s) of the function f only takes real
values.

Using the insight from the Fourier integral theorem, we define the following Fourier de-
convolution estimator of g as follows:

ĝn,R(θ) =
1

n(2π)d

n∑
i=1

∫
[−R,R]d

cos(s>(θ −Xi))

f̂(s)
ds. (17)

Since f̂(s) ∈ R for all s ∈ Rd, the Fourier density estimator ĝn,R(θ) ∈ R for all θ ∈ Θ. As long

as p̂0(s)/f̂(s) is integrable, from the inverse Fourier transform we find that

g(θ) =
1

(2π)d

∫
Rd

∫
Rd
p0(x)

cos(s>(θ − x))

f̂(s)
dxds. (18)

for almost surely θ ∈ Θ. Note that, when we further assume that g is continuous, the inverse
Fourier transform in equation (18) holds for all θ ∈ Θ. In summary, under these assumptions,
we have limR→∞ E [ĝn,R(θ)] = g(θ) where the outer expectation is taken with respect to X
that has density function p0.

3.1 Risk analysis with Fourier deconvolution estimator

Similar to Section 2, we would like to study upper bounds on the bias and variance of ĝn,R(θ)
under various smoothness settings of the density functions f and g. We first consider the
setting when f is a lower–supersmooth density function. Under this setting, to guarantee
that p̂0(s)/f̂(s) is integrable, f needs to be lower–supersmooth density function with a certain
condition on its growth.

Theorem 5. Assume that f is a lower–supersmooth density function of order α1 > 0 and g
is an upper–supersmooth density function of order α2 > 0 such that α2 ≥ α1 and ‖g‖∞ <∞.
Then, there exist universal constants C and C ′ such that while R ≥ C ′, we have

|E [ĝn,R(θ)]− g(θ)| ≤ CRmax{1−α2,0} exp (−C1R
α2) ,

var [ĝn,R(θ)] ≤ C · R
2d exp(2C2dR

α1)

n
,

for almost all θ ∈ Θ where C1 and C2 are constants given in Definition 1.

The proof of Theorem 5 is in Section 9.4. Based on the result of Theorem 5, when f and
g are respectively lower–supersmooth and upper–supersmooth density functions of order α1

and α2, the MISE of the Fourier deconvolution estimator ĝn,R satisfies the following bound:

MISE(ĝn,R) ≤ C2Rmax{2−2α2,0} exp (−2C1R
α2) + C · R

2d exp(2C2dR
α1)

n
, (19)

where C,C1, C2 are given in Theorem 5. When α2 ≥ α1, the bound of MISE in equation (19)
suggests that if we choose R such that (2C1 + 2C2d)Rα2 = log n, the MISE rate of ĝn,R
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becomes C̄n
− C1
C1+C2d (up to some logarithmic factor) where C̄ is some universal constant. It

suggests that when α2 ≥ α1, the MISE rate is polynomial in n, which is much faster than the
known non-polynomial rate 1/(log n)γ of estimating mixing density when the noise function f
is supersmooth (Zhang, 1990; Fan, 1991) where γ > 0 is some constant. A simple and popular
deconvolution setting when α2 ≥ α1 is when f is multivariate Gaussian distribution and g is
continuous Gaussian mixtures, i.e., g(θ) =

∫
f(θ|µ,Σ)dH(µ,Σ) where f(.|µ,Σ) is multivariate

Gaussian distribution with location and covariance µ and Σ and H is a prior distribution on
(θ,Σ).

Our next result is when f is a lower–ordinary smooth density function, such as multivariate
Laplace distribution.

Theorem 6. Assume that f is a lower–ordinary smooth density function of order β1 > 0.
Then, the following holds:
(a) When g is an upper–supersmooth density function of order α > 0 and ‖g‖∞ < ∞, there
exist universal constants C and C ′ such that as long as R ≥ C ′, we have

|E [ĝn,R(θ)]− g(θ)| ≤ CRmax{1−α,0} exp (−C1R
α) ,

var [ĝn,R(θ)] ≤ C · R
(2+2β1)d

n
,

for almost all θ ∈ Θ where C1 is a constant given in Definition 1.
(b) When g is upper-ordinary smooth density function of order β2 > 1 and ‖g‖∞ <∞, there
exists universal constants c such that for almost all θ ∈ Θ we obtain

|E [ĝn,R(θ)]− g(θ)| ≤ c

Rβ2−1
, var [ĝn,R(θ)] ≤ C · R

(2+2β1)d

n
.

The proof of Theorem 6 follows the same argument as that of Theorem 5; therefore, it is
omitted. Based on the results of Theorem 6, we have the following bounds with the MISE of
the Fourier deconvolution estimator:
(i) When f is lower-ordinary smooth function of order β1 and g is upper-smooth function of
order α > 0, we obtain

MISE(ĝn,R) ≤ C2Rmax{2−2α,0} exp (−2C1R
α) + C · R

(2+β1)d

n
,

where c, C,C1 are given in part (a) of Theorem 6. By choosing the bandwidth R such that

2C1R
α = log n, the MISE rate of ĝn,R becomes C̄n−1 (log n)max{(2+α)d/α,(2−2α)/α} where C̄ is

some universal constant. It is also faster than the best known polynomial rate of estimating
mixing density function g when f is ordinary smooth function (Fan, 1991). A popular example
for this setting is when f is a multivariate Laplace distribution, which is a lower–ordinary
smooth density function of second order, and g is a multivariate Gaussian distribution, which
is an upper–supersmooth density function of second order.
(ii) When f is lower-ordinary smooth function of order β1 and g is upper-ordinary smooth
function of order β2 > 0, the upper bound for MISE of ĝn,R becomes

MISE(ĝn,R) ≤ c2

R2(β2−1)
+ C · R

(2+2β1)d

n
,
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where c and C are constants in part (b) of Theorem 6. With the choice of R such that

R2(β2−1)+(2+2β1)d = n, we obtain MISE(ĝn,R) ≤ c̄n
− 2(β2−1)

2(β2−1)+(2+2β1)d where c̄ is some universal
constant. Examples of this setting include when both f and g are multivariate Laplace
distributions.

3.2 Derivatives of Fourier deconvolution estimator

Similar to the Fourier density estimator, we also would like to investigate the MISE of the
derivatives of the Fourier deconvolution estimator, which are useful for our study with mode
estimation of mixing density function (see Section 4.2 for an example). We first start with the
upper bounds for the mean-squared variance and bias of ∇rĝn,R when f is lower-supersmooth
density function.

Theorem 7. Assume that f and g satisfy the assumptions of Theorem 5. Furthermore,
g ∈ Cr(Θ) for given r ∈ N. Then, there exist universal constants {C ′i}ri=1 and {C̄i}ri=1 such
that as long as R ≥ C ′ where C ′ > 0 is some universal constant and i ∈ [r], we have

sup
θ∈Θ
‖E
[
∇iĝn,R(θ)

]
−∇ig(θ)‖max ≤ C ′iRmax{i+1−α2,0} exp (−C1R

α2) ,

sup
θ∈Θ

E
[
‖∇iĝn,R(θ)− E

[
∇iĝn,R(θ)

]
‖22
]
≤ C̄i

R2(i+d) exp(2C2dR
α1)

n
,

where C1 and C2 are constants associated with supersmooth density functions given in Defi-
nition 1.

The proof of Theorem 7 is in Section 9.5. The results of Theorem 7 demonstrate that the
MISE of ∇rĝn,R for any r ∈ N can be upper bounded as follows:

MISE(∇rĝn,R(θ)) ≤ C ′rRmax{2(r+1−α2),0} exp (−2C1R
α2) + C̄rR

2(r+d) exp(2C2dR
α1).

Therefore, by choosing the radius R such that (2C1 + 2C2d)Rα2 = log n, the MISE rate of

∇rĝn,R becomes C̄n
− C1
C1+C2d (log n)max{2(r+1−α2)/α2,2(d+r)/α2}, which is still polynomial up to

some logarithmic factor, where C̄ is some universal constant.
We now move to our next result with the upper bounds of variance and bias of ∇rĝn,R

when f is lower-ordinary smooth density function.

Theorem 8. Assume that f is a lower–ordinary smooth density function of order β1 > 0 and
g ∈ Cr(Θ) for given r ∈ N. Then, for any 1 ≤ i ≤ r, the following holds:
(a) When g is an upper–supersmooth density function of order α > 0, there exist universal
constants {C ′i}ri=1 and {C̄i}ri=1 such that as long as R ≥ C ′ where C ′ is some universal
constant, we have

sup
θ∈Θ
‖E
[
∇iĝn,R(θ)

]
−∇ig(θ)‖max ≤ C ′iRmax{i+1−α,0} exp (−C1R

α) ,

sup
θ∈Θ

E
[
‖∇iĝn,R(θ)− E

[
∇iĝn,R(θ)

]
‖22
]
≤ C̄i

R(2+2β1)d+2i

n
,
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where C1 is a given constant with upper-smooth density function from Definition 1.

(b) When g is an upper–ordinary smooth density function of order β2 > 1 + r, there exist
universal constants {c′i}ri=1 such that

sup
θ∈Θ
‖E
[
∇iĝn,R(θ)

]
−∇ig(θ)‖max ≤

c′i
Rβ2−(i+1)

,

sup
θ∈Θ

E
[
‖∇iĝn,R(θ)− E

[
∇iĝn,R(θ)

]
‖22
]
≤ C̄i

R(2+2β1)d+2i

n
.

The proof for Theorem 8 is similar to that of Theorem 7 when the density function f is
upper-supersmooth; therefore, it is omitted.

The result of part (a) of Theorem 8 suggests that the optimal choice of the radius R
satisfies 2C1R

α = log n when f is lower-ordinary smooth density function of order β1 > 0
and g is upper-supersmoth density function of order α > 0. Under this choice of R, the
MISE of ∇rĝn,R has convergence rate of the order C̄n−1 (log n)max{2(r+1−α)/α,((2+2β1)d+2r)/α},
which is parametric up to some logarithmic factor, where C̄ is some universal constant. On
the other hand, when f is lower-ordinary smooth density function of order β1 > 0 and g is

upper-ordinary smooth density function of order β2 > 1 + r, by choosing R = n
1

2(β2−1+(1+β1)d) ,

the MISE rate of ∇rĝn,R becomes c̄n
− β2−(r+1)
β2−1+(1+β1)d where c̄ is some universal constant.

4. Nonparametric mode clustering

In this section, we consider an application of Fourier (mixing) density estimators to mode
clustering problem (Azzalini and Torelli, 2007; Chacón and Duong, 2013; Chacón, 2015; Chen
et al., 2016b). We first study mode clustering via the data density in Section 4.1. Then, we
consider another approach to study mode clustering via a mixing density function when the
data density is assumed to be a mixture; Section 4.2.

4.1 Mode clustering via data density

We assume that X1, . . . , Xn are i.i.d. samples from the unknown distribution P admitting
the density function p0 supported on X ⊆ Rd. When p0 admits a second order derivative, we
say that x is the local mode of p0 if

∇p0(x) = 0 and λ1(∇2p0(x)) < 0

where recall that λ1(∇2p0(x)) denotes the largest eigenvalue of the Hessian matrix ∇2p0(x).
We define M the collection of local modes of the true density function p0 and K = |M| the
total number of local modes of p0. For the mode clustering problem via data density, we
would like to estimate the local modes of p0 in M and the number of local modes K. To
do that, we first obtain the Fourier density estimator f̂n,R for p0. Then, we calculate the

local modes of f̂n,R, which serve as an estimation for the local modes of p0. Note that, in the

multivariate setting, the local modes of f̂n,R can be determined by the well-known mean-shift
algorithm (Fukunaga and Hostetler, 1975; Comaniciu and Meer, 2002; Arias-Castro et al.,
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2016). Finally, the total number of total modes of f̂n,R can be used as an estimation for the
total number of local modes K.

In order to faciliate the ensuing discussion, we denote Mn the collection of local modes
of the Fourier density estimator f̂n,R and Kn the number of local modes of f̂n,R. We use the
Hausdorff metric to measure the convergence of local modes in Mn to those of M (Chen,
2016), which is given by:

H(Mn,M) := max

{
sup
x∈Mn

d(x,M), sup
x∈M

d(x,Mn)

}
.

We impose the following assumptions on the density p0 so as to establish the consistency of
Kn to K as well as the convergence rate of Mn to M under the Hausdorff metric:

Assumption 1. There exists universal constant λ∗ < 0 such that λd(∇2p0(x)) ≤ . . . ≤
λ1(∇2p0(x)) ≤ λ∗ for any x ∈M.

Assumption 2. The density function p0 ∈ C3(X ) and ‖∇3p0(x)‖ ≤ C for some universal
constant C for all x ∈ X . Furthermore, there exists universal constant η such that {x :

‖∇p0(x)‖ ≤ η, λ1(∇2p0(x)) ≤ λ∗
2 } ⊂ M⊕

|λ∗|
2Cd where λ∗ is constant in Assumption 1.

Note that, Assumptions 1 and 2 had been employed in (Chen, 2016) to analyze mode
clustering via data density based on kernel density estimator. The idea of these assumptions
is as follows. Assumption 1 is to guarantee that the Hessian matrix ∇2p0(x) is not degenerate
at each local mode x ∈M. Assumption 2 is to make sure that for any points that have quite
similar behaviors to local modes, they should also be close to these local models.

Given Assumptions 1 and 2 at hand, we proceed to only provide the result with mode
clustering when the density function p0 is upper-supersmooth as the result when the density
function p0 is upper-ordinary smooth can be argued in the similar fashion (see our discussion
after Proposition 5).

Proposition 5. Assume that Assumptions 1 and 2 hold. Furthermore, p0 is upper-supersmooth
density function of order α and X is a bounded subset of Rd. Then, for any δ > 0, when
R ≥ C and n ≥ cR2(d+2) log(R) log(6/δ) where C and c are some universal constants, the
following holds:

(a) (Consistency of estimating the number of modes) We have

P(K̂n 6= K) ≤ δ.

(b) (Convergence rates of modes estimation) There exists universal constant c1 such that

P

(
H(Mn,M) ≤ c1

(
Rmax{2−α,0} exp (−C1R

α) +

√
Rd+2 log(2/δ)

n

))
≥ 1− δ,

where C1 is a constant associated with upper-supersmooth density function in Definition 1.
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The proof of Proposition 5 is in Appendix A.1.

A few comments with Proposition 5 are in order. First, given the result of part (b), we
can choose the radius R such that C1R

α = log n/2. Then, the convergence rate of H(Mn,M)

becomes C̄n−
1
2 (log(n))max{2/α−1,(d+2)/(2α)}, where C̄ is some universal constant. That para-

metric convergence rate of estimating modes is faster than the rate n−2/(d+6) of estimating
modes from kernel density estimator (Chen, 2016).

Second, when p0 is an upper–ordinary smooth density function of order β > 3, with the
similar proof argument as that of Proposition 5, we can demonstrate that when R is sufficiently
large and n ≥ c̄R2(d+2) logR log(6/δ) where c̄ is some universal constant, the following hold:

P(K̂n 6= K) ≤ δ, and P

(
H(Mn,M) ≤ c′1

Rβ−2
+ c′2

√
Rd+2 log(2/δ)

n

)
≥ 1− δ,

where c′1 and c′2 are some universal constants. Therefore, under the upper-ordinary smoothness
setting of p0, we can choose R such that Rβ−2+(d+2)/2 =

√
n. Then, the convergence rate

of H(Mn,M) is at the order of n
− β−2

2(β−2)+d+2 . If we further have β > 4, that convergence
of modes estimation under the upper-ordinary smooth setting of p0 is faster than the rate
n−2/(d+6) from kernel density estimator (Chen, 2016).

4.2 Mode clustering via mixing density

In this section, we assume that the density function p0 of X1, . . . , Xn takes the mixture form
p0(x) =

∫
Θ f(x−θ)g(θ)dθ. Here, the density function f is known and only the mixing density

function g is unknown. When g is the mixture of Dirac delta functions, it is well-known
that we can cluster the data based on estimating the support points of these Dirac delta
distributions. For general g, we would like to take this perspective of clustering and estimate
the modes of g so as to cluster the data.

Since the mixing density g is unknown, we use the Fourier deconvolution estimator ĝn,R
in equation (17) to estimate g and then use the local modes of ĝn,R to estimate those of g.
To ease the presentation, we denote M′ and M′n respectively the set of all local modes of g
and ĝn,R. Furthermore, we denote K ′ = |M′| and K ′n = |M′n| respectively as the number of
local modes of g and ĝn,R.

Since the proof techniques are similar for different smoothness settings of f and g, we
only focus on the setting when both f and g are supersmooth densities. The following result
establishes the consistency of K ′n and the convergence rate of H(M′n,M′) when n goes to
infinity.

Proposition 6. Assume that the mixing density function g satisfies Assumptions 1 and 2.
Furthermore, f is a symmetric lower-supersmooth density function of order α1 > 0 while
g is upper-smooth density function of order α2 > 0 such that α2 ≥ α1. Then, for any
δ > 0, when R ≥ C and n ≥ cR2(d+2)+α1 exp(2C2dR

α1) log(6/δ) where C and c are some
universal constants and C2 is a given constant associated with the lower-supersmoothness of
f in Definition 1, the following holds:
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(a) (Consistency of estimating the number of modes) We find that

P(K ′n 6= K ′) ≤ δ.

(b) (Convergence rates of modes estimation) There exists universal constants c1 such that

P
(
H(M′n,M′) ≤ c1R

max{2−α2,0} exp (−C1R
α2)

+ c1

√
R2(d+1)+α1 exp(2C2dRα1) log(2/δ)

n

)
≥ 1− δ,

where C1 is a given constant associated with the upper-supersmoothness of g in Definition 1.

The proof of Proposition 6 is in Appendix A.2.
Given the result of Proposition 6, we can choose (2C1 +2C2d)Rα2 = log n. Then, the con-

vergence rate of H(M′n,M′) is at the order of n−C1/(2C1+2C2d) (up to some logarithmic factor)
where C1 and C2 are respectively the constants associated with the upper-supersmoothness
and lower-supersmoothness of g and f . This polynomial convergence rate is much faster than
the non-polynomial rate of using deconvolution estimators for mode clustering from the kernel
density estimators (Fan, 1991).

5. Nonparametric regression

In this section we consider an application of the Fourier integral theorem to the setting of
nonparametric regression. We assume that Yi = m(Xi) + εi for all i ∈ [n] where ε1, . . . , εn are
i.i.d. additive noises satisfying E(εi) = 0 and var(εi) = σ2. In our model, the function m is
unknown and to be estimated. We consider the random design setting, namely, X1, . . . , Xn ∈
X ⊆ Rd are i.i.d. samples from some density function p0. Furthermore, to simplify the
argument later, we assume the additive noises ε1, . . . , εn are independent of the observations
X1, . . . , Xn.

Based on the Fourier density estimator studied in Section 2, we propose the follow-
ing Fourier nonparametric regression version of Nadaraya–Watson kernel estimator, named
Fourier regression estimator, for estimating the unknown function m:

m̂(x) :=

∑n
i=1 Yi ·

∏d
j=1

sin(R(xj−Xij))
xj−Xij∑n

i=1

∏d
j=1

sin(R(xj−Xij))
xj−Xij

=
â(x)

f̂n,R(x)
, (20)

where â(x) = 1
πdn

∑n
i=1 Yi ·

∏d
j=1

sin(R(xj−Xij))
xj−Xij and f̂n,R is the Fourier density estimator given

in equation (5). One notable advantage of the Fourier regression estimator m̂ is that both
its denominator and numerator can automatically capture the dependence between the co-
variates of X1, . . . , Xn, without the need to model a covariance matrix, as it is in the stan-
dard Nadaraya–Watson Gaussian kernel (Wasserman, 2006; Tsybakov, 2009). Therefore, the
Fourier regression estimator is convenient to use as we only need to choose the radius R.

Another benefit of using the estimator (20) for estimating the function m is that it can
have parametric MSE rate when the density function p0 of the observations X1, . . . , Xn is
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upper-supersmooth. Indeed, under this setting of p0, we have the following upper bound
regarding the MSE of m̂(x).

Theorem 9. Assume that p0 is an upper–supersmooth density function of order α > 0 and
‖p0‖∞ <∞. Furthermore, assume that the function m is such that ‖m2 × p0‖∞ <∞ and

∣∣m̂ · p0(t)
∣∣ ≤ C ·Q(|t1|, . . . , |td|) exp

(
−C1

(
d∑
i=1

|ti|α
))

, (21)

where C is some universal constant, C1 is given constant in Definition 1, and Q(|t1|, . . . , |td|)
is some polynomial in terms of |t1|, . . . , |td| with non-negative coefficient. Then, there exist
universal constants C ′, (C ′i)

3
i=1 such that as long as R ≥ C ′ we have

E
[
(m̂(x)−m(x))2

]
≤
C ′1R

max{2 deg(Q)+2−2α,0} exp(−2C1R
α) + C ′2

(m(x)+C′3)Rd

n

p2
0(x)J(R)

,

where J(R) = 1−
(
Rmax{2−2α,0} exp (−2C1R

α) + Rd log(nR)
n

)
/p2

0(x).

The proof of Theorem 9 is in Section 9.6.
We have a few remarks with Theorem 9. First, the assumptions with the unknown function

m in Theorem 9 is quite mild. It is satisfied when p0 is a multivariate Gaussian distribution
and m is a polynomial function or polynomial trigonometric function. Second, by choosing
the radius R such that 2C1R

α = log n, the rate of the MSE of m̂(x) becomes

E
[
(m̂(x)−m(x))2

]
≤ C̄(m(x) + C̄1)

p2
0(x)

· (log n)max{ 2 deg(Q)+2−2α
α

, d
α
}

n

where C̄ and C̄1 are some universal constants. Therefore, we have parametric rate of MSE
of m̂(x) for each x ∈ X when p0 is an upper–supersmooth density function and m satis-
fies the assumptions in Theorem 9. This rate is also faster than the well-known MSE rate
n−1/(4+d) of Nadaraya-Watson regression kernel when both p0 and m have bounded second
order derivatives (Wasserman, 2006; Tsybakov, 2009).

Based on the result of Theorem 9, our next result provides the point-wise confidence
interval for m(x) based on the Fourier regression estimator m̂(x).

Proposition 7. Assume that the assumptions of Theorem 9 hold and X is a bounded subset
of Rd. Then, for each x ∈ X , as Rα = C log n where C is some universal constant and
n→∞, we have √

n

Rd
(m̂(x)−m(x))

d→ N
(

0,
σ2

p0(x)πd

)
.

The proof of Proposition 7 is in Appendix A.5.
Based on the result of Proposition 7, for any τ ∈ (0, 1) we can construct the 1−τ point-wise

confidence interval for m(x) as follows:

m̂(x)± z1−τ/2

√
σ2Rd

nπdp0(x)
,
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where z1−τ/2 stands for critical value of standard Gaussian distribution at the tail area τ/2.
Since the noise variance σ2 and the value of p0(x) are unknown, we utilize the plug-in esti-

mators for these terms. For p0(x), we can use
∣∣∣f̂n,R(x)

∣∣∣ as plug-in estimator. Note that, we

do not use max{f̂n,R(x), 0} as a plug-in estimator for p0(x) in this case since the inverse of

this estimator will be infinity as long as f̂n,R(x) < 0. For σ2, the common plug-in estimator
is as follows (Hall and Marron, 1990; Wasserman, 2006):

σ̂2 =
(
∑n

i=1 Yi − m̂(Xi))
2

n− 2 trace(L) + trace(L>L)
,

where the matrix L ∈ Rn×n satisfies

Lij =

∏d
u=1

sin(R(Xiu−Xju))
Xiu−Xju∑n

k=1

∏d
u=1

sin(R(Xiu−Xku))
Xiu−Xku

.

Given these plug-in estimators, the 1− τ point-wise confidence interval for m(x) becomes

NPCI1−τ (x) = m̂(x)± z1−τ/2

√√√√ σ̂2Rd

nπd
∣∣∣f̂n,R(x)

∣∣∣ , (22)

where Rα = O(log n). In the random design setting, constructing the confidence band for the
function m based on the Fourier regression estimator is complicated due to the involvement of
the Fourier density estimator f̂n,R(x) in the denominator of m̂(x). We leave the development
of confidence band of the function m for the future work.

6. Nonparametric modal regression

In this section, we consider an extension of local mode estimation to the regression set-
ting (Sager and Thisted, 1982; Chen et al., 2016a; Feng et al., 2020). It is different from the
traditional conditional mean nonparametric regression being considered in Section 5. In par-
ticular, assume that Y ∈ Y ⊆ R is the response variable while X ∈ X ⊆ Rd is the predictor
variable. In nonparametric modal regression, we would like to study the conditional local
mode at X = x, which is given by:

M(x) :=

{
y :

∂p0

∂y
(x, y) = 0,

∂2p0

∂y2
(x, y) < 0

}
,

where p0(x, y) is the joint density between X and Y . Since p0 is unknown, we utilize the
Fourier density estimator to estimate it, which admits the following form:

f̂n,R(x, y) =
1

nπd

n∑
i=1

 d∏
j=1

sin(R(xj −Xij))

xj −Xij

 · sin(R(y − Yi))
y − Yi

. (23)
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Note that, even though Yi and Xi are not independent, their dependence can be captured via
the Fourier integral theorem; therefore, the estimator (23) is comfortable to use as we only
need to choose the radius R. The corresponding conditional local mode at X = x based on
the estimator f̂n,R is given by:

Mn(x) :=

{
y :

∂f̂n,R
∂y

(x, y) = 0,
∂2f̂n,R
∂y2

(x, y) < 0

}
. (24)

Similar to the mode clustering setting, we would like to establish the convergence rates of
local modes in Mn(x) to those in M(x) based on the Hausdorff metric for all x ∈ X . To
facilitate the later discussion, we denote the modal manifold collection as follows:

S = {(x, y) : x ∈ X , y ∈M(x)}

We impose the following assumption with S, which had been employed in the previous
work (Chen et al., 2016a):

Assumption 3. The modal manifold collection S = ∪Ki=1Si where the modal manifold Si =
{(x,mi(x)) : x ∈ Ai} for some modal function mi and open set Ai.

The Assumption 3 is to guarantee that the number of local modes of p(x, y) for each x ∈ X
is finite. Furthermore, under this assumption, we can rewrite M(x) as follows:

M(x) = {m1(x), . . . ,mK(x)}.

When the true density p0 is second order differentiable, the modal functions mi are also
differentiable and the set of local modesM(x) is smooth under Hausdorff metric (cf. Lemma 1
in Chen et al. (2016a)). To guarantee that the decomposition of the modal manifold collection
S in Assumption 3 is unique, we need the following non-degenerate assumption regarding the
curvature around the critical points, i.e., those when ∂p0

∂y (x, y) = 0:

Assumption 4. For any (x, y) ∈ X × Y such that ∂p0
∂y (x, y) = 0, we have |∂

2p0
∂y2

(x, y)| ≥ λ∗

where λ∗ > 0 is some universal constant.

Given Assumptions 3 and 4 at hand, we have the following result regarding the uniform
convergence rate of Mn(x) to M(x) under the Hausdorff distance:

Proposition 8. Assume that Assumptions 3 and 4 hold. Furthermore, p0 ∈ C3(X ×Y) where
X and Y are bounded subsets of Rd and R respectively. Then, the following holds:
(a) When p0 is an upper-supersmooth density function of order α > 0, there exists universal
constant C such that

P

(
sup
x∈X
H(Mn(x),M(x)) ≤ C

[
Rmax{2−α,0} exp(−C1R

α) +

√
Rd+3 logR log(2/δ)

n

])
≥ 1− δ.

Here, C1 is a given constant associated with upper–supersmooth density function in Defini-
tion 1.
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(b) When p0 is an upper-ordinary smooth density function of order β > 3, there exists uni-
versal constant c such that

P

(
sup
x∈X
H(Mn(x),M(x)) ≤ c

[
R2−β +

√
Rd+3 logR log(2/δ)

n

])
≥ 1− δ.

The proof of Proposition 8 is in Appendix A.3.
The result of part (a) of Proposition 8 indicates that by choosing the radius R such that

C1R
α = log n/2 where C1 is given in part (a), we have

sup
x∈X
H(Mn(x),M(x)) = OP

(
(log n)max{ 2

α
−1, d+3

2α
}

√
n

)
.

Therefore, we can estimate the local modes of M(x) with parametric rate when the joint
density function p0 of (X,Y ) is supersmooth. That parametric rate is also faster than the
rate n−2/(d+7) from kernel density estimator in Chen et al. (2016a). On the other hand,
when p0 is upper-ordinary smooth density function, by choosing the radius R such that
R = n1/(2β+d−1), the result of part (b) shows that the rate of supx∈X H(Mn(x),M(x)) is
at the order of

√
log nn−(β−2)/(2β+d−1). It is also faster than the rate n−2/(d+7) from kernel

density estimator in (Chen et al., 2016a).
Furthermore, since the results of Proposition 8 hold for all x ∈ X , the conclusions in parts

(a) and (b) still hold for
∫
x∈X H(Mn(x),M(x)), i.e., the MISE of H(Mn(x),M(x)). Finally,

we also can construct the confidence interval and confidence band for H(Mn(x),M(x)) based
on the previous argument with confidence interval and band in Section 2.4.

7. Dependent data

In this section, we discuss an application of the Fourier integral theorem to estimate the
Markov transition probability when the data X1, . . . , Xn ∈ X ⊆ Rd are a Markov sequence
with stationary density function p0 and transition probability distribution f(· | ·). This relies
specifically on the Fourier integral theorem and the Monte Carlo estimate and the ergodic
theorem. A unique combination involving the Fourier kernel.

For the density function p0, we can use the Fourier density estimator f̂n,R in equation (5).
Since we can write f(y | x) = p(x, y)/p0(x) where p(·, ·) is the joint stationary density of
(Xi, Xi+1), we can also use the Fourier density estimator to estimate the joint stationary
density p. An estimate of the transition probability distribution based on the Fourier integral
theorem is

p̂n,R(y | x) :=
1

πd

∑n−1
i=1

∏d
j=1

sin(R(x−Xij))
x−Xij · sin(R(y−X(i+1)j))

y−X(i+1)j∑n
i=1

∏d
j=1

sin(R(x−Xij))
x−Xij

. (25)

We refer the estimator p̂n,R to as Fourier transition estimator. To study the MSE of the
Fourier transition estimator p̂n,R(x) for each x ∈ X , we impose a mixing condition on the
transition probability function of the Markov sequence (X1, . . . , Xn). In particular, we define
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the following transition probability operator (T h)(x) :=
∫
h(y)f(y | x)dy, for any bounded

function h : X → R. Then, we denote the L2 norm of the operator T as follows:

|T |2 = sup
h6=0

‖T h− E [h(X)] ‖2
‖h− E [h(X)] ‖2

,

where the expectations are taken with respect to X ∼ p0 and ‖h‖22 =
∫

(h(x))2p0(x)dx. It
is clear that |T j |2 ≤ 1 for all j ∈ N. We impose the following assumption on the transition
probability operator T so as to guarantee geometric ergodicity (Yakowitz, 1985; Rosenblatt,
2011):

Assumption 5. There exist τ ∈ N and η ∈ (0, 1) such that the transition probability operator
T satisfies |T τ |2 ≤ η.

As an example, and as pointed out in Rosenblatt (2011), Assumption 5 is satisfied when the
stationary density function is a standard multivariate Gaussian distribution and the transition
probability density is

f(y | x) =
1

(2π)d/2

d∏
j=1

1√
(1− η2

j )
exp(−(yj − ηjxj)2/(2(1− η2

j ))), (26)

for some η1, . . . , ηd ∈ (0, 1). Then, we can verify that |T |2 ≤
∏d
j=1 η

2
j .

For the simplicity of the presentation of the results, we only focus on studying the MSE of
p̂n,R(x) when both the stationary density function p0 and the stationary joint density function
p are upper–supersmooth.

Theorem 10. Assume that the stationary density and joint density functions p0 and p are
respectively upper–supersmooth density functions of order α1 > 0 and α2 > 0, such that
max{‖p0‖∞, ‖p‖∞} < ∞. Furthermore, the transition probability operator T satisfies As-
sumption 5. Then, for almost all x, y ∈ X , there exist universal constants C1, C2, c1, c2 such
that as long as R ≥ C for some universal constant C, we have

E
[
(p̂(y | x)− f(y | x))2

]
≤ C(p2

0(x) + p2(x, y))

p4
0(x)J̄(R)

(
Rmax{2(1−ᾱ),0} exp

(
−C1R

ᾱ
)

+
R2d

n

)
,

where ᾱ = min{α1, α2} and J̄(R) = 1−
(
cRmax{2−2α1,0} exp (−c1R

α1) + Rd log(nR)
n

)
/p2

0(x).

The proof of Theorem 10 is in Section 9.7.
A few comments with Theorem 10 are in order. First, the assumptions of Theorem 10 are

satisfied when p0 is standard multivariate Gaussian distribution and the transition probability
distribution f(.|.) takes the form (26). Under this example, both the stationary density and
joint density functions p0 and p are upper–supersmooth of second order. Second, the result
of Theorem 10 indicates that we can choose the radius R such that Rᾱ = O(log n). Then,
given that choice of R, the MSE rate of the Fourier transition estimator is at the order of
(log n)max{2(1−ᾱ),2d}/n. It is faster than the MSE rate n−1/(2d+4) of kernel density estimator
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for estimating transition probability density function from Markov sequence data (Yakowitz,
1985). Finally, since the Fourier transition estimator p̂n,R is constructed based on Fourier
integral theorem, it already preserves the dependence structure of the Markov sequence data.
It is different from the standard kernel density estimator where the choice of covariance matrix
is non-trivial to choose.

We note in passing that the idea of Fourier integral theorem can also be adapted to the
nonparametric regression for Markov sequence in the similar fashion as when the data are
independent in Section 5. We leave a detailed development of this direction for the future
work.

8. Illustrations

In this section, we provide experimental results illustrating the performance of Fourier esti-
mators developed in the previous sections. In the first one we highlight the difference between
using the Gaussian kernel and the Fourier kernel in the nonparametric regression setting.
This is in the multivariate setting and in many instances, such as (Chen et al., 2016a), even if
there is a dependence between variables, a product of independent Gaussian kernels is used.
On the other hand, a consequence of the special Fourier kernel and its connection with the
Fourier intergral theorem, a product of independent Fourier kernels work and are adequate
even when modeling dependent variables.

The next two examples involve multidimensional regression models. To report the good
estimation properties using the Fourier integral we present a curve on the surface of the
regression function. We also consider estimation of a mixing density, specifically the gradient
of the density which would allow us to search for the modes, opening up the possibility of
modal regression. A further example indeed is concerned with modal regression. We conclude
the section with dependent data, specifically Markov sequence data.

8.1 Example 1.

First we make a comparison between the Fourier regression estimator and the multivariate
Gaussian estimator based on a diagonal covariance matrix. With the sample size n = 1000,
we generate the data from the model with (Xi1) as independent standard normal and Xi2 =
Xi1 + 0.1× Zi, where the (Zi) are also independent standard normal. Then

Yi = X2
i1 − 3Xi2 + εi, εi ∼ standard normal.

We then compare the Fourier kernel estimator m̂R(x) in equation (6) when R = 9 with the
Gaussian kernel regression estimator

m̂h(x) =

∑n
i=1 YiKh(x1 −Xi1)Kh(x2 −Xi2)∑n
i=1Kh(x1 −Xi1)Kh(x2 −Xi2)

,

with Kh(u) = h−1 exp(−u2/(2h2)). We use the literature recommended choice of h =
n−1/(4+d) = n−1/6. The issue is that the denominator is attempting to estimate the joint
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Figure 1: Top: Histogram of m̂R(1, 2) samples, Bottom: Histogram of m̂h(1, 2).

density of (x1, x2) from the sample and, without a covariance matrix modeling the depen-
dence, m̂h will struggle to provide a decent estimator (Wand and Jones, 1993, 1994). In this
simple illustration we compare the estimators evaluated at x = (1, 2); the true value being −5.
We repeated the experiments 1000 times and hence for each estimator we have 1000 sample
estimates for this true value. The histogram representation of the two sets of samples are
presented in Fig. 1. As can be seen, the samples from the Fourier kernel are centered about
5; while those from the Gaussian kernel are not accurate.

To highlight the point about the dependence between X1 and X2; without any, so we can
generate them as two independent standard normals, the Gaussian kernel estimator performs
much better.

8.2 Example 2.

In this example we take the dimension d = 4 and generate the data from

yi =

d∑
j=1

aj xij + 0.01εi, (27)

and take n = 106. Here the (xij) are taken as independent standard normal and aj = j/4.
We then estimate a particular curve for −0.4 < t < 0.4 with

x1 =
√
t+ 2, x2 = t, x3 = sin(25(t+ 2)/π), x4 = exp((t+ 2)/4).

So we are estimating the curve m(x) = m(x1(t), x2(t), x3(t), x4(t)) and comparing with the
true one.
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Figure 2. Simulations with the Fourier regression estimator (20) for nonparametric regression
model (27) when d ∈ {4, 5}. In both figures, the estimated and true regression functions are
respectively represented in bold and dashed lines. (a) d = 4; (b) d = 5.

The Fourier regression estimator is provided by equation (20) with R = 7. The Fig. 2(a)
presents the estimated curve (bold line) alongside the true curve (dashed line).

8.3 Example 3.

Here we present a similar example to Example 2 except now we extend the dimension to 5,
take n = 100, 000. All other aspects are the same as in Example 2, though now we estimate
the line curve m(x) with x = (x1, x2, x3, x4, x5) and x1 = x2 = x3 = x4 = x5 = t, with
−0.6 < t < 0.6.

Again, the Fourier regression estimator is provided in equation (20) with R = 5. The
Fig. 2(b) presents the estimated curve (bold line) alongside the true curve (dashed line).

8.4 Example 4.

In this example we are investigating the problem of estimating mixing density with a normal
kernel. The data model is given by

p(x) =

∫
f(x− θ) g(θ) dθ

where f(x − θ) is a normal kernel with a fixed variance (the standard deviation h is set at
h = 0.1) and location θ. We focus on obtaining the derivative of g; i.e., g′(θ) for the purposes
of obtaining the modes of g. So specifically identifying the θ values (in increasing order the
odd values) for which g′(θ) = 0. The density estimator we use is a modification to the Fourier
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Figure 3. Simulations with Fourier mode estimators. (a) We consider estimating modes
of mixing density. The estimated first order derivative of mixing density ĝ′n,R(θ) is in bold

line while the first order derivative of true mixing density g′(θ) is in dashed line. (b) We
illustrate mode estimation from nonparametric modal regression problem. The true modes are
represented in dashed lines while the estimated modes are in bold line.

deconvolution estimator (17);

ĝn,R(θ) =
R

nπ

n∑
i=1

eu
2
i h

2/2 cos(ui(θ − xi))

where the (xi) are the observed sample from p(x), and the (ui) are independent samples from
the uniform distribution on (0, R), with R = 5. Hence, straightforwardly we get

ĝ′n,R(θ) =
−R
nπ

n∑
i=1

ui e
u2i h

2/2 sin(ui(θ − xi)).

We present an illustration in Fig. 3(a), where we compare with the true g′(θ) which is

g(θ) = 0.6N(θ | −2, 0.62) + 0.4N(θ | 2, 0.62).

As indicated in Fig. 3(a), ĝ′n,R(θ) gives a good estimate of g′(θ).

8.5 Example 5.

In this example we look at nonparametric modal regression; see for example (Sager and
Thisted, 1982) and (Chen et al., 2016a). For a regression model with conditional density
p(y | x), the idea is to find the modes given values of x. Of course, there may be more than
a single mode for some x, which indeed separates modal regression from other types, such
as mean regression, which yield a single answer. The possibly multiple modes can provide
necessary information concerning p(y | x).
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Figure 4. Simulations with the Fourier transition estimator (25) for Markov sequences. In
both figures, the estimated and true transition probabilities are respectively represented in bold
and dashed lines. (a) One dimensional Gaussian Markov process; (b) Two dimensional Markov
process (28).

In the example we take p(y | x) as a bivariate normal density with modes at −x2 and
+x2, and both with standard deviation 0.6, and with equal probability of 1/2 assigned to
each component. The estimate of the modes over a range of x values is provided in Fig. 3(b).
In this example, the sample size was n = 10, 000, the data (xi)

n
i=1 we sampled uniformly from

the interval (−2, 2), and the value of R was 7.

8.6 Example 6.

Here we consider estimation of transition densities associated with a Markov sequence via the
Fourier transition estimator (25). The first case is a classic Gaussian Markov process

Xn+1 = ρXn +
√

1− ρ2Zn,

where the (Zn) are independent standard normal random variables. The stationary density
p0 is well known to be the standard normal distribution. Starting with X0 = 1

2 , we generated
10000 samples with ρ = 0.6.

The true transition density f(y | x) and its Fourier transition estimator are shown in
Fig. 4(a) with x = 1.

The second case is a two–dimensional process (Xn1, Xn2) given by:

Xn+1 1 = ρXn 1 +
√

1− ρ2Zn 1,

Xn+1 2 = ρ1Xn 1 + ρ2Xn 2 +
√

1− ρ2
1 − ρ2

2Zn 2, (28)

where the (Zn 1, Zn,2) are two independent sequences of standard normal random variables.
In our simulation, we took X0 1 = 0.5 and X0 2 = 0.2 and ρ = 0.6, ρ1 = 0.3, and ρ2 = 0.7,
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Figure 5: Raw data of 9311 daily records of NYSE Composite Index.

and n = 100000. The estimated transition density f(y | x1, x2), also given by (25), is shown
in Fig. 4(b) with x1 = 1 and x2 = −1.

8.7 Example 7.

In this subsection we use Fourier kernels on a real data set. The data set can be found in
the R package fBasics and consists of n = 9311 data points of daily records of the NYSE
Composite Index. A plot of the data is given in Fig. 5.

We analyse the transformed data zi = 10 log(yi+1/yi), where (yi) are the raw data. This
gives us a sample size of n = 9310. First, we model the data (zi) using the Fourier kernels
with the value of R = 50. The density estimator alongside a histogram of the (z) samples is
given in Fig. 6(a).

We than estimated the conditional density conditioning on the value of 0.15. We obtained
an approximate sample estimate of this by constructing the histogram of samples which
have the immediately previous sample being an absolute value of no more than a distance
of 0.05 from 0.15. The histogram sample along with our conditional density estimator is
given in Fig. 6(b). The reason why there is little shift in the conditional density from the
marginal density is due to the low autocorrelation from the (zi) data. The data has a lag–1
autocorrelation of 0.1 and is negligible for lag–2.

9. Proofs

In this section, we provide the proofs of the main results in the paper. The values of universal
constants (e.g., C, c′ etc.) can change from line-to-line.
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Figure 6. Simulations with the Fourier density estimator (4) and Fourier transition esti-
mator (25) for the NYSE Composite Index dataset. (a) Transformed data (zi) as histogram
with density estimator using the Fourier kernel; (b) Histogram of conditional samples with
conditional density estimator using the Fourier kernel.

9.1 Proof of Theorem 1

Given the upper–supersmoothness or upper–ordinary smoothness of the density function p0,
its Fourier transform p̂0 is integrable. Therefore, the Fourier inversion transform and integral
theorem in equations (4) and (3) hold. An application of Fourier integral theorem leads to

∣∣∣E [f̂n,R(x)
]
− p0(x)

∣∣∣ =

∣∣∣∣∣ 1

(2π)d

∫
Rd\[−R,R]d

∫
Rd

cos(s>(x− t))p0(t)dsdt

∣∣∣∣∣
=

∣∣∣∣∣ 1

(2π)d

∫
Rd\[−R,R]d

[
cos(s>x)Re(p̂0(s))− sin(s>x)Im(p̂0(s))

]
ds

∣∣∣∣∣
≤ 1

(2π)d

∫
Rd\[−R,R]d

[|cos(sx)| |Re(p̂0(s))|+ |sin(sx)| |Im(p̂0(s))|] ds

≤
√

2

(2π)d

∫
Rd\[−R,R]d

|p̂0(s)|ds ≤
√

2

(2π)d

d∑
i=1

∫
Ai

|p̂0(s)|ds, (29)

where Re(p̂0), Im(p̂0) respectively denote the real and imaginary part of the Fourier transform
p̂0 and Ai = {x ∈ Rd : |xi| ≥ R} for all i ∈ [d]. Here, the second inequality is due to Cauchy-
Schwarz inequality.
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(a) When p0 is upper–supersmooth density function of order α > 0, we have

∫
Ai

|p̂0(s)|ds ≤ C
∫
Ai

exp

(
−C1

(
d∑
i=1

|si|α
))

ds

= C

(∫ ∞
−∞

exp(−C1|t|α)dt

)d−1

·
∫
|t|≥R

exp(−C1|t|α)dt

=
Cαd−1

(2C1Γ(1/α))d−1
·
∫
|t|≥R

exp(−C1|t|α)dt,

where C and C1 are universal constants from Definition 1 with upper-supersmooth density. If
α ≥ 1, then

∫∞
R exp (−C1t

α) dt ≤
∫∞
R tα−1 exp (−C1t

α) dt = exp(−C1R
α)/(C1α). If α ∈ (0, 1),

then we have∫ ∞
R

exp(−C1t
α)dt =

∫ ∞
R

t1−αtα−1 exp(−C1t
α)dt

=
R1−α exp (−C1R

α)

C1α
+

1− α
C1α

∫ ∞
R

t−α exp(−C1t
α)dt

≤ R1−α exp (−C1R
α)

C1α
+

1− α
C1αRα

∫ ∞
R

exp(−C1t
α)dt,

where the first equality is due to the integration by part. By choosingR such thatRα ≥ 2(1−α)
C1α

,
the above inequality leads to∫ ∞

R
exp(−C1t

α)dt ≤ 2R1−α exp (−C1R
α)

C1α
.

Putting the above results together, we obtain that∫
|t|≥R

exp(−C1|t|α)dt ≤ 4Rmax{1−α,0}

C1α
exp(−C1R

α).

Therefore, for each i ∈ [d], we have the following upper bound:∫
Ai

|p̂0(s)|ds ≤ Cαd−2Rmax{1−α,0}

2d−3Cd1 (Γ(1/α))d−1
exp(−C1R

α). (30)

Combining the results from equations (29) and (30), we obtain that

∣∣∣E [f̂n,R(x)
]
− p0(x)

∣∣∣ ≤ √2Cd · αd−2Rmax{1−α,0}

πd22d−3Cd1 (Γ(1/α))d−1
exp(−C1R

α).

Therefore, we reach the conclusion with the upper bound of the bias of f̂n,R(x) under the
upper-supersmooth setting of the density function p0.
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Moving to the variance of f̂n,R(x), we have

var
[
f̂n,R(x)

]
=

1

nπ2d
var

[
d∏
i=1

sin(R(xi −X·i))
xi −X·i

]
≤ 1

nπ2
E

[
d∏
i=1

sin2(R(xi −X·i))
(xi −X·i)2

]

≤ ‖p0‖∞
nπ2d

(∫ ∞
−∞

sin2(R(x− t))
(x− t)2

dt

)d
=
Rd‖p0‖∞
nπd

,

where the variance and the expectation are taken with respect to X = (X·1, . . . , X·d) ∼ p0.
As a consequence, we reach the conclusion of part (a).

(b) For part (b), the variance analysis is similar to that of part (a); therefore, it is omitted.
For the bias of f̂n,R(x), since the density function is upper–ordinary smooth of order β, for
each i ∈ [d] we obtain

∫
Ai

|p̂0(s)|ds ≤ c
∫
Ai

d∏
j=1

1

(1 + |sj |β)
ds = c

(∫ ∞
−∞

1

1 + |t|β
dt

)d−1

·
∫
|t|≥R

1

1 + |t|β
dt.

Since β > 1, Iβ =
∫∞
−∞

1
1+|t|β dt <∞. Furthermore, we obtain that∫
|t|≥R

1

1 + |t|β
dt ≤ 2

∫ ∞
R

1

tβ
ds =

2

β − 1
R−β+1.

Therefore, we have ∫
Ai

|p̂0(s)|ds ≤
2cId−1

β

β − 1
R1−β. (31)

Combining the results from equations (29) and (31), we reach the conclusion with the bias of
upper–ordinary smooth density p0.

9.2 Proof of Theorem 3

We first compute E
[
∇if̂n,R(x)

]
−∇ip0(x) when i ∈ {1, . . . , r}. Since p0 ∈ Cr(X ), we have

∂̂γp0(s) = (is)γ p̂0(s),

for any γ = (γ1, . . . , γd) ∈ Nd such that |γ| ≤ r. Here, ∂̂γp0 denotes the Fourier transform of
the partial derivative ∂γp0

∂xγ (x). Given the upper–supersmoothness or lower–ordinary smooth-

ness assumptions of p0, it is clear that ∂̂γp0 is integrable for all γ = (γ1, . . . , γd) such that
|γ| ≤ r. Therefore, the Fourier inversion theorem is applicable to all the partial derivatives
up to r-th order of p0. It means that we have the following equations:

∇ip0(x) =
1

(2π)d

∫
Rd

∫
Rd
∇ip0(t)cos(s>(x− t))dtds
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for i ∈ {1, . . . , r}. By means of integration by part, the above equations can be rewritten as
follows:

∇ip0(x) =
1

(2π)d

∫
Rd

∫
Rd
p0(t)∇ixcos(s>(x− t))dtds.

Therefore, we obtain that

(
∇ip0(x)

)
u1u2...ui

= − 1

(2π)d

∫
Rd

∫
Rd
su1 . . . sui · sin(s>(x− t))p0(t)dtds, if i = 4l + 1(

∇ip0(x)
)
u1u2...ui

= − 1

(2π)d

∫
Rd

∫
Rd
su1 . . . sui · cos(s>(x− t))p0(t)dtds, if i = 4l + 2(

∇ip0(x)
)
u1u2...ui

=
1

(2π)d

∫
Rd

∫
Rd
su1 . . . sui · sin(s>(x− t))p0(t)dtds, if i = 4l + 3(

∇ip0(x)
)
u1u2...ui

=
1

(2π)d

∫
Rd

∫
Rd
su1 . . . sui · cos(s>(x− t))p0(t)dtds, if i = 4l + 4

for any 1 ≤ u1, . . . , ui ≤ d. Based on the above equations, when i = 4l + 1 for any 1 ≤
u1, . . . , ui ≤ d we find that∣∣∣∣(E [∇if̂n,R(x)

])
u1...ui

−
(
∇ip0(x)

)
u1...ui

∣∣∣∣
=

∣∣∣∣∣ 1

(2π)d

∫
Rd\[−R,R]d

∫
Rd
su1 . . . sui · sin(s>(x− t))p0(t)dtds

∣∣∣∣∣
=

∣∣∣∣∣ 1

(2π)d

∫
Rd\[−R,R]d

su1 . . . sui ·
(

sin(s>x)Re(p̂0(s))− cos(s>x)Im(p̂0(s))
)
ds

∣∣∣∣∣
≤ 1

(2π)d

∫
Rd\[−R,R]d

|su1 . . . sui | |p̂0(s)| ds

≤
√

2

(2π)d

d∑
j=1

∫
Aj

|su1 . . . sui ||p̂0(s)|ds, (32)

where Aj = {x ∈ Rd : |xj | ≥ R} for all j ∈ [d]. With similar argument, we can check that the
bound (32) also holds for other settings of i, i.e., when i ∈ {4l + 2, 4l + 3, 4l + 4}. Therefore,
the bound (32) holds for all i ≤ r. Now, given the bound in equation (32), we are ready to
upper bound the mean-squared bias and variance of the higher order derivatives of f̂n,R.

(a) Since p0 is upper–supersmooth density function of order α > 0, for any 1 ≤ u1, . . . , ui ≤ d,
we obtain the following bounds:

∫
Aj

|su1 . . . sui ||p̂0(s)|ds ≤ C
∫
Aj

|su1 . . . sui | exp

−C1

 d∑
j=1

|sj |α
 ds.
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where C and C1 are universal constants from the Definition 1 with upper–supersmooth density.
For any given 1 ≤ u1, . . . , ui ≤ d, we denote Bl = {v : uv = l} for any l ∈ [d]. Then, we have∫

Aj

|su1 . . . sui | exp

−C1

 d∑
j=1

|sj |α
 ds =

∫
Aj

d∏
l=1

|sl||Bl| exp

(
−C1

(
d∑
l=1

|sj |α
))

ds.

(33)

We now bound
∫
Aj
|sj ||Bj | exp (−C1|sj |α) dsj . When α > |Bj | + 1, |sj ||Bj | ≤ |sj |α−1 for all

|sj | ≥ R ≥ 1. Therefore, we obtain that following bound:∫
Aj

|sj ||Bj | exp (−C1|sj |α) dsj ≤
∫
|sj |≥R

|sj |α−1 exp (−C1|sj |α) dsj =
2 exp(−C1R

α)

C1α
.

When α ∈ (0, |Bj |+ 1], we find that∫
|sj |≥R

|sj ||Bj | exp(−C1|sj |α)dsj = 2

∫
sj≥R

s
|Bj |+1−α
j sα−1

j exp(−C1s
α
j )dsj

=
2R|Bj |+1−α exp (−C1R

α)

C1α
+

2(|Bj |+ 1− α)

C1α

∫
t≥R

s
|Bj |−α
j exp(−C1s

α
j )dsj

≤ 2R|Bj |+1−α exp (−C1R
α)

C1α
+

2(|Bj |+ 1− α)

C1αRα

∫
sj≥R

s
|Bj |
j exp(−C1s

α
j )dsj ,

where the equality in the above display is due to the integration by part. By choosing R such

that Rα ≥ 2(|Bj |+1−α)
C1α

, the above inequality leads to∫
|sj |≥R

|sj ||Bj | exp(−C1|sj |α)dsj ≤
4R|Bj |+1−α exp (−C1R

α)

C1α
.

Collecting the above results, we obtain∫
Aj

|sj ||Bj | exp (−C1|sj |α) dsj ≤
4

C1α
·Rmax{|Bj |+1−α,0} exp (−C1R

α)

≤ 4

C1α
·Rmax{i+1−α,0} exp (−C1R

α) , (34)

where the second inequality is due to the fact that |Bj | ≤ i. For any α > 0 and l ∈ N, we
denote I(α, l) =

∫
R |t|

l exp(−C1|t|α)dt. It is clear that I(α, l) < ∞. Plugging the result in
equation (34) into the equation (33), we find that∫

Aj

|su1 . . . sui | exp

−C1

 d∑
j=1

|sj |α
 ds

≤ 4

C1α

∏
l 6=j

I(α, |Bl|)

 ·Rmax{i+1−α,0} exp (−C1R
α) ,
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for j ∈ [d] and 1 ≤ u1, . . . , ui ≤ d. Combining that bound and the bound in equation (32),
we arrive at the following inequality:∣∣∣∣(E [∇if̂n,R(x)

])
u1...ui

−
(
∇2p0(x)

)
u1...ui

∣∣∣∣
≤

√
2d

2d−2πdC1α

∏
l 6=j

I(α, |Bl|)

 ·Rmax{i+1−α,0}e(−C1Rα).

Hence, we obtain that

‖E
[
∇if̂n,R(x)

]
−∇ip0(x)‖max

≤
√

2d

2d−2πdC1α
max

|B1|,...,|Bd|;
|B1|+...+|Bd|=i

∏
l 6=j

I(α, |Bl|)

 ·Rmax{i+1−α,0}e(−C1Rα).

As a consequence, we obtain a conclusion with the upper bound of bias of ∇if̂n,R(x).

Moving to the variance of ∇if̂n,R(x), direct algebra leads to

E
[
‖∇if̂n,R(x)− E

[
∇if̂n,R(x)

]
‖22
]

=
∑

1≤u1,...,ui≤d
E

[((
∇if̂n,R(x)

)
u1...ui

−
(
E
[
∇if̂n,R(x)

])
u1...ui

)2
]

≤
∑

1≤u1,...,ui≤d

1

(2π)dn
E

(∫
[−R,R]d

(
∇ixcos(s>(x−X))

)
u1...ui

)2
 ,

where the outer expectation is taken with respect to X ∼ p0. To simplify the presentation,
we denote h(y, s) = sin(R(y−s))

y−s for all y, s ∈ R. Recall that, Bl = {v : uv = l} for any l ∈ [d]
and for any given 1 ≤ u1, . . . , ui ≤ d. Then, we can check that

E

(∫
[−R,R]d

(
∇ixcos(s>(x−X))

)
u1...ui

)2
 = E

 d∏
j=1

∂|Bj |

∂x
|Bj |
j

h(xj , X.j)

2
≤ ‖p0‖∞

d∏
j=1

∫
R

 ∂|Bj |

∂x
|Bj |
j

h(xj , t)

2

dt,

where we denote X = (X.1, . . . , X.d). Direct calculation shows that
∫
R

(
∂l

∂yl
h(y, t)

)2
dt =

clR
2l+1 for any l ≥ 0 and y ∈ R where cl are some universal constants. Collecting these
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results, we obtain

E

(∫
[−R,R]d

(
∇ixcos(s>(x−X))

)
u1...ui

)2
 ≤ ‖p0‖∞

d∏
j=1

c|Bj |R
2|Bj |+1

=

‖p0‖∞
d∏
j=1

c|Bj |

R2i+d,

where the final equality is due to
∑d

j=1 |Bj | = i. Putting all the results together, we finally
have

E
[
‖∇if̂n,R(x)− E

[
∇if̂n,R(x)

]
‖22
]
≤ C̄i

R2i+d

n
,

where C̄i is some universal constant and ‖p0‖∞. As a consequence, we reach the conclusion
of part (a) of the theorem.

(b) The analysis of variance in the ordinary smooth setting is similar to that of variance in
the supersmooth setting in part (a); therefore, it is omitted. Our proof with part (b) will
only focus on bounding the bias. In particular, since p0 is ordinary smooth density function
of order β, for any 1 ≤ u1, . . . , ui ≤ d we obtain that

∫
Aj

|su1 . . . sui ||p̂0(s)|ds ≤ c
∫
Aj

|su1 . . . sui |
d∏
l=1

1

1 + |sl|β
ds = c

∫
Aj

d∏
l=1

|sl||Bl|

1 + |sl|β
ds

≤ c

∏
l 6=j

(∫
R

|sl||Bl|

1 + |sl|β
dsl

) · ∫
|sj |≥R

|sj ||Bj |

1 + |sj |β
dsj .

Here, c in the above bounds is the universal constant associated with the ordinary smooth

density function p0 from Definition 1. Since |Bl| ≤ r < β − 1, we have
∫
R
|sl||Bl|
1+|sl|β

dsl < ∞ for

all l ∈ {1, . . . , d}. Furthermore, we find that∫
|sj |≥R

|sj ||Bj |

1 + |sj |β
dsj ≤ 2

∫
sj≥R

1

s
β−|Bj |
j

dsj =
2R−β+|Bj |+1

β − |Bj | − 1
≤ 2R−β+i+1

β − |Bj | − 1
,

where the final inequality is due to |Bj | ≤ i. Collecting the above results, we arrive at the
following bound:

∫
Aj

|su1 . . . sui ||p̂0(s)|ds ≤ 2c

β − |Bj | − 1

∏
l 6=j

(∫
R

|sl||Bl|

1 + |sl|β
dsl

) ·R−β+i+1. (35)

Plugging the result from equation (35) into the bound in equation (32), we obtain the con-
clusion with the upper bound of bias in part (b).
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9.3 Proof of Theorem 4

By triangle inequality, we find that

sup
x∈X

∥∥∥∇if̂n,R(x)−∇ip0(x)
∥∥∥

max
≤ sup

x∈X

∥∥∥∇if̂n,R(x)− E
[
∇if̂n,R(x)

]∥∥∥
max

+ sup
x∈X

∥∥∥E [∇if̂n,R(x)
]
−∇ip0(x)

∥∥∥
max

.

We first establish the uniform concentration bound for

sup
x∈X

∣∣∣∣(∇if̂n,R(x)
)
u1...ui

−
(
E
[
∇if̂n,R(x)

])
u1...ui

∣∣∣∣
for any 1 ≤ u1, . . . , ui ≤ d. To simplify the notation, we denote h(y, s) = sin(R(y−s))

y−s for all

y, s ∈ R. Then, we can rewrite
(
∇if̂n,R(x)

)
u1...ui

as follows:

(
∇if̂n,R(x)

)
u1...ui

=
1

n(2π)d

n∑
j=1

d∏
l=1

∂|Bl|

∂x
|Bl|
l

h(xl, Xjl),

where Bl = {v : uv = l} for any l ∈ [d] and for any given 1 ≤ u1, . . . , ui ≤ d. We denote

Yj = 1
πd

∏d
l=1

∂|Bl|

∂x
|Bl|
l

h(xl, Xjl) for all j ∈ [n]. Then, since
∣∣∣∂l∂lh(y, s)

∣∣∣ ≤ Rl+1 for all l ≥ 0, we

have |Yj | ≤ R
∑d
l=1 |Bl|+d = Ri+d for all j ∈ [n]. Furthermore, we have E(|Yj |) ≤ Ri for all

j ∈ [n]. Given these results, an application of Bernstein’s inequality leads to

P
(

sup
x∈X

∣∣∣∣(∇if̂n,R(x)
)
u1...ui

−
(
E
[
∇if̂n,R(x)

])
u1...ui

∣∣∣∣ > t

)
≤ 4N[]

(
t/8,F ′,L1(P )

)
exp

(
− 96nt2

76R2i+d

)
,

where F ′ = {fx : Rd → R : fx(t) =
∏d
l=1

∂|Bl|

∂x
|Bl|
l

h(xl, tl) for all x ∈ X, t ∈ Rd}. Direct algebra

shows that for any x1, x2 ∈ X , |fx1(t)− fx2(t)| ≤ dRi+d+1‖x1− x2‖2 for all t ∈ Rd. As X is a
bounded subset of Rd, combining the above results leads to

P
(

sup
x∈X

∣∣∣∣(∇if̂n,R(x)
)
u1...ui

−
(
E
[
∇if̂n,R(x)

])
u1...ui

∣∣∣∣ > t

)

≤

(
4d
√
d ·Diam(X )Rd+i+1

t

)d
exp

(
− 96nt2

76R2i+d

)
.
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Given the above result, an application of union bound shows that

P
(

sup
x∈X

∥∥∥∇if̂n,R(x)−∇ip0(x)
∥∥∥

max
> t)

≤
∑

1≤u1,...,ui≤d
P
(

sup
x∈X

∣∣∣∣(∇if̂n,R(x)
)
u1...ui

−
(
E
[
∇if̂n,R(x)

])
u1...ui

∣∣∣∣ > t

)

≤ 4dd3d/2+i(Diam(X ))dRd(d+i+1)

td
exp

(
− 96nt2

76R2i+d

)
,

From the above concentration bound, by choosing

t = C̄

√
Rd+2i (log(2/δ) + d(d+ i+ 1) logR+ d(log d+ Diam(X ))

n

where C̄ is some universal constant, we obtain P
(

supx∈X

∥∥∥∇if̂n,R(x)−∇ip0(x)
∥∥∥

max
> t) ≤ δ.

Combining this result with the upper bounds of supx∈X

∥∥∥E [∇if̂n,R(x)
]
−∇ip0(x)

∥∥∥
max

from

Theorem 3, we reach the conclusion of the theorem.

9.4 Proof of Theorem 5

We first compute E [ĝn,R(θ)]− g(θ) for each θ ∈ Θ. Direct calculation shows that

E [ĝn,R(θ)]− g(θ) =
1

(2π)d

∫
Rd\[−R,R]d

∫
Rd

cos(s>(θ − x))

f̂(s)
p0(x)dxds

=
1

(2π)d

∫
Rd\[−R,R]d

∫
Rd

cos(s>(θ − x))

f̂(s)

(∫
f(x− θ′)g(θ′)dθ′

)
dxds

=
1

(2π)d

∫
Rd\[−R,R]d

∫
Θ

g(θ′)

f̂(s)

(∫
Rd

cos(s>(θ − x))f(x− θ′)dx
)
dθ′ds.

By defining θ̄ = θ − θ′, we obtain∫
Rd

cos(s>(θ − x))f(x− θ′)dx =

∫
Rd

cos(s>(x− θ̄))f(x)dx = cos(s>θ̄)f̂(s).

Putting the above results together, we obtain

E [ĝn,R(θ)]− g(θ) =
1

(2π)d

∫
Rd\[−R,R]d

∫
Θ

cos(s>(θ − θ′))g(θ′)dθ′ds.

The above term is similar to that in the proof of Theorem 1; therefore, the upper bound for
its absolute value under the upper-supersmooth assumption of g is direct from the proof of
Theorem 1.
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Moving to the variance of ĝn,R(θ), simple algebra shows that

var [ĝn,R(θ)] ≤ 1

n(2π)d
E

(∫
[−R,R]d

cos(s>(θ −X))

f̂(s)
ds

)2
 ≤ ‖g‖∞R2d

nmins∈[−R,R]d f̂
2(s)

.

Based on the assumptions with the lower-supersmoothness of f , the above bound directly
leads to the conclusion of the theorem with the variance of ĝn,R.

9.5 Proof of Theorem 7

Since g ∈ Cr(Θ), we have p0 ∈ Cr(X ). From the Fourier inverse theorem, we have

∂γg

∂θγ
(θ) =

1

(2π)d

∫
Rd
∂̂γg(s) exp

(
iθ>s

)
ds,

for any γ = (γ1, . . . , γd) ∈ Nd such that |γ| ≤ r. Since ∂̂γg(s) = (is)γ ĝ(s), the above identity
becomes

∂γg

∂θγ
(θ) =

1

(2π)d

∫
Rd

(is)γ ĝ(s) exp
(
iθ>s

)
ds =

1

(2π)d

∫
Rd

(is)γ
p̂0(s)

f̂(s)
exp

(
iθ>s

)
ds

=
1

(2π)d

∫
Rd

∂̂γp0(s)

f̂(s)
exp

(
iθ>s

)
ds

=
1

(2π)d

∫
Rd

∫
Rd

∂γp0

∂tγ
(t) · cos(s>(θ − t))

f̂(s)
dtds,

where the final inequality is because f̂ is an even function. An application of integration by
parts leads to

∫
Rd

∂γp0

∂tγ
(t) · cos(s>(θ − t))

f̂(s)
dt =

∫
Rd
p0(t)

∂γ

∂θγ cos(s>(θ − t))
f̂(s)

dt.

Therefore, for any i ∈ {1, . . . , r} we have

∇ig(θ) =
1

(2π)d

∫
Rd

∫
Rd
p0(t)

∇iθcos(s>(θ − t))
f̂(s)

dtds.

For any 1 ≤ u1, . . . , ui ≤ d and i = 4l + 1 for some l ≥ 0, simple algebra leads to

(∇ig(θ))u1...ui = − 1

(2π)d

∫
Rd

∫
Rd
su1 . . . sui ·

sin(s>(x− t))p0(t)

f̂(s)
dtds.
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Therefore, we obtain that∣∣∣(E [∇iĝn,R(θ)
])
u1...ui

− (∇ig(θ))u1...ui

∣∣∣
=

∣∣∣∣∣ 1

(2π)d

∫
Rd\[−R,R]d

∫
Rd
su1 . . . sui ·

sin(s>(x− t))p0(t)

f̂(s)
dtds

∣∣∣∣∣
≤ 1

(2π)d

∫
Rd\[−R,R]d

|su1 . . . sui | |ĝ(s)| ds

≤
√

2

(2π)d

d∑
j=1

∫
Aj

|su1 . . . sui | |ĝ(s)| ds, (36)

where Aj = {x ∈ Rd : |xj | ≥ R} for all j ∈ [d]. We can check the inequality (36) also holds
for i ∈ {4l+ 2, 4l+ 3, 4l+ 4}. Therefore, this inequality holds for all i ≤ r. From here, based
on the proof of Theorem 3 with upper-supersmooth density function, for each j ∈ [d], when
R ≥ C ′ where C ′ is some universal constant we have

d∑
j=1

∫
Aj

|su1 . . . sui | |ĝ(s)| ds ≤ CRmax{i+1−α2,0} exp (−C1R
α2) ,

where C is some universal constant and C1 is the given constant in Definition 1. Plugging
the above bound into the equation (36), we obtain∣∣∣(E [∇iĝn,R(θ)

])
u1...ui

− (∇ig(θ))u1...ui

∣∣∣ ≤ √2Cd

(2π)d
Rmax{i+1−α2,0} exp (−C1R

α2) .

Therefore, we have

‖E
[
∇iĝn,R(θ)

]
−∇ig(θ)‖max ≤ C̄Rmax{i+1−α2,0} exp (−C1R

α2) ,

where C̄ is some universal constant depending on d. As a consequence, we obtain the conclu-
sion of the theorem with the bias of the Fourier deconvolution estimator ∇iĝn,R.

Moving to the variance of ∇iĝn,R, for each 1 ≤ u1, . . . , ui ≤ d we have

E
[((

E
[
∇iĝn,R(θ)

])
u1...ui

− (∇iĝn,R(θ))u1...ui

)2
]

upper bounded by

1

(2π)dn
E

(∫
[−R,R]d

(
∇iθcos(s>(θ −X))

)
u1...ui

f̂(s)
ds

)2


≤ ‖g‖∞R2(i+d)

(2π)dnmins∈[−R,R]d f̂
2(s)

≤ ‖g‖∞R
2(i+d) exp(2C2dR

α1)

(2π)dn
,
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where C2 is a given constant in Definition 1. Hence, we obtain that

E
[
‖∇iĝn,R(θ)− E

[
∇iĝn,R(θ)

]
‖22
]

=
∑

1≤u1,...,ui≤d
E
[((

E
[
∇iĝn,R(θ)

])
u1...ui

− (∇iĝn,R(θ))u1...ui

)2
]

≤ C ′R2(i+d) exp(2C2dR
α1),

where C ′ is some universal constant depending on ‖g‖∞ and dimension d. As a consequence,
we obtain the conclusion of the theorem with the variance of the derivatives of ĝn,R.

9.6 Proof of Theorem 9

In this proof, we first bound the bias of m̂(x). Then, we establish an upper bound the variance
of m̂(x) for each x ∈ X .

Upper bound on the bias of m̂(x): From the definition of m̂(x), simple algebra leads to

m̂(x)−m(x) =
â(x)−m(x)f̂n,R(x)

p0(x)
+

(m̂(x)−m(x))(p0(x)− f̂n,R(x))

p0(x)
. (37)

Therefore, we obtain that

(E [m̂(x)]−m(x))2

≤ 2

(
E
[
â(x)−m(x)f̂n,R(x)

])2

p2
0(x)

+ 2

(
E
[
(m̂(x)−m(x))(p0(x)− f̂n,R(x))

])2

p2
0(x)

≤ 2

(
E
[
â(x)−m(x)f̂n,R(x)

])2

p2
0(x)

+ 2
E
[
(m̂(x)−m(x))2

]
E
[
(p0(x)− f̂n,R(x))2

]
p2

0(x)
, (38)

where the first inequality is due to Cauchy-Schwarz inequality and the second inequality is due
to the standard inequality E2(XY ) ≤ E(X2)E(Y 2). Since p0 is upper-supersmooth density
function of order α > 0, from the result of Theorem 1, we have

E
[
(p0(x)− f̂n,R(x))2

]
≤ C2Rmax{2−2α,0} exp (−2C1R

α) +
‖p0‖∞
πd

· R
d

n
,

where C1 is the given constant in Definition 1 and C is some universal constant.

Now, we proceed to bound
∣∣∣E [â(x)−m(x)f̂n,R(x)

]∣∣∣. Direct calculation shows that

E
[
â(x)−m(x)f̂n,R(x)

]
=

1

(2π)d

(∫
Rd

∫
[−R,R]d

cos(s>(x− t))m(t)p0(t)dsdt

−
∫
Rd

∫
[−R,R]d

cos(s>(x− t))m(x)p0(t)dsdt

)
.
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From the Fourier integral theorem, we obtain

m(x)p0(x)− 1

(2π)d

∫
Rd

∫
[−R,R]d

cos(s>(x− t))m(t)p0(t)dsdt

=
1

(2π)d

∫
Rd

∫
Rd\[−R,R]d

cos(s>(x− t))m(t)p0(t)dsdt,

m(x)p0(x)− 1

(2π)d

∫
Rd

∫
[−R,R]d

cos(s>(x− t))m(x)p0(t)dt

=
1

(2π)d

∫
Rd

∫
Rd\[−R,R]d

cos(s>(x− t))m(x)p0(t)dsdt.

Collecting the above equations, we arrive at the following result:∣∣∣E [â(x)−m(x)f̂n,R(x)
]∣∣∣ ≤ 1

(2π)d

( ∣∣∣∣∣
∫
Rd

∫
Rd\[−R,R]d

cos(s>(x− t))m(t)p0(t)dsdt

∣∣∣∣∣
+

∣∣∣∣∣
∫
Rd

∫
Rd\[−R,R]d

cos(s>(x− t))m(x)p0(t)dsdt

∣∣∣∣∣
)

≤ 1

(2π)d

∫
Rd\[−R,R]d

(|p̂0(s)|+
∣∣m̂ · p0(s)

∣∣)ds. (39)

Since p0 is upper-smooth density function of order α, from the proof of Theorem 1, we have∫
Rd\[−R,R]d

|p̂0(s)| ≤ C̄Rmax{1−α,0} exp(−C1R
α), (40)

where C̄ is some universal constant. Furthermore, we find that∫
Rd\[−R,R]d

∣∣m̂ · p0(s)
∣∣ ds ≤ d∑

j=1

∫
Aj

∣∣m̂ · p0(s)
∣∣ ds

≤
d∑
j=1

∫
Aj

C ·Q(|s1|, . . . , |sd|) exp

(
−C1

(
d∑
i=1

|si|α
))

ds,

where Aj = {x : |xj | ≥ R}. For any 0 ≤ τ1, τ2, . . . , τd ≤ r where r ≥ 1, we have

∫
Aj

d∏
i=1

|si|τi exp

(
−C1

(
d∑
i=1

|si|α
))

ds =

∏
i 6=j

I(α, τi)

∫
Aj

|sj |τj exp(−C1|sj |α)dsj ,

where I(α, τ) =
∫
R |t|

τ exp(−C1|t|α)dt for all τ ≥ 0. Based on the proof argument of equa-
tion 34 in Theorem 3, we obtain∫

Aj

|sj |τj exp(−C1|sj |α)dsj ≤ C ′Rmax{τj+1−α,0} exp(−C1R
α),
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where C ′ is some universal constant. Putting the above results together leads to the following
bound: ∫

Rd\[−R,R]d

∣∣m̂ · p0(s)
∣∣ ds ≤ C ′Rmax{deg(Q)+1−α,0} exp(−C1R

α). (41)

Combining the results from equations (39), (40), and (41), we have∣∣∣E [â(x)−m(x)f̂n,R(x)
]∣∣∣ ≤ C ′′Rmax{deg(Q)+1−α,0} exp(−C1R

α), (42)

where C ′′ is some universal constant. Plugging the result from equation (43) into equation (38)
leads to

(E [m̂(x)]−m(x))2 ≤ C

p2
0(x)

(
Rmax{2 deg(Q)+2−2α,0} exp(−2C1R

α)

+ E
[
(m̂(x)−m(x))2

](
Rmax{2−2α,0} exp (−2C1R

α) +
‖p0‖∞
πd

· R
d

n

))
, (43)

where C is some universal constant.

Upper bound on the variance of m̂(x): Moving to the variance of m̂(x), by taking
variance both sides of the equation (37), we find that

var(m̂(x)) = var

(
â(x)−m(x)f̂n,R(x)

p0(x)
+

(m̂(x)−m(x))(p0(x)− f̂n,R(x))

p0(x)

)

≤ 2

p2
0(x)

E
[(
â(x)−m(x)f̂n,R(x)

)2
]

︸ ︷︷ ︸
T1

+E
[
(m̂(x)−m(x))2(p0(x)− f̂n,R(x))2

]
︸ ︷︷ ︸

T2

 . (44)

First, we upper bound T2. Denote A the event such that

∣∣∣f̂n,R(x)− p0(x)
∣∣∣ ≤ C (Rmax{1−α,0} exp (−C1R

α) +

√
Rd log(2/δ)

n

)

where C is some sufficiently large constant. Then, from the result of Proposition 1, we have
P(A) ≥ 1− δ. Therefore, we obtain the following bound with T2:

T2 = E
[
(m̂(x)−m(x))2(p0(x)− f̂n,R(x))2|A

]
P(A)

+ E
[
(m̂(x)−m(x))2(p0(x)− f̂n,R(x))2|Ac

]
P(Ac)

≤ 2CE
[
(m̂(x)−m(x))2

](
Rmax{2−2α,0} exp (−2C1R

α) +
Rd log(2/δ)

n
+ δ

(
p2

0(x) +R2d
))

,
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where the final inequality is due to the fact that P(Ac) ≤ δ and (p0(x)− f̂n,R(x))2 ≤ 2(p2
0(x)+

f̂2
n,R(x)) ≤ 2

(
(p2

0(x) +R2d
)
. By choosing δ such that δ = Rd

n(p20(x)+R2d)
, we obtain that

T2 ≤ C ′E
[
(m̂(x)−m(x))2

](
Rmax{2−2α,0} exp (−2C1R

α) +
Rd log(nR)

n

)
, (45)

for some universal constant C ′ when R is sufficiently large.
For the upper bound of T1, using the condition that Yi = m(Xi) + εi for all i ∈ [n], we

have

T1 ≤ 2E

 1

nπd

n∑
i=1

(m(Xi)−m(x))
d∏
j=1

sin(R(xj −Xij))

xj −Xij

2
+ 2E

 1

nπd

n∑
i=1

εi

d∏
j=1

sin(R(xj −Xij))

xj −Xij

2 = 2(S1 + S2).

Since E
[(

1
n

∑n
i=1 Yi

)2] ≤ 1
nE
[
Y 2

1

]
+ E2 [Y1] for any Y1, . . . , Yn that are i.i.d., we find that

S1 ≤
1

nπ2d
E

(m(X)−m(x))2
d∏
j=1

sin2(R(xj −X.j))

(xj −X.j)2


+

1

π2d
E2

(m(X)−m(x))

d∏
j=1

sin(R(xj −X.j))

(xj −X.j)

 ,
where we denote X = (X.1, . . . , X.d). From the result in equation (43), we have

E2

(m(X)−m(x))
d∏
j=1

sin(R(xj −X.j))

(xj −X.j)

 ≤ C ′′R2 max{deg(Q)+1−α,0} exp(−2C1R
α),

where C ′′ is some universal constant. Furthermore, based on Cauchy-Schwarz inequality and
the assumptions of the theorem, we obtain the following bound

1

nπ2d
E

(m(X)−m(x))2
d∏
j=1

sin2(R(xj −X.j))

(xj −X.j)2

 ≤ 2(‖m2 × p0‖∞ +m2(x))Rd

nπ2d
.

Putting the above results together, we find that

S1 ≤
2(‖m2 × p0‖∞ +m2(x))Rd

nπ2d
+
C ′′R2 max{deg(Q)+1−α,0} exp(−2C1R

α)

π2d
.

Similarly, since E(εi) = 0 and var(εi) = σ2 for all i ∈ [n], we have

S2 =
σ2

nπ2d
E

 d∏
j=1

sin2(R(xj −X.j))

(xj −X.j)2

 ≤ σ2‖p0‖∞Rd

nπ2d
.
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Collecting the above results, we find that

T1 ≤
(
4(‖m2 × p0‖∞ +m2(x)) + 2σ2‖p0‖∞

)
Rd

nπ2d

+
C ′′R2 max{deg(Q)+1−α,0} exp(−2C1R

α)

π2d
. (46)

Plugging the results from equations (45) and (46) into equation (44), when R ≥ C ′ where C ′

is some universal constant, we have

var(m̂(x)) ≤ C ′1
p2

0(x)
E
[
(m̂(x)−m(x))2

](
Rmax{2−2α,0} exp (−2C1R

α) +
Rd log(nR)

n

)
+

C ′2
p2

0(x)

(m(x) + C ′3)Rd

n
, (47)

where C ′1, C
′
2, C

′
3 are some universal constants. Combining the results with bias and variance

in equations (43) and (47), we obtain the conclusion of the theorem.

9.7 Proof of Theorem 10

The proof of Theorem 10 shares a similar strategy with the proof of Theorem 9. We first need
the following lemmas regarding the MSE and concentration of the Fourier density estimator
f̂n,R when (X1, . . . , Xn) are a Markov sequence.

Lemma 1. Assume that p0 is an upper–smooth density function of order α1 > 0 such that
‖p0‖∞ < ∞ and the transition probability operator T satisfies Assumption 5. Then, there
exist universal constants C ′ and C ′′ such that as long as R ≥ C for some universal constant
C and for almost all x ∈ X , we find that

E
[
(f̂n,R(x)− p0(x))2

]
≤ C ′Rmax{2(1−α1),0} exp (−2C1R

α1) +
C ′′Rd

n
,

where C1 is the associated constant with upper–supersmooth density function in Definition 1.

Proof. The proof for the bias of f̂n,R(x) is similar to the case when (X1, . . . , Xn) are indepen-
dent. Therefore, from the proof of Theorem 1, for R ≥ C where C is some universal constant,
we have ∣∣∣E [f̂n,R(x)

]
− p0(x)

∣∣∣ ≤ C ′Rmax{1−α1,0} exp (−C1R
α1) .

Here, C1 is the associated constant with supersmooth density function in Definition 1. Now,
we proceed to bound the variance of f̂n,R(x) where we utilize the assumption on the transition
probability operator T . Direct calculations yield

var
(
f̂n,R(x)

)
=

1

n
var(Y1) +

2

n2

n−1∑
i=1

(n− i) cov(Y1, Yi+1),
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where Yi = 1
πd

∏n
j=1 sin(R(xj − Xij))/(xj − Xij). Since ‖p0‖∞ < ∞, from the proof of

Theorem 1, we have var(Y1) ≤ C ′Rd where C ′ is some universal constant. Furthermore, if we
define g(y) = 1

πd

∏n
j=1 sin(R(xj − yj))/(xj − yj)− E [Y1] for all y ∈ X , then we find that

|cov(Y1, Yi+1)| =
∣∣E [g(X1)(T ig)(X1)

]∣∣ ≤√E [g2(X1)]E [(T ig)2(X1)]

≤ η[i/τ ]E
[
g2(X1)

]
≤ C ′η[i/τ ]Rd,

where [x] denotes the greatest integer number that is less than or equal to x. Putting these
results together, we have the following bound:

var(f̂n,R(x)) ≤ C ′Rd

n
+

2C ′τ
(∑[n/τ ]

i=0 ηi
)
Rd

n2
≤ C ′′Rd

n
.

Combining all the previous results, we obtain the conclusion of Lemma 1.

Our next lemma establishes the point-wise concentration bound of f̂n,R(x) around its
expectation for each x ∈ X .

Lemma 2. Assume that (X1, . . . , Xn) are a Markov sequence with stationary density function
p0 and transition probability distribution f(· | ·). Then, for any δ ∈ (0, 1), there exists
universal constant C̄ such that

P

(∣∣∣f̂n,R(x)− E
[
f̂n,R(x)

]∣∣∣ ≥ C̄√Rd log(2/δ)

n

)
≤ δ

Proof. The proof of Lemma 2 relies on Bernstein inequality for weakly dependent variable (De-
lyon, 2009). Define

Yi =
1

nπd

n∏
j=1

sin(R(xj −Xij))

xj −Xij
− E

 1

nπd

n∏
j=1

sin(R(xj −X.j))

xj −X.j


for any 1 ≤ i ≤ n where the outer expectation is taken with respect to X = (X.1, . . . , X.d) ∼
p0. Furthermore, we denote Fi = σ(Y1, . . . , Yi) as the sigma-algebra generated by Y1, . . . , Yi
for all i ∈ [n]. It is clear that |Yi| ≤ CRd/n for all i ∈ [n] where C is some universal constant.
Additionally, for any i ∈ [n] and j < i, we have |E [Yi|Fj ]| ≤ C ′/n for some constant C ′.
Similarly, for each i ∈ [n], we can check that

∣∣E [Y 2
i |Yi−1, . . . , Y1

]∣∣ ≤ C ′′Rd/n2 for some
universal constant C ′′. Therefore, based on the result of Theorem 4 in (Delyon, 2009), we
have

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi − E [Y1]

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

c(Rd +Rdt)

)
,

where c is some universal constant. By choosing t = c1

√
Rd log(2/δ)/n for some universal

constant c1, we obtain the conclusion of Lemma 2.
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Equipped with the results of Lemmas 1 and 2, we are ready to prove Theorem 10. To ease
the ensuing discussion, we define

b̂n,R(x, y) =
1

nπ2d

n−1∑
i=1

d∏
j=1

sin(R(x−Xij))

x−Xij
·

sin(R(x−X(i+1)j))

x−X(i+1)j
.

Direct algebra leads to

p̂n,R(y | x)− f(y | x) =
b̂n,R(x, y)p0(x)− p(x, y)f̂n,R(x)

p2
0(x)

+
(p̂n,R(y|x)− f(y|x))(p0(x)− f̂n,R(x))

p0(x)
.

Bias of p̂n,R(y | x): An application of the Cauchy–Schwarz inequality leads to

(E [p̂n,R(y | x)]− f(y | x))2 ≤ 2

(
E
[
b̂n,R(x, y)p0(x)− p(x, y)f̂n,R(x)

])2

p4
0(x)

+ 2
E
[
(p̂n,R(y|x)− f(y|x))2

]
E
[
(p0(x)− f̂n,R(x))2

]
p2

0(x)

=
A1

p4
0(x)

+
A2

p2
0(x)

.

For A1, we find that(
E
[
b̂n,R(x, y)p0(x)− p(x, y)f̂n,R(x)

])2
≤ 2p2

0(x)
(
E
[
b̂n,R(x, y)

]
− p(x, y)

)2

+ 2p2(x, y)
(
E
[
f̂n,R(x)

]
− p0(x)

)2
.

Since both the density functions p0 and p are upper–smooth of order α1 and α2, we have the
following bounds: (

E
[
f̂n,R(x)

]
− p0(x)

)2
≤ CRmax{2(1−α1),0} exp(−2C1R

α1),(
E
[
b̂n,R(x, y)

]
− p(x, y)

)2
≤ C ′Rmax{2(1−α2),0} exp(−2C2R

α2),

where C,C ′ are some universal constants while C1, C2 are constants associated with upper-
smooth density functions (cf. Definition 1). Putting these results together, we have

A1 ≤ c(p2
0(x) + p2(x, y))Rmax{2(1−ᾱ),0} exp(−c1R

ᾱ),

where c and c1 are some universal constants. For the term A2, the result of Lemma 1 leads to

A2 ≤
(
c′1R

max{2(1−α1),0} exp(−c′2Rα1) +
c′3R

d

n

)
E
[
(p̂n,R(y | x)− f(y | x))2

]
.

Collecting all the above results, we obtain

(E [p̂n,R(y | x)]− f(y | x))2 ≤ c(p2
0(x) + p2(x, y))Rmax{2(1−ᾱ),0} exp(−c1R

ᾱ)

p4
0(x)

(48)

+

(
c′1R

max{2(1−α1),0} exp(−c′2Rα1) +
c′3R

d

n

)
E
[
(p̂n,R(y|x)− f(y|x))2

]
p2

0(x)
.
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Variance of p̂n,R(y | x): Similar to the proof of Theorem 9, we have

var(p̂n,R(y|x)) ≤ 2

E
[(
b̂n,R(x, y)p0(x)− p(x, y)f̂n,R(x)

)2
]

p4
0(x)

+ 2
E
[
(p̂n,R(y | x)− f(y | x))2(p0(x)− f̂n,R(x))2

]
p2

0(x)
=

B1

p4
0(x)

+
B2

p2
0(x)

.

Using the similar proof argument to bound the variance of Fourier regression estimator in the
proof of Theorem 9 and the result of Lemma 2, we have

B2 ≤ C · E
[
(p̂n,R(y | x)− f(y | x))2

](
Rmax{2−2α1,0} exp (−C1R

α1) +
Rd log(nR)

n

)
,

where C and C1 are some universal constants. For the term B1, we find that

E
[(
b̂n,R(x, y)p0(x)− p(x, y)f̂n,R(x)

)2
]
≤ 2p2

0(x)E
[(
b̂n,R(x, y)− p(x, y)

)2
]

+ 2p2(x, y)E
[(
f̂n,R(x)− p0(x)

)2
]
.

With the similar proof technique as that of Theorem 1, since p is upper-supersmooth density
function of order α2, when R is sufficiently large we have(

E
[
b̂n,R(x, y)

]
− p(x, y)

)2
≤ cRmax{2(1−α2),0} exp(−c1R

α2),

where c and c1 are some universal constants. For the variance of b̂n,R(x, y), since the
transition probability distributions of the Markov sequences ((X1, X2), . . . , (Xn−1, Xn)) and
(X1, . . . , Xn) are similar, using the proof argument of Lemma 1, we have var(̂bn,R(x, y)) ≤
c2R

2d/n. Putting all the above results together, we have

var(p̂n,R(y | x)) ≤ c(p2
0(x) + p2(x, y))R2d

np4
0(x)

(49)

+
C
(
Rmax{2(1−α1),0} exp(−C1R

α1) + Rd log(nR)
n

)
E
[
(p̂n,R(y | x)− f(y | x))2

]
p2

0(x)
.

Combining the bounds of bias and variance of p̂n,R(x) in equations (48) and (49), we obtain
the conclusion of Theorem 10.

10. Discussion

The key to the paper is the Fourier integral theorem. It suggests a natural Monte Carlo
estimator for certain types of function and also explains why product of independent Fourier
kernels is sufficient for multidimensional function estimation. It does not seem to be a prop-
erty of any other kernels. We have covered estimating multivariate (mixing) density functions,
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nonparametric regression, and mode hunting, as well as modeling time series data. We show
that when the function is sufficiently smooth, the convergence rates of the proposed multi-
variate smoothing estimators are faster than those of standard kernel estimators. Finally, we
note in passing that to account for the possible negativity of the estimators using the Fourier
kernel, such as the Fourier density estimator or the Fourier transition probability estimator,
we can take the maximum of these estimators and 0 or simply the absolute value of these
estimators. Then, the new estimators are always non-negative and can be used as plug-in
estimators for the true density in constructing the confidence intervals (see Section 2.4 and
Section 5).

We now discuss a few questions that arise naturally from our work. First, the results in the
paper are established under the assumptions of “clean” data. In practice, data are commonly
contaminated; therefore, it is important to develop robust versions of the proposed estimators
under contamination assumptions (Kim and Scott, 2012). Second, the idea of using the Fourier
integral theorem for estimating the density function is potentially useful for developing efficient
sampling. Finally, while we have considered an application of Fourier integral theorem to
estimate the transition probability density for a Markov sequence, investigating the application
of this theorem in other settings of dependent data, such as dynamic system (Hang et al.,
2018), is also of interest.

Appendix A. Proofs of remaining results

In this Appendix, we collect the proofs of remaining results in the paper. The values of
universal constants (e.g., C, c′ etc.) can change from line-to-line.

A.1 Proof of Proposition 5

The proof of Theorem 5 adapts some of the proof argument of Theorem 1 in Chen et al.
(2016b) to the Fourier density estimator.

(a) Under Assumptions 1 and 2, based on the proof of Theorem 1 in Chen et al. (2016b),

when supx∈X |f̂n,R(x) − p0(x)| ≤ (λ∗)3

16d2C2 , for each local mode xj in M, there exists a local

mode x̂j inMn such that x̂j ∈ xj⊕ λ∗

2Cd where C is universal constant given in Assumption 2.

Furthermore, if supx∈X ‖∇f̂n,R(x)−∇p0(x)‖max ≤ η and supx∈X ‖∇2f̂n,R(x)−∇2p0(x)‖max ≤
|λ∗|
4d , then we have Mn ⊂M⊕ |λ

∗|
2Cd . Therefore, if we have the following conditions

sup
x∈X
|f̂n,R(x)− p0(x)| ≤ (λ∗)3

16d2C2
, sup

x∈X
‖∇f̂n,R(x)−∇p0(x)‖max ≤ η,

sup
x∈X
‖∇2f̂n,R(x)−∇2p0(x)‖max ≤

|λ∗|
4d

, (50)
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the number of estimated local modes K̂n and the true number of local modes K are identical.
The above bounds suggest that

P(K̂n 6= K) ≤ P
(

sup
x∈X
|f̂n,R(x)− p0(x)| > (λ∗)3

16d2C2
)

)
+ P

(
sup
x∈X
‖∇f̂n,R(x)−∇p0(x)‖max > η

)
+ P

(
sup
x∈X
‖∇2f̂n,R(x)−∇2p0(x)‖max >

|λ∗|
4d

)
.

Denote

t = max

{
(λ∗)3

16d2C2
, η,
|λ∗|
4d

}
.

Based on the uniform concentration bounds of f̂n,R,∇f̂n,R,∇2f̂n,R in Theorems 2 and 4, by
choosing R such that R ≥ C ′, C ′1Rmax 3−α,0 exp(−C1R

α) ≤ t/2 and

C ′2

√
R(2d+4) (log(2/δ) + d(d+ 3) logR+ d(log d+ Diam(X ))

n
≤ t/2

where C ′, C ′1, C
′
2 are some universal constants depending on the constants in Theorems 2

and 4, we have

P
(

sup
x∈X
|f̂n,R(x)− p0(x)| > (λ∗)3

16d2C2
)

)
≤ δ, P

(
sup
x∈X
‖∇f̂n,R(x)−∇p0(x)‖max > η

)
≤ δ,

P
(

sup
x∈X
‖∇2f̂n,R(x)−∇2p0(x)‖max >

|λ∗|
4d

)
≤ δ.

As a consequence, we have P(K̂n 6= K) ≤ 3δ, which leads to the conclusion of part (a).
(b) Assume that the conditions (50) hold such that K̂n = K. We now proceed to study

the convergence rate ofMn toM under the Hausdorff distance. For each local mode xj ∈M,
we recall that the local mode x̂j ∈Mn is the closest local mode inMn to xj . An application
of Taylor expansion up to the second order leads to

0 = ∇f̂n,R(x̂j) = ∇f̂n,R(xj) + (x̂j − xj)>∇2f̂n,R(xj) +Rj ,

where Rj is the Taylor remainder such that ‖Rj‖ = o(‖xj − x̂j‖). Given the conditions (50),

the matrix ∇2f̂n,R(xj) is invertible. Therefore, we have

‖x̂j − xj‖ ≤ ‖∇f̂n,R(xj) +Rj‖ · ‖∇2f̂n,R(xj)
−1‖op,

where ‖.‖op denotes the operator norm. Note that, ‖∇2f̂n,R(xj)
−1‖op is bounded due to the

conditions (50). To obtain the conclusion of part (b), it is sufficient to demonstrate that

P

(
‖∇f̂n,R(xj)‖max ≥ c1R

max{2−α,0} exp (−C1R
α) + c2

√
Rd+1 log(2/δ)

n

)
≤ δ, (51)

where c1 and c2 are some universal constants. Note that, we can directly apply the uniform
concentration bound in Theorem 4 to obtain the above point-wise concentration bound with

54



Multivariate Smoothing via the Fourier Integral Theorem and Fourier Kernel

an extra logR term. However, here we do not want to have the logR in the point-wise
concentration bound; therefore, we will need to use the argument of Proposition 1 to remove
the logR term.

Note that, ∇p0(xj) = 0. An application of triangle inequality leads to

‖∇f̂n,R(xj)‖max = ‖∇f̂n,R(xj)−∇p0(xj)‖max

≤ ‖∇f̂n,R(xj)− E
[
∇f̂n,R(xj)

]
‖max + ‖E

[
∇f̂n,R(xj)

]
−∇p0(xj)‖max.

In the right hand side of the above bound, the upper bound for the second term has been
established in Theorem 3; therefore, we only focus on bounding the first term. We first

establish the concentration bound for
∣∣∣(∇if̂n,R(xj)

)
u
−
(
E
[
∇if̂n,R(xj)

])
u

∣∣∣ for any 1 ≤ u ≤

d. Following the proof of Theorem 4, we denote h(y, s) = sin(R(y−s))
y−s for all y, s ∈ R. Then,

we can rewrite
(
∇f̂n,R(xj)

)
u

as follows:

(
∇f̂n,R(xj)

)
u

=
1

n(2π)d

n∑
i=1

d∏
l=1

∂|Bl|

∂x
|Bl|
jl

h(xjl, Xjl),

where Bl = 1{u=l} for any l ∈ [d] and for any given 1 ≤ u ≤ d. We denote Yi =∏d
l=1

∂|Bl|

∂x
|Bl|
jl

h(xjl, Xjl) for all i ∈ [n]. Then, we have |Yi| ≤ Rd+1 for all i ∈ [n]. Further-

more, var(Yi) ≤ CRd+2 for all i ∈ [n] where C is some universal constant. For any t ∈ (0, C],
an application of Bernstein’s inequality shows that

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi − E [Y1]

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

2CRd+2 + 2Rd+1t/3

)
.

By choosing t = C̄

√
Rd+2 log(2/δ)

n where C̄ is some universal constant, we find that

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi − E [Y1]

∣∣∣∣∣ ≥ t
)
≤ δ.

Collecting the above results together, we have

P

(
‖∇f̂n,R(xj)−∇p0(xj)‖max ≥ C̄d

√
Rd+2 log(2/δ)

n

)
≤ δ.

Therefore, the concentration bound (51) is proved. As a consequence, we reach the conclusion
of part (b).

A.2 Proof of Proposition 6

The proof of Proposition 6 is similar to that of Proposition 5. Indeed, to obtain the conclusion
of Proposition 6, it is sufficient to establish the uniform concentration bound for the derivatives
of Fourier deconvolution estimator ĝn,R.
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Lemma 3. Assume that f is lower-supersmooth density function of order α1 > 0 and g ∈
Cr(Θ) is upper-supersmooth density function of order α2 > 0 such that α2 ≥ α1 for some
given r ∈ N and Θ is a bounded subset of Rd. Then, there exist universal constants {C ′i}ri=1,
C ′, C̄ such that as long as R ≥ C ′ and 1 ≤ i ≤ r, we have

P
(

sup
θ∈Θ
‖∇iĝn,R(θ)−∇ig(θ)‖max ≥ C ′iRmax{i+1−α2,0} exp (−C1R

α2)

+ C̄

√
R2(i+d)+α1 exp(2C2dRα1) log(2/δ)

n

)
≤ δ,

where C1 and C2 are the constants given in Definition 1.

Proof. The proof of Lemma 3 proceeds in the similar way as that of Theorem 4. Recall that
the Fourier deconvolution estimator ĝn,R is given by:

ĝn,R(θ) =
1

n(2π)d

n∑
j=1

∫
[−R,R]d

cos(s>(θ −Xj))

f̂(s)
ds.

Without loss of generality, we assume that i = 4l+ 1 for some l ∈ N (The proof argument for
other cases of i is similar). Then, from the proof of Theorem 7, we have

(∇iĝn,R(θ))u1...ui = − 1

n(2π)d

n∑
j=1

∫
[−R,R]d

su1 . . . sui ·
sin(s>(θ −Xj))

f̂(s)
ds,

for all 1 ≤ u1, . . . , ui ≤ d. We denote Yj = − 1
(2π)d

∫
[−R,R]d su1 . . . sui ·

sin(s>(θ−Xj))
f̂(s)

ds for any

j ∈ [n]. Since f is lower-supersmooth of order α1, we have |Yj | ≤ CRi+d exp(C2dR
α1) and

E [|Yj |] ≤ CRi+d exp(C2dR
α1) where C is some universal constant and C2 is a given constant in

Definition 1 with lower-supersmooth density function. An application of Bernstein inequality
leads to

P
(

sup
θ∈Θ

∣∣∣(∇iĝn,R(θ))u1...ui −
(
E
[
∇iĝn,R(θ)

])
u1...ui

∣∣∣ > t

)
≤ 4N[]

(
t/8,F ′,L1(P )

)
× exp

(
− 96nt2

76C2R2i+2d exp(2C2dRα1)

)
,

where F ′ = {fθ : Rd → R : fθ(t) = − 1
(2π)d

∫
[−R,R]d su1 . . . sui ·

sin(s>(θ−t))
f̂(s)

ds for all θ ∈ Θ, t ∈
Rd}. For any fθ1 , fθ2 ∈ F ′, we can check that

|fθ1(t)− fθ2(t)| ≤ dRd+i+1 exp(C2dR
α1)‖θ1 − θ2‖2.

Therefore, we have the following upper bound on the bracketing entropy:

N[]

(
t/8,F ′,L1(P )

)
≤

(
4d
√
d ·Diam(Θ)Rd+i+1 exp(C2dR

α1)

t

)d
.
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Collecting the above results, when R is sufficiently large, by choosing

t = C ′

√
R2(i+d)+α1 exp(2C2dRα1) log(2/δ)

n
,

we have

P
(

sup
θ∈Θ

∣∣∣(∇iĝn,R(θ))u1...ui −
(
E
[
∇iĝn,R(θ)

])
u1...ui

∣∣∣ > t

)
≤ δ.

Taking an union bound over u1, . . . , ui with the above inequality and combining it with the
result of Theorem 7, we obtain the conclusion of the lemma.

A.3 Proof of Proposition 8

The proof of Proposition 8 follows the proof argument of Theorems 3 and 4 in Chen et al.
(2016a) with the main difference is in the uniform concentration bound of the Fourier density
estimator f̂n,R and its derivatives around the true joint density p0. Here, we provide the main
steps of the proof for part (a) for the completeness and the proof for part (b) can be argued
similarly.

From the proof of Proposition 5, for each x ∈ X , under the Assumptions 3 and 4 when

supy |
∂if̂n,R
∂yi

(x, y) − ∂ip0
∂yi

(x, y)| ≤ C for any i ∈ {0, 1, 2} where C is some universal constant

depending on λ∗, then for each local mode ofM(x) there exists a unique local mode ofMn(x)
that is closest to it. Given this property, with the similar proof argument as that of Theorem
3 in Chen et al. (2016a), for each x ∈ X we obtain that

1

H(Mn(x),M(x))

∣∣∣∣∣∣∣∣H(Mn(x),M(x))− max
y∈M(x)


∣∣∣∣∂f̂n,R∂y (x, y)

∣∣∣∣∣∣∣∂2p0∂y2
(x, y)

∣∣∣

∣∣∣∣∣∣∣∣

= OP

(
max
0≤i≤2

sup
x,y

∣∣∣∣∣∂if̂n,R∂yi
(x, y)− ∂ip0

∂yi
(x, y)

∣∣∣∣∣
)
.

The above inequality leads to the following bound:

sup
x∈X
H(Mn(x),M(x)) = sup

x∈X ,y∈M(x)


∣∣∣∣∂f̂n,R∂y (x, y)

∣∣∣∣∣∣∣∂2p0∂y2
(x, y)

∣∣∣


+OP

({
max
0≤i≤2

sup
x,y

∣∣∣∣∣∂if̂n,R∂yi
(x, y)− ∂ip0

∂yi
(x, y)

∣∣∣∣∣
}

sup
x∈X
H(Mn(x),M(x))

)
.

Since p0 is upper-supersmooth density function of order α > 0 and p0 ∈ C2(X × Y), from
Theorem 4 we have

max
0≤i≤2

sup
x,y

∣∣∣∣∣∂if̂n,R∂yi
(x, y)− ∂ip0

∂yi
(x, y)

∣∣∣∣∣ = OP

(
Rmax{3−α,0} exp(−C1R

α) +

√
Rd+5 logR

n

)
,
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where C1 is a given constant in Definition 1. This bound suggests that it is sufficient to upper

bound supx∈X ,y∈M(x)


∣∣∣∣ ∂f̂n,R∂y

(x,y)

∣∣∣∣∣∣∣ ∂2p0
∂y2

(x,y)
∣∣∣
 to obtain the conclusion of the proposition. In fact, by

triangle inequality, we have

sup
x∈X ,y∈M(x)


∣∣∣∣∂f̂n,R∂y (x, y)

∣∣∣∣∣∣∣∂2p0∂y2
(x, y)

∣∣∣
 ≤ sup

x∈X ,y∈M(x)


∣∣∣∣∂f̂n,R∂y (x, y)− E

[
∂f̂n,R
∂y (x, y)

]∣∣∣∣∣∣∣∂2p0∂y2
(x, y)

∣∣∣


+ sup
x∈X ,y∈M(x)


∣∣∣∣E [∂f̂n,R∂y (x, y)

]
− ∂p0

∂y (x, y)

∣∣∣∣∣∣∣∂2p0∂y2
(x, y)

∣∣∣
 .

Given Assumption 4, we have

sup
x∈X ,y∈M(x)


∣∣∣∣E [∂f̂n,R∂y (x, y)

]
− ∂p0

∂y (x, y)

∣∣∣∣∣∣∣∂2p0∂y2
(x, y)

∣∣∣
 ≤

1

λ∗
sup

x∈X ,y∈M(x)

∣∣∣∣∣E
[
∂f̂n,R
∂y

(x, y)

]
− ∂p0

∂y
(x, y)

∣∣∣∣∣
≤ C ′Rmax{2−α,0} exp(−C1R

α),

where C ′ is some universal constant and the second inequality is due to Theorem 3. Following

the proof of Theorem 4, we denote Wi =

∏d
j=1

sin(R(xj−Xij))
xj−Xij

· ∂
∂y

sin(R(y−Yi))
y−Yi∣∣∣ ∂2p0

∂y2
(x,y)

∣∣∣ for each i ∈ [n]. Then,

it is clear that |Wi| ≤ Rd+2

λ∗ and E [|Wi|] ≤ R
λ∗ for all i ∈ [n] and x ∈ X , y ∈M(x). Therefore,

an application of Bernstein inequality leads to

P

 sup
x∈X ,y∈M(x)


∣∣∣∣∂f̂n,R∂y (x, y)− E

[
∂f̂n,R
∂y (x, y)

]∣∣∣∣∣∣∣∂2p0∂y2
(x, y)

∣∣∣
 > t


≤
(

4(d+ 1)
√
d+ 1 ·Diam(X × Y)Rd+3

tλ∗

)d+1

exp

(
− 96nt2

76Rd+3

)
.

By choosing t = C̄

√
Rd+3(log(2/δ)+d(d+3) logR+d(log d+Diam(X×Y))

n where C̄ is some universal
constant, we have

P

 sup
x∈X ,y∈M(x)


∣∣∣∣∂f̂n,R∂y (x, y)− E

[
∂f̂n,R
∂y (x, y)

]∣∣∣∣∣∣∣∂2p0∂y2
(x, y)

∣∣∣
 > t

 ≤ δ.
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Putting the above results together, there exists universal constant C such that

P

(
sup
x∈X
H(Mn(x),M(x)) ≥ C

[
Rmax{2−α,0} exp(−C1R

α) +

√
Rd+3 logR log(2/δ)

n

])
≥ 1− δ.

As a consequence, we reach the conclusion of the proposition.

A.4 Proof of Proposition 4

The proof of Proposition 4 follows from that of Proposition 3. Here, we only provide the proof
sketch. To facilitate the proof argument, we denote Pn = 1

n

∑n
i=1 δXi the empirical measure

associated with the data X1, . . . , Xn. Recall that, the functional space F in equation (11) is
given by:

F = {fx : Rd → R : fx(t) =
1

πd

d∏
i=1

sin(R(xi − ti))
R(xi − ti)

for all x ∈ X , t ∈ Rd}.

We denote the Gaussian process B′ on F with the covariance matrix given by:

cov(B′(f1, f2)) = EPn [f1(X)f2(X)]− E [f1(X)]EPn [f2(X)] , (52)

for any f1, f2 ∈ F . Note that, the difference between the Gaussian process B with covariance
matrix given in equation (12) and the Gaussian process B′ is that the outer expectations in
the covariance matrices of B are taken with respect to the unknown distribution P while those
of B′ are taken with respect to the empirical distribution Pn.

For the remaining argument, we assume that Xn
1 = (X1, . . . , Xn) is a fixed sample to

simplify the presentation. Then, from the result of Proposition 3, we have

sup
t≥0

∣∣∣∣P(√ n

Rd
sup
x∈X

∣∣∣f̂n,R(x)− E
[
f̂n,R(x)

]∣∣∣ < t
∣∣ Xn

1

)
− P

(
B′ < t

∣∣ Xn
1

)∣∣∣∣ ≤ C (log n)(7+d)/8

n1/8
,

where B′ =
√
Rd supf∈F |B′(f)|.

Now, we proceed to bound supt≥0

∣∣P (B′ < t
∣∣ Xn

1

)
− P (B < t)

∣∣. Since X is a bounded sub-

set of Rd, as in the proof of Proposition 3, we haveN = supP N2 (ε/8,F , P ) ≤
(

4d
√
d·Diam(X )R2

ε

)d
.

Denote F = {f̄1, . . . , f̄N} as the set of ε-covering of F . An application of triangle inequality
leads to

sup
t≥0

∣∣P (B′ < t
∣∣ Xn

1

)
− P (B < t)

∣∣ ≤ sup
t≥0

∣∣∣∣∣P (B′ < t
∣∣ Xn

1

)
− P

(
sup
f∈F

√
Rd|B′(f)| < t

∣∣ Xn
1

)∣∣∣∣∣
+ sup

t≥0

∣∣∣∣∣P
(

sup
f∈F

√
Rd|B′(f)| < t

∣∣ Xn
1

)
− P

(
sup
f∈F

√
Rd|B(f)| < t

)∣∣∣∣∣
+ sup

t≥0

∣∣∣∣∣P
(

sup
f∈∈F

√
Rd|B(f)| < t

)
− P (B < t)

∣∣∣∣∣ .
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It is sufficient to bound supt≥0

∣∣∣P(supf∈F
√
Rd|B′(f)| < t

∣∣ Xn
1

)
− P

(
supf∈F

√
Rd|B(f)| < t

)∣∣∣.
From Theorem 2 in Chernozhukov et al. (2015), we find that

sup
t≥0

∣∣∣∣∣P
(

sup
f∈F

√
Rd|B′(f)| < t

∣∣ Xn
1

)
− P

(
sup
f∈F

√
Rd|B(f)| < t

)∣∣∣∣∣ ≤ C∆1/3 (1 ∨ log(N/∆)) ,

where ∆ = Rd max1≤i,j≤N
∣∣cov(B′(f̄i, f̄j))− cov(B(f̄i, f̄j))

∣∣. Using the proof similar argument
as that of Theorem 2, we have

Rd max
1≤i,j≤N

∣∣cov(B′(f̄i, f̄j))− cov(B(f̄i, f̄j))
∣∣ = OP

(√
Rd logR

n

)
.

Putting all the above results together, we obtain the conclusion of the proposition.

A.5 Proof of Proposition 7

From the definition of m̂(x) in equation (20), we have

m̂(x) = m(x) +
â1(x)

f̂n,R(x)
+

â2(x)

f̂n,R(x)
, (53)

where

â1(x) =
1

nπd

n∑
i=1

(m(Xi)−m(x))
d∏
j=1

sin(R(xj −Xij))

xj −Xij

and

â2(x) =
1

nπd

n∑
i=1

εi

d∏
j=1

sin(R(xj −Xij))

xj −Xij
.

Since E [â2(x)] = 0, from the central limit theorem, we have

√
nâ2(x)√

n var(â2(x))

d→ N (0, 1).

Direct algebra shows that var(â2(x)) = σ2

nπ2dE
[∏d

j=1
sin2(R(xj−X.j))

(xj−X.j)2

]
whereX = (X.1, . . . , X.d) ∼

p0. As p0 ∈ C2(X ), with the similar argument as that in Section 2.4.1 we have

lim
R→∞

n var(â2(x))

Rd
=
σ2p0(x)

πd
.

Since f̂n,R(x)
p→ p0(x) as n→∞ and R→∞, we have√

n

Rd
â2(x)

f̂n,R(x)

d→ N
(

0,
σ2

p0(x)πd

)
. (54)
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Moving to â1(x), we have

√
nâ1(x)√

n var(â1(x))

d→ N (0, 1) +
E [â1(x)]√
var(â1(x))

.

Since Rα = O(log n), from the argument of Theorem 9, we have E[â1(x)]√
var(â1(x))

→ 0 as n → ∞.

For the variance term var(â1(x)), direct calculation yields that

var(â1(x)) =
1

nπ2d
var

(m(X)−m(x))
d∏
j=1

sin(R(xj −X.j))

(xj −X.j)

 ,

where X = (X.1, . . . , X.d) ∼ p0. We can check that E2
[
(m(X)−m(x))

∏d
j=1

sin(R(xj−X.j))
(xj−X.j)

]
≤

2‖p0‖2∞‖m‖2∞ and

E

(m(X)−m(x))2
d∏
j=1

sin2(R(xj −X.j))

(xj −X.j)2

 =
p2

0(x)

R2
+ o

(
1

R2

)
,

where the final equality is due to Taylor expansion up to the first order. Putting these results
together, we have √

n

Rd
â1(x)

f̂n,R(x)

p→ 0. (55)

Combining the results from equations (53), (54), and (55), we obtain the conclusion of the
proposition.
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