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Abstract

Starting with the Fourier integral theorem, we present natural Monte Carlo estimators of
multivariate functions including densities, mixing densities, transition densities, regression
functions, and the search for modes of multivariate density functions (modal regression).
Rates of convergence are established and, in many cases, provide superior rates to current
standard estimators such as those based on kernels, including kernel density estimators and
kernel regression functions. Numerical illustrations are presented.
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1. Introduction

Nonparametric function estimation allows for a data driven form for the estimator with lit-
tle to no constraints on shape. Early work included kernel density estimators; Rosenblatt
(1956) and Parzen (1962) and regression estimators; Nadaraya (1964) and Watson (1964).
Other nonparametric estimators include those of a mixing density, Laird (1978), hazard and
cumulative hazard functions and other related functions.

While there are many approaches to function estimation, such as polynomials, basis func-
tions and splines for regression functions; see Donoho and Johnstone (1998), Fan (1993), Fan
and Gijbels (1996), Green and Silverman (1994), Stone (1985), Tibshirani (2014), Tsybakov
(2009), Wahba (1990), and Wasserman (2006), kernel methods remain popular.

Contribution. The main contribution of the paper is multivariate kernel smoothing, and, in
particular, for regression and mode clustering, which have found applications in statistics and
machine learning; Li et al. (2007); Chaudhuri and Dasgupta (2010); Rinaldo and Wasserman
(2010); Brabanter et al. (2011); Chen (2016); Chen et al. (2016a); Arias-Castro et al. (2016);
Feng et al. (2020). The Gaussian kernel is used almost exclusively and a number of authors

1



Ho, Walker

advocate its use in the multivariate setting. However, even in the bivariate case, a number of
issues arise regarding the covariance matrix; see Wand and Jones (1993, 1994). Some authors
advocate a diagonal matrix, e.g., Wand (1994), for the ease of computation reasons, though for
regression function estimation such a plan can be problematic. On the other hand, selecting
a bandwidth covariance matrix is also a non trivial problem; see Wand (1992), Staniswalis
et al. (1993) and Chacón and Duong (2018).

In the one dimensional case, a number of authors have considered various kernels, K(u),
the main condition being that Z ∞

−∞
K(u) du = 1:

With this in mind, the Fourier kernel is given byK(u) = �−1 sin(u)=u, and has been mentioned
and looked in early work by Parzen (1962) and Davis (1975) for density estimation.

For reasons unclear to us, there is no, as far as we can ascertain, use of the Fourier kernel
for regression smoothing or mode hunting. The Gaussian kernel dominates here due to the
possibility of incorporating a covariance structure in the multivariate case when there are
multiple predictor variables. There seems little room for such a covariance matrix within the
Fourier kernel. However, as we shall highlight, there is no need for one in the multivariate
case; a product of Fourier kernels suffice, which is not so for the Gaussian kernel.

First we will introduce the key idea lightly and then be more formal. The unique aspect of
the Fourier kernel is that is satisfies the Fourier integral theorem; i.e., for all suitable functions
m(x), with x 2 Rd,

m(y) =
1

�
lim
R→∞

Z dY
j=1

sin(R(yj � xj))
yj � xj

m(x) dx: (1)

There are two distinct features with equation (1). First, the product of sin functions does not
converge to a single point mass when R goes to infinity, which is different from the multivariate
Gaussian kernels or other popular multivariate kernels. Therefore, the approximation based on
the product of sin kernels in equation (1) is non-trivial. Second, the product of sin kernels over
dimensions in equation (1) preserves the covariance or dependence structure, automatically,
lying within m(x). There is no need to seek out a covariance or dependence structure, as there
is with the Gaussian kernel which does not satisfy equation (1). Hence, for the Gaussian kernel
to preserve good approximations, the product of independent kernels over the dimensions
would need some attention, such as the inclusion of a covariance structure.

It could well be that the lack of ability of placing a covariance structure suitably within
the Fourier kernel is the reason why it has not been looked at in multidimensional problems.
However, we have just argued, through equation (1), it is not required. Furthermore, equation
(1) provides a natural Monte Carlo estimator for m(�).

To be more formal, consider the Fourier integral theorem in one dimension,

m(y) =
1

2�
lim
R→∞

Z R

−R

Z ∞
−∞

cos(s(y � x))m(x) dx ds; (2)

for m 2 L1(R). This is an application of the Fourier and Fourier inverse transforms; see
for example Wiener (1933). Hence, an approximation based on the choice of a finite R, and
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integrating over s, yields

mR(y) =
1

�

Z ∞
−∞

sin(R(y � x))

y � x
m(x) dx:

In particular, if m = p0 is a density function, and X1; : : : ; Xn are an i.i.d. sample from p0,
then a Monte Carlo estimate of the density is

bfn;R(x) =
1

n�

nX
i=1

sin(R(x�Xi)

x�Xi
:

The extension to higher dimensions Rd is a simple procedure, based on

p0(y) =
1

(2�)d
lim
R→∞

Z R

−R
: : :

Z R

−R

Z
Rd

cos(s>(y � x)) p0(x) dx ds; (3)

where now x = (x1; : : : ; xd). Proceeding along similar lines, and making multiple use of the
expansion of cos(A+B), we get

p0(y) = lim
R→∞

1

�d

Z
Rd

dY
j=1

sin(R(yj � xj))
yj � xj

p0(x)dx (4)

and bfn;R(x) =
1

n�d

nX
i=1

dY
j=1

sin(R(x�Xij))

x�Xij
; (5)

where x = (x1; : : : ; xd) and Xi = (Xi1; : : : ; Xid) for all i. So note the natural use of the
product of one dimensional Fourier kernels. We call the estimator bfn;R as Fourier density
estimator.

The same basic idea equally applies to nonparametric kernel regression; so suppose we
observe (Xi; Yi)

n
i=1 such that Yi = m(Xi) + ��i, with E � = 0 and Var � = 1: Then, as before,

m satisfies equation (2), and we can again approximate one side with the following term;

mR(y) =
1

�

Z ∞
−∞

sin(R(y � x))

y � x
m(x) dx:

The Monte Carlo estimate of the right side then yields

bmn;R(x) =

Pn
i=1 YiKR(x�Xi)Pn
i=1KR(x�Xi)

;

where KR(u) = sin(Ru)=u. This estimator can be considered as the Fourier version of the
Nadaraya–Watson kernel estimator for nonparametric regression.

Again, the extension to the multivariate case (multiple predictors) follows along the same
lines which led to equation (5). That is,

bmn;R(x) =

Pn
i=1 Yi

Qd
j=1KR(xj �Xij)Pn

i=1

Qd
j=1KR(xj �Xij)

: (6)
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There is no need for any setting of a covariance structure between variables.
While noting the sufficiency of the product of kernels, we demonstrate that when the data

density function is suitably smooth, the mean (integrated) square errors of the Monte Carlo
estimators have faster convergence rates than those from standard kernel density estimators.
Improved rates for other types of functions are also demonstrated.

Organization. The paper is organized as follows. In Section 2, we study the mean inte-
grated square error (MISE) of the Fourier density estimator and its derivatives under various
tail conditions of the true density function. Then, we also provide (uniform) confidence inter-
val of the true density function based on the Fourier density estimator. In Section 3, we study
an application of Fourier integral theorem to estimate mixing density under the deconvolu-
tion settings. We further extend the idea of Fourier integral theorem to the nonparametric
regression, mode hunting applications, and dependent data in Sections 4-7. Illustrations with
the proposed Monte Carlo estimators are in Section 8. Proofs of key results are in Section 9
while the remaining proofs are in Appendix A. We end the paper with some discussion with
future work in Section 10.

Notation. For any n 2 N, we denote [n] = f1; : : : ; ng. For any set X , we denote Diam(X )
the diameter of set X . For any vector x = (x1; : : : ; xd) 2 Rd, we denote

kxkmax = max
1≤i≤d

fjx1j; : : : ; jxdjg;

the maximal norm of x. For any r � 1 and any set X , we denote Cr(X ) the set of functions on
X that have bounded integrable continuous derivatives up to the r-th order. For any x 2 Rd

and subset A of Rd, we define d(x;A) = infy∈A kx�yk2. For any symmetric matrix M 2 Rd×d,
we denote �i(M) as the i-th largest eigenvalue of M , i.e., �1(M) � �2(M) � : : : � �d(M).
For any subset A of Rd and r > 0, we denote A�r = fy : minx∈A kx�yk2 � rg. The notation

X
p! Y and X

d! Y respectively mean X converge to Y in probability and distribution. For
any sequence an and bn, the notation an = O(bn) means that an � Cbn for all n � 1 where
C is some universal constant. Furthermore, the notation an = o(bn) means that an=bn ! 0
as n!1. Finally, we denoted by p0 a true (density) function and bp0 the Fourier transform
of p0.

2. Fourier density estimator

In this section, we assume X1; : : : ; Xn 2 X � Rd are an i.i.d. sample from p0 and we would
like to estimate the density function p0 based on the Fourier density estimator bfn;R given in

equation (5). Based on equation (4), we know that when R goes to infinity, the bias of bfn;R(x)
goes to 0. However, we would like to investigate the vanishing rate of the bias. To do that, we
first define two important tail behaviors on the Fourier transform of the density function p0,
which serve as sufficient conditions for the Fourier transform to be integrable and to obtain
the vanishing rate of the bias.

Definition 1. (1) We say that p0 is upper-supersmooth (lower-supersmooth) of order � if there
exist universal constants C;C ′; C1; C2 such that as long as we have the following inequalities
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for almost all x 2 Rd

Upper-supersmooth: j bp0(x)j � C exp

0@�C1

0@ dX
j=1

jxj j�
1A1A ;

Lower-supersmooth: j bp0(x)j � C ′ exp

0@�C2

0@ dX
j=1

jxj j�
1A1A :

Here, bp0 denotes the Fourier transform of p0.
(2) The density p0 is upper-ordinary smooth (lower-ordinary smooth) of order � if there exist
universal constants c; c′ such that for almost all x 2 Rd, we have

Upper-ordinary smooth: j bp0(x)j � c �
dY
j=1

1

(1 + jxj j�)
;

Lower-ordinary smooth: j bp0(x)j � c′ �
dY
j=1

1

(1 + jxj j�)

Popular examples of upper-and lower-supersmooth densities include multivariate Gaussian,
multivariate Cauchy distributions, and their mixtures. The examples of upper-ordinary
smooth densities include continuous density functions that have continuous and integrable
partial derivatives or product of univariate Laplace distributions. For the lower-ordinary
smooth densities, the examples include multivariate Laplace distribution and univariate Beta
distribution. Finally, we would like to note that under the univariate setting of the den-
sity p0, we can slightly relax the upper-ordinary smooth condition in Definition 1 as follows;
j bp0(x)j � c=jxj� for almost all x 2 R. This relaxation allows the upper-ordinary smooth def-
inition to cover more popular univariate distributions, such as Beta distribution. Later, our
results for upper-ordinary smooth univariate settings can be understood to also hold under
this relaxation as well.

2.1 Risk analysis with Fourier density estimator

Based on the smoothness definitions of p0, we have the following result regarding the bias and
variance of the Fourier density estimator bfn;R:

Theorem 1. (a) Assume that p0 is an upper–supersmooth density function of order � > 0
and kp0k∞ <1. Then, there exist universal constants C and C ′ such that while R � C ′, for
almost all x we find that���E h bfn;R(x)

i
� p0(x)

��� � CRmax{1−�;0} exp (�C1R
�) ;

var
h bfn;R(x)

i
� kp0k∞

�d
� R

d

n
;

where C1 is the universal constant associated with the supersmooth density function p0 from
Definition 1.
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(b) Assume that p0 is an upper{ordinary smooth density function of order � > 1 and kp0k1 <
1 . Then, there exists a universal constantsc such that for almost all x we obtain

�
�
�E

h
bf n;R (x)

i
� p0(x)

�
�
� �

c
R� � 1 ;

var
h

bf n;R (x)
i

�
kp0k1

� d �
Rd

n
:

The proof of Theorem 1 is given in Section 9.1. Given the result of Theorem 1, we have the
following upper bounds on the mean integrated squared errors (MISE) of the Fourier density
estimator bf n;R :
(i) When p0 is an upper{supersmooth density function of order� > 0, we have

MISE( bf n;R ) =
Z � �

E
h

bf n;R (x)
i

� p0(x)
� 2

+ var
h

bf n;R (x)
i �

dx

� C2Rmaxf 2� 2�; 0g exp (� 2C1R� ) +
kp0k1

� d �
Rd

n
;

where C and C1 are the constants in part (a) of Theorem 1. The choice ofR that minimizes
the upper bound of MSE is the solution of the equation

C2Rmaxf 2� 2�; 0g exp(� 2C1R� ) =
kp0k1

� d �
Rd

n
:

Therefore, we can chooseR such that 2C1R� = log n. With this choice of R, we have

MISE( bf n;R (x)) �
�

C2 +
kp0k1

� d

�
(log n)maxf d=�; 2=� � 2g

n
;

which is better than the well-known MISE rate n� 4=(4+ d) for the kernel density estimator
(KDE), when the density function p0 has bounded second derivatives (Wasserman, 2006;
Tsybakov, 2009).
(ii) When p0 is an upper{ordinary smooth density function of order � > 1, we �nd that

MISE( bf n;R (x)) �
c2

R2(� � 1)
+

kp0k1

� d �
Rd

n
;

where c is the constant given in part (b) of Theorem 1. Hence, by choosingR such that

Rd+2( � � 1) = c2� dn=kp0k1 , we obtain MISE( bf n;R (x)) � �Cn� 2( � � 1)
2( � � 1)+ d , where �C is some univer-

sal constant. As long as� > 3, the MISE rate of bf n;R is also better than the rate n� 4=(4+ d)

of the KDE, when the density function has bounded second derivatives.

2.2 Concentration of Fourier density estimator

In this section, we �rst provide concentration bounds for Fourier density estimator bf n;R (x)
under various smoothness assumptions of the true density functionp0 for almost all x 2 X .
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Proposition 1. For almost all x 2 X , there exist universal constantsC and c such that:
(a) If p0 is an upper{supersmooth density function of order� > 0 and kp0k1 < 1 , then for
any R � C0 where C0 is some universal constant, we obtain

P

 �
�
� bf n;R (x) � p0(x)

�
�
� � C

 

Rmaxf 1� �; 0g exp (� C1R� ) +

r
Rd log(2=� )

n

!!

� �:

Here, C1 is universal constant given in part (a) of Theorem 1.
(b) If p0 is an upper{ordinary smooth density function of order � > 1 and kp0k1 < 1 , then

P

 �
�
� bf n;R (x) � p0(x)

�
�
� � c

 

R1� � +

r
Rd log(2=� )

n

!!

� �:

Proof. An application of the triangle inequality yields
�
�
� bf n;R (x) � p0(x)

�
�
� �

�
�
� bf n;R (x) � E

h
bf n;R (x)

i �
�
� +

�
�
�E

h
bf n;R (x)

i
� p0(x)

�
�
� :

Denote Yi = 1
� d

Q d
j =1

sin(R(x j � X ij )
x j � X ij

for all i 2 [n]. It is clear that jYi j � Rd for all i 2 [n] and

var(Yi ) � CRd (cf. Theorem 1) whereC > 0 is some universal constant. For anyt 2 (0; C],
an application of Bernstein's inequality shows that

P

 �
�
�
�
�
1
n

nX

i =1

Yi � E [Y1]

�
�
�
�
�

� t

!

� 2 exp
�

�
nt 2

2CRd + 2Rdt=3

�
:

By choosing t = �C
p

Rd log(2=� )=n, where �C is some universal constant, we �nd that

P

 �
�
�
�
�
1
n

nX

i =1

Yi � E [Y1]

�
�
�
�
�

� t

!

� �:

Combining the above probability bound with the upper bounds of
�
�
�E

h
bf n;R (x)

i
� p0(x)

�
�
� from

Theorem 1, we reach the conclusion of the theorem.

The results of Proposition 1 only hold for point{wise x 2 X . In certain applications,
such as mode estimation, it is desirable to establish the uniform concentration bound for the
Fourier density estimator bf n;R , namely, supx2X j bf n;R (x)� p0(x)j. Our next result provides such
a uniform concentration bound whenX is bounded and the density functionp0 is continuous.
Note, the assumption that p0 is continuous is to guarantee that the bounds of the bias in
Theorem 1 hold for all x 2 X .

Theorem 2. Assume thatX is a bounded subset ofRd. Then, there exist universal constants
C and c such that the following holds:
(a) When p0 is a continuous upper{supersmooth density function of order� > 0 and kp0k1 <
1 , for any R � C0 where C0 is some universal constant we have

P

 

sup
x2X

�
�
� bf n;R (x) � p0(x)

�
�
� � C

 

Rmaxf 1� �; 0g exp (� C1R� ) +

r
Rd logR (log(2=� ))

n

!!

� �:
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Here, C1 is universal constant given in part (a) of Theorem 1.
(b) When p0 is a continuous upper{ordinary smooth density function of order � > 1 and
kp0k1 < 1 , we obtain

P

 

sup
x2X

�
�
� bf n;R (x) � p0(x)

�
�
� � c

 

R1� � + �C

r
Rd logR(log(2=� ))

n

!!

� �:

Proof. By the triangle inequality, we have

sup
x2X

�
�
� bf n;R (x) � p0(x)

�
�
� � sup

x2X

�
�
� bf n;R (x) � E

h
bf n;R (x)

i �
�
� + sup

x2X

�
�
�E

h
bf n;R (x)

i
� p0(x)

�
�
� :

To bound supx2X

�
�
� bf n;R (x) � E

h
bf n;R (x)

i �
�
� , we use Bernstein's inequality along with the brack-

eting entropy under L1 norm of the functions in the spaceX (Wainwright, 2019). In particular,
by denoting Yi = 1

� d

Q d
j =1

sin(R(x j � X ij )
x j � X ij

for all i 2 [n], we have jYi j � Rd and E(jYi j) � 1 for

all i 2 [n]. Therefore, whent � 2CRd, we �nd that

P
�

sup
x2X

�
�
� bf n;R (x) � p0(x)

�
�
� > t

�
� 4N []

�
t=8; F 0; L1(P)

�
exp

�
�

96nt 2

76Rd

�
;

where the functional spaceF 0 = f f x : Rd ! R : f x (t) = 1
� d

Q d
i =1

sin(R(x i � t i ))
x i � t i

for all x 2 X ; t 2
Rdg and N [] (t=8; F 0; L1(P)) is the bracketing number of the functional spaceF 0 under L1(P).
For any functions f x1 and f x2 in F 0, we can check that

jf x1 (y) � f x2 (y)j � dRd+1 kx1 � x2k2;

for all y 2 Rd. SinceX is a bounded subset ofRd, we obtain that

N []
�
t=8; F 0; L1(P)

�
�

 
4d

p
d � Diam(X )Rd+1

t

! d

:

Putting the above results together, by choosing

t = �C
q

Rd (log(2=� ) + d(d + 1) log R + d(log d + Diam( X )) =n;

where �C is some universal constant, we have

P
�

sup
x2X

�
�
� bf n;R (x) � p0(x)

�
�
� > t

�
� �:

The above uniform concentration bound of supx2X

�
�
� bf n;R (x) � E

h
bf n;R (x)

i �
�
� and the upper

bounds of supx2X

�
�
�E

h
bf n;R (x)

i
� p0(x)

�
�
� in Theorem 1 lead to the conclusion of the theo-

rem.
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2.3 Derivatives of Fourier density estimator

In this section, we provide the risk analysis for the derivatives of the Fourier density estimator
bf n;R . This analysis is useful for our study with mode estimation in Sections 4 and 6. For
any r � 1, the mean integrated squared errors of ther -th derivatives of the Fourier density
estimators are de�ned as follows:

MISE( r r bf n;R ) =
Z

E
h
kr r bf n;R (x) � r r p0(x)k2

2

i
dx

=
Z

kE
h
r r bf n;R (x)

i
� r r p0(x)k2

2dx +
Z

E
h
kr r bf n;R (x) � E

h
r r bf n;R (x)

i
k2

2

i
dx:

The �rst term can be thought as mean-squared bias while the second term can be thought
of as the mean-squared version of the variance (or in short mean-squared variance). The
following result provides upper bounds for the mean-squared bias and variance ofr r bf n;R (x)
for estimating r r p0(x).

Theorem 3. For any given r � 1, assume thatp0 2 Cr (X ). Then, the following holds:
(a) When p0 is an upper{supersmooth density function of order� > 0, there exist universal
constants f C0

i g
r
i =1 and f �Ci gr

i =1 such that whileR � C0, where C0 is some universal constant
and 1 � i � r , we �nd that

sup
x2X

kE
h
r i bf n;R (x)

i
� r i p0(x)kmax � C0

i R
maxf 1+ i � �; 0g exp (� C1R� ) ;

sup
x2X

E
h
kr i bf n;R (x) � E

h
r i bf n;R (x)

i
k2

2

i
� �Ci �

R2i + d

n
;

where C1 is the universal constant associated with the supersmooth density functionp0 from
De�nition 1.
(b) When p0 is an upper{ordinary smooth density function of order � > 1 + r , there exist
universal constantsf ci gr

i =1 such that for any 1 � i � r we obtain

sup
x2X

kE
h
r i bf n;R (x)

i
� r i p0(x)kmax �

ci

R� � ( i +1)
;

sup
x2X

E
h
kr i bf n;R (x) � E

h
r i bf n;R (x)

i
k2

2

i
� �Ci �

R2i + d

n
:

The proof of Theorem 3 is in Section 9.2. Given the results in Theorem 3, we obtain the
following results with the MISE of r r bf n;R :
(i) When p0 is an upper{supersmooth density function of order� > 0, the result in part (a)
in Theorem 3 demonstrates that

MISE( r r bf n;R ) � (C0
r )2Rmaxf 2(1+ r � � );0g exp (� 2C1R� ) + �Cr R2r + d=n;

where C0
r and �Cr are given constants in part (a). This upper bound suggests that we can

chooseR such that 2C1R� = log n. Then, we have

MISE( r r bf n;R ) � C n� 1 (log n)maxf (d+2 r )=�; 2(1+ r � � )=� g;
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where C is some universal constant.
(ii) When p0 is an upper{ordinary smooth density function of order � > 1 + r , we have

MISE( r r bf n;R ) �
c2

r

R2(� � (r +1))
+ �Cr R2r + d=n;

wherecr is given constant in part (b). By choosingR such that Rd+2( � � 2) = c2
r n= �Cr , we obtain

MISE( r r bf n;R ) � cn� 2( � � r � 1)
d+2( � � 1) , where c is some universal constant. When� > r + 3, then the

MISE rate of the r -th order derivatives of the Fourier density estimator is better than the
MISE rate n� 4=(d+2 r +4) of the KDE estimator when the density function p0 2 Cr (X ) (Chac�on
et al., 2011).

Thus, we have provided the uniform upper bounds for the di�erence betweenE
h
r r bf n;R (x)

i

and r r p0(x). In certain applications, such as mode estimation (cf. Section 4), it is also im-
portant to understand the concentration behaviors of r r bf n;R (x) around r r p0(x) uniformly
for all x 2 X . The following result provides the bounds on these behaviors whenX is a
bounded subset ofRd.

Theorem 4. For any given r � 1, assume thatp0 2 Cr (X ) and X is a bounded subset ofRd.
Then, there exist universal constantsC and c such that the following holds:
(a) When p0 is an upper{supersmooth density function of order� > 0, as long asR � C0

where C0 is some universal constant and1 � i � r , we �nd that

P
�

sup
x2X



 r i bf n;R (x) � r i p0(x)





max
� C

�
Rmaxf 1+ i � �; 0g exp (� C1R� )

+

r
R(d+2 i ) logR (log(2=� ))

n

��
� �;

where C1 is the universal constant in part (a) of Theorem 3.
(b) When p0 is an upper{ordinary smooth density function of order � > r +1 , for any 1 � i � 2
we obtain

P

 

sup
x2X



 r i bf n;R (x) � r i p0(x)





max
� c

 

R� � +( i +1) +

r
R(d+2 i ) logR (log(2=� ))

n

!!

� �:

The proof of Theorem 4 is in Section 9.3.
Based on the result of Theorem 4, we can choose the radiusR similar to those in the

discussion after Theorem 3 and obtain the similar uniform upper bounds for the concentration
of r r bf n;R (x) around r r p0(x) for any r 2 N.

2.4 Con�dence interval and con�dence band of Fourier density estimator

In this section, we study the con�dence interval and con�dence band ofp0 based on the Fourier
density estimator.

10
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2.4.1 Confidence interval

In order to establish the point-wise con�dence interval for p0(x) for each x 2 X , we �rst study
the asymptotic property of the following term as n ! 1 :

bf n;R (x) � p0(x)
q

var( bf n;R (x))
=

bf n;R (x) � E
h

bf n;R (x)
i

q
var( bf n;R (x))

+
E

h
bf n;R (x)

i
� p0(x)

q
var( bf n;R (x))

:= A1 + A2: (7)

For the term A1, from the central limit theorem, as n ! 1 we obtain

A1 =

p
n

�
bf n;R (x) � E

h
bf n;R (x)

i�

p
var(Y )

d! N (0; 1); (8)

whereY = 1
� d

Q d
j =1

sin(R(x j � X :j ))
x j � X :j

and X = ( X :1; : : : ; X :d) � p0. From the result of Theorem 1,
var(Y ) ! 0 asR ! 1 . The non-asymptotic upper bound on the variance ofY in Theorem 1
provides a tight dependence onR but not on other constants. To obtain a tight asymptotic
behavior of var(Y ), we assume that p0 2 C1(X ) and X is a bounded subset ofRd. Then,
simple algebra shows thatE2(Y ) � k p0k2

1 . Furthermore, from the Taylor expansion up to
�rst order we have

E
�
Y 2�

=
Rd

� 2d

Z

Rd

dY

j =1

sin2(t j )
t2
j

p0

�
x �

t
R

�
dt =

Rd

� 2d

Z

Rd

dY

j =1

sin2(t j )
t2
j

�
p0(x) + O

�
t
R

��
dt

=
p0(x)Rd

� d + O(Rd� 1):

Collecting the above results, we �nd that lim R!1 var(Y )=Rd = p0(x)=� d. Combining this
result with the central limit theorem result in equation (8), when p0 2 C1(X ) and R ! 1 we
obtain that

r
n

Rd

�
bf n;R (x) � E

h
bf n;R (x)

i�
d! N

�
0;

p0(x)
� d

�
: (9)

For the term A2, when p0 is an upper{supersmooth density function of order� > 0, the result
of part (a) of Theorem 1 shows that

A2 �
C � Rmaxf 1� �; 0g exp (� C1R� )

var( bf n;R (x))
;

where C and C1 are some universal constants. By choosing the radiusR such that 2C1R� =
logn and the MISE rate of bf n;R is at the order n� 1 (up to some logarithmic factor), we have
A2 ! 0 as n ! 1 . Putting the above results together, we obtain the following asymptotic
result of equation (7) when p0 is an upper-supersmooth density function.

Proposition 2. Assume that p0 is an upper{supersmooth density function of order� > 0
and p0 2 C1(X ) where X is a bounded subset ofRd. Then, for each x 2 X , by choosing the
radius R such that R� = C logn where C is some universal constant, asn ! 1 we have

r
n

Rd

�
bf n;R (x) � p0(x)

�
d! N

�
0;

p0(x)
� d

�
:

11
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The result of Proposition 2 suggests that we can choose the radiusR such that the MISE rate
of bf n;R obtains the best possible raten� 1 (up to some logarithmic factor) and no bias term
in the limit of bf n;R to p0(x). It is di�erent from the standard kernel density estimator when
we essentially need to undersmooth the estimator, i.e., we choose the bandwidth to trade-o�
the MISE rate and the bias term (Wand and Jones, 1994; Wasserman, 2006). It shows the
bene�t of using Fourier density estimator for estimating the density function p0 when it is
upper{supersmooth.

Based on the result of Theorem 2, for any� 2 (0; 1) we can construct the 1� � point-wise
con�dence interval for p0(x) as follows:

bf n;R (x) � z1� �= 2

r
Rdp0(x)

n� d ;

where z1� �= 2 stands for critical value of standard Gaussian distribution at the tail area �=2.
Note that, since p0(x) is generally unknown, we can replace the above con�dence interval by
the following plug-in con�dence interval:

CI1� � (x) = bf n;R (x) � z1� �= 2

s
Rd maxf bf n;R (x); 0g

n� d : (10)

Since maxf bf n;R (x); 0g is a consistent estimate ofp0(x) as R� = O(log n) and n ! 1 , the
con�dence interval CI 1� � (x) in equation (10) satis�es

lim
n!1

P(p0(x) 2 CI1� � (x)) � 1 � �:

Therefore, CI1� � (x) is also a valid 1� � con�dence interval of p0(x) for each x 2 X .
When p0 is an upper{ordinary smooth density function of order � > 1, the result of part

(b) of Theorem 1 leads to the following bound ofA2:

A2 �
c

R� � 1 var( bf n;R (x))
;

where c is some universal constant. If we choose the optimal radiusRd+2( � � 1) = O(n) such
that the MISE of bf n;R (x) obtains the best possible rate (cf. the discussion after Theorem 1),
A2 goes to �c(x) as n ! 1 where �c(x) is some universal constant depending onp0(x) and
can be possibly di�erent from 0. Plugging this result and the result (9) into equation (7), as
Rd+2( � � 1) = O(n) we have

r
n

Rd

�
bf n;R (x) � p0(x)

�
d! N

�
c(x);

p0(x)
� d

�
:

Therefore, under the upper-ordinary smooth setting ofp0, we need to undersmooth the Fourier
density estimator, i.e., we chooseRd+2( � � 1) = o(n), as the standard kernel density estimator to
make sure that c(x) = 0. It can be undesirable as the MISE rate is not optimal if we choose
sub-optimal radius, which means that the Fourier density estimator becomes less precise.
As a consequence, under this case ofp0, we may only use the asymptotic result for A1 in
equation (9) to obtain a point-wise con�dence interval for the expectation of bf n;R .

12
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2.4.2 Confidence band

In this section, we establish the con�dence band ofp0 based on the bootstrap approach,
which has been widely employed to construct the con�dence band based on the standard
kernel density estimator; see Section 3 in Chen (2017) for a summary of this method. We
will only focus on the upper{supersmooth setting ofp0 since the argument is similar for the
upper-ordinary smooth case ofp0. We �rst de�ne a Gaussian process used to approximate
the uniform error supx2X

�
�
� bf n;R (x) � E

h
bf n;R (x)

i �
�
� . We denote the function class

F :=

(

f x : Rd ! R : f x (t) =
1
� d

dY

i =1

sin(R(x i � t i ))
R(x i � t i )

for all x 2 X ; t 2 Rd

)

: (11)

Then, we de�ne a Gaussian processB on F with the covariance matrix given by:

cov(B(f 1; f 2)) = E [f 1(X )f 2(X )] � E [f 1(X )] E [f 2(X )] ; (12)

for any f 1; f 2 2 F . We denote the maximum of the Gaussian processB as follows: B :=p
Rd supf 2F jB(f )j. Then, we have the following result regarding the approximation of

sup
x2X

�
�
� bf n;R (x) � E

h
bf n;R (x)

i �
�
�

based onB .

Proposition 3. Assume thatX is a bounded subset ofRd and p0 is upper-supersmooth density
function of order � > 0. Then, as R� = C logn whereC is some universal constant depending
on d and n ! 1 we have

sup
t � 0

�
�
�
�P

� r
n

Rd sup
x2X

�
�
� bf n;R (x) � E

h
bf n;R (x)

i �
�
� < t

�
� P(B < t )

�
�
�
� � C0(log n)(7+ d)=8

n1=8
;

where C0 is some universal constant.

Proof. The proof of Proposition 3 is based on the tools developed from the seminal works
of Chernozhukov et al. (2014a,b). For the simplicity of the presentation, given the functional
spaceF de�ned in equation (11), we de�ne the following empirical process:

Gn (f ) =
1

p
n

 
nX

i =1

f (X i ) � E [f (X 1)]

!

; (13)

for any f 2 F . We �rst show that F is a VC-type class of functions. Indeed, for anyx1; x2 2 X
we havejf x1 (t) � f x2 (t)j � dRkx1 � x2k2, for all t 2 Rd. SinceX is a bounded subset ofRd,
we have

sup
P

N2 (t=8; F ; P) � sup
P

N [] (t=8; F ; L2(P)) �

 
4d

p
d � Diam(X )R2

t

! d

;

13
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where N2 (t=8; F ; P) is the t=8-covering ofF under L2 norm. Since the envelope function of
F is 1=� d, it shows that F is a VC-type class of functions.

In order to facilitate the ensuing discussion, we denoteA = 1
2d

p
dDiam(X )R2. Direct

calculation shows that supf 2F E
�
f 2(X )

�
� 1=Rd = � 2. Furthermore, we can choose the

envelope function of F to be 1. Then, for any  2 (0; 1), an application of Corollary 2.2
in Chernozhukov et al. (2014b) shows that

P

 �
�
�
�
�
sup
f 2F

Gn (f ) � sup
f 2F

jB(f )j

�
�
�
�
�

>
K n

 1=2n1=4
+

p
�K 3=4

n

 1=2n1=4
+

� 2=3K 2=3
n

 1=3n1=6

!

� C
�

 +
logn

n

�
; (14)

whereC is some universal constant. Here,K n = cd(log n_ log(A=� )) where c is some universal
constant. SinceR = O(log n), as n is su�ciently large, we �nd that

P

 �
�
�
�
�
sup
f 2F

Gn (f ) � sup
f 2F

jB(f )j

�
�
�
�
�

> C 1
(log n)2=3

 1=3Rd=3n1=6

!

� C2;

where C1 and C2 are some universal constants depending ond. The above result is also
equivalent to

P

 �
�
�
�

r
n

Rd sup
x2X

�
�
� bf n;R (x) � E

h
bf n;R (x)

i �
�
� � B

�
�
�
� > C 1

Rd=6(log n)2=3

 1=3n1=6

!

� C2: (15)

Combining the above result (15) with the result of Lemma 2.3 in Chernozhukov et al. (2014b),
for any  2 (0; 1), when n is su�ciently large we obtain that

sup
t � 0

�
�
�
�P

� r
n

Rd sup
x2X

�
�
� bf n;R (x) � E

h
bf n;R (x)

i �
�
� < t

�
� P(B < t )

�
�
�
� � C3E [B ]

Rd=6(log n)2=3

 1=3n1=6
+ C4;

whereC3 and C4 are some universal constants. From Dudley's inequality for Gaussian process,
we have E [B ] � C5

p
logn where C5 is some universal constant. Putting the above results

together, by choosing = Rd=8(log n)7=8=n1=8, we obtain the conclusion of the proposition.

The distribution of B depends on the knowledge of the unknown density functionp0.
Therefore, it is non-trivial to construct con�dence band for E

h
bf n;R

i
based on the result of

Proposition 3. To account for this issue, we utilize bootstrap idea. In particular, we denote
X �

1 ; : : : ; X �
n the i.i.d. sample from the empirical distribution Pn = 1

n

P n
i =1 � X i . Then, we

construct a Fourier density estimator bf �
n;R based onX �

1 ; : : : ; X �
n . Our next result provides the

asymptotic behavior of supx2X

�
�
� bf �

n;R (x) � bf n;R (x)
�
�
� given the data X 1; : : : ; X n .

Proposition 4. Assume thatX is a bounded subset ofRd and p0 is upper-supersmooth density
function of order � > 0. Then, as R� = C logn whereC is some universal constant depending
on d and n ! 1 we have

sup
t � 0

�
�
�
�P

� r
n

Rd sup
x2X

�
�
� bf �

n;R (x) � bf n;R (x)
�
�
� < t

�
� X 1; : : : ; X n

�
� P(B < t )

�
�
�
� = OP

 
(log n)(7+ d)=8

n1=8

!

:

14



Multivariate Smoothing via the Fourier Integral Theorem and Fourier Kernel

Algorithm 1 Bootstrap Fourier estimator

Input: Data X 1; : : : ; X n .
Step 1. Drawing B bootstrap samples (X � (1)

1 ; : : : ; X � (1)
n ); : : : ; (X � (B )

1 ; : : : ; X � (B )
n ) from the

empirical measurePn = 1
n

P n
i =1 � X i .

Step 2. Contructing Fourier density estimators bf � (1)
n;R ; : : : ; bf � (B )

n;R from the B bootstrap
samples.
Step 3. Computing Ti =

p n
Rd supx2X

�
�
� bf � ( i )

n;R (x) � bf n;R (x)
�
�
� for i 2 [B ].

Step 4. Choosing� 1� � (x) such that 1
B

P B
i =1 1f Ti >� 1� � (x)g = � for eachx 2 X and � 2 (0; 1).

Step 5. Constructing the uniform con�dence interval for p0(x) as follows:

UCI1� � (x) = bf n;R (x) � � 1� � (x)

r
Rd

n
: (16)

Output: UCI1� � (x).

The proof of Proposition 4 is in Appendix A.4.
The results of Propositions 3 and 4 suggest the bootstrap procedure in Algorithm 1 for

constructing the con�dence interval UCI 1� � (x) in equation (16) for E
h

bf n;R (x)
i

uniformly for

all x 2 X . The following result showing that UCI 1� � (x) is a valid 1 � � con�dence band for
p0:

Corollary 1. Assume that p0 is an upper{smooth density function of order � > 0 and X is
a bounded subset ofRd. When R� = C logn where C is some universal constant, for any
� 2 (0; 1) we obtain that

lim
n!1

P(p0(x) 2 UCI 1� � (x) for all x 2 X ) � 1 � �:

The proof of Corollary 1 is a direct consequence of Propositions 3 and 4 and the fact that
supx2X A2 ! 0 in equation (7) as n ! 1 when R� = O(log n); therefore, it is omitted.

3. Estimating a mixing density with deconvolution

In this section we employ the idea of Fourier density estimator to the deconvolution prob-
lem. For previous works on estimating a mixing density via maximum likelihood, see the
works (Laird, 1978) and Lindsay (1983), and for deconvolution approaches (Carroll and Hall,
1988; Zhang, 1990; Stefanski and Carroll, 1990). These latter papers only consider the one{
dimensional case and we demonstrate improved rates of estimating mixing densities. Speci�-
cally, throughout this section, we assume thatp0(x) =

R
� f (x � � )g(� )d� , i.e., X 1; : : : ; X n are

i.i.d. samples fromp0 which is the convolution betweenf and g. Here, � is a given subset of
Rd. In the deconvolution setting, the function f is corresponding to the density function of
\noise" on Rd, which is assumed fully speci�ed. Popular examples off include multivariate
Gaussian or Laplace distributions with a given covariance matrix. The mixing density g is
unknown and to be estimated. Finally, we assume throughout this section thatX = Rd and
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f is a symmetric density function around 0, namely, f (x) = f (� x) for all x 2 Rd. This
assumption is to guarantee that the Fourier transform bf (s) of the function f only takes real
values.

Using the insight from the Fourier integral theorem, we de�ne the following Fourier de-
convolution estimator of g as follows:

bgn;R (� ) =
1

n(2� )d

nX

i =1

Z

[� R;R ]d

cos(s> (� � X i ))
bf (s)

ds: (17)

Since bf (s) 2 R for all s 2 Rd, the Fourier density estimator bgn;R (� ) 2 R for all � 2 �. As long
as bp0(s)=bf (s) is integrable, from the inverse Fourier transform we �nd that

g(� ) =
1

(2� )d

Z

Rd

Z

Rd
p0(x)

cos(s> (� � x))
bf (s)

dxds: (18)

for almost surely � 2 �. Note that, when we further assume that g is continuous, the inverse
Fourier transform in equation (18) holds for all � 2 �. In summary, under these assumptions,
we have limR!1 E [bgn;R (� )] = g(� ) where the outer expectation is taken with respect toX
that has density function p0.

3.1 Risk analysis with Fourier deconvolution estimator

Similar to Section 2, we would like to study upper bounds on the bias and variance ofbgn;R (� )
under various smoothness settings of the density functionsf and g. We �rst consider the
setting when f is a lower{supersmooth density function. Under this setting, to guarantee
that bp0(s)=bf (s) is integrable, f needs to be lower{supersmooth density function with a certain
condition on its growth.

Theorem 5. Assume that f is a lower{supersmooth density function of order� 1 > 0 and g
is an upper{supersmooth density function of order� 2 > 0 such that � 2 � � 1 and kgk1 < 1 .
Then, there exist universal constantsC and C0 such that whileR � C0, we have

jE [bgn;R (� )] � g(� )j � CRmaxf 1� � 2 ;0g exp (� C1R� 2 ) ;

var [bgn;R (� )] � C �
R2d exp(2C2dR� 1 )

n
;

for almost all � 2 � where C1 and C2 are constants given in De�nition 1.

The proof of Theorem 5 is in Section 9.4. Based on the result of Theorem 5, whenf and
g are respectively lower{supersmooth and upper{supersmooth density functions of order� 1

and � 2, the MISE of the Fourier deconvolution estimator bgn;R satis�es the following bound:

MISE(bgn;R ) � C2Rmaxf 2� 2� 2 ;0g exp (� 2C1R� 2 ) + C �
R2d exp(2C2dR� 1 )

n
; (19)

where C; C1; C2 are given in Theorem 5. When� 2 � � 1, the bound of MISE in equation (19)
suggests that if we chooseR such that (2C1 + 2C2d)R� 2 = log n, the MISE rate of bgn;R
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becomes �Cn� C 1
C 1+ C 2d (up to some logarithmic factor) where �C is some universal constant. It

suggests that when� 2 � � 1, the MISE rate is polynomial in n, which is much faster than the
known non-polynomial rate 1=(log n)  of estimating mixing density when the noise functionf
is supersmooth (Zhang, 1990; Fan, 1991) where > 0 is some constant. A simple and popular
deconvolution setting when � 2 � � 1 is when f is multivariate Gaussian distribution and g is
continuous Gaussian mixtures, i.e.,g(� ) =

R
f (� j�; �) dH (�; �) where f (:j�; �) is multivariate

Gaussian distribution with location and covariance � and � and H is a prior distribution on
(�; �).

Our next result is when f is a lower{ordinary smooth density function, such as multivariate
Laplace distribution.

Theorem 6. Assume that f is a lower{ordinary smooth density function of order � 1 > 0.
Then, the following holds:
(a) When g is an upper{supersmooth density function of order� > 0 and kgk1 < 1 , there
exist universal constantsC and C0 such that as long asR � C0, we have

jE [bgn;R (� )] � g(� )j � CRmaxf 1� �; 0g exp (� C1R� ) ;

var [bgn;R (� )] � C �
R(2+2 � 1 )d

n
;

for almost all � 2 � where C1 is a constant given in De�nition 1.
(b) When g is upper-ordinary smooth density function of order � 2 > 1 and kgk1 < 1 , there
exists universal constantsc such that for almost all � 2 � we obtain

jE [bgn;R (� )] � g(� )j �
c

R� 2 � 1 ; var [bgn;R (� )] � C �
R(2+2 � 1 )d

n
:

The proof of Theorem 6 follows the same argument as that of Theorem 5; therefore, it is
omitted. Based on the results of Theorem 6, we have the following bounds with the MISE of
the Fourier deconvolution estimator:
(i) When f is lower-ordinary smooth function of order � 1 and g is upper-smooth function of
order � > 0, we obtain

MISE(bgn;R ) � C2Rmaxf 2� 2�; 0g exp (� 2C1R� ) + C �
R(2+ � 1 )d

n
;

where c; C; C1 are given in part (a) of Theorem 6. By choosing the bandwidthR such that
2C1R� = log n, the MISE rate of bgn;R becomes�Cn� 1 (log n)maxf (2+ � )d=�; (2� 2� )=� g where �C is
some universal constant. It is also faster than the best known polynomial rate of estimating
mixing density function g when f is ordinary smooth function (Fan, 1991). A popular example
for this setting is when f is a multivariate Laplace distribution, which is a lower{ordinary
smooth density function of second order, andg is a multivariate Gaussian distribution, which
is an upper{supersmooth density function of second order.
(ii) When f is lower-ordinary smooth function of order � 1 and g is upper-ordinary smooth
function of order � 2 > 0, the upper bound for MISE of bgn;R becomes

MISE(bgn;R ) �
c2

R2(� 2 � 1)
+ C �

R(2+2 � 1 )d

n
;
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where c and C are constants in part (b) of Theorem 6. With the choice of R such that

R2(� 2 � 1)+(2+2 � 1 )d = n, we obtain MISE(bgn;R ) � �cn� 2( � 2 � 1)
2( � 2 � 1)+(2+2 � 1 ) d where �c is some universal

constant. Examples of this setting include when both f and g are multivariate Laplace
distributions.

3.2 Derivatives of Fourier deconvolution estimator

Similar to the Fourier density estimator, we also would like to investigate the MISE of the
derivatives of the Fourier deconvolution estimator, which are useful for our study with mode
estimation of mixing density function (see Section 4.2 for an example). We �rst start with the
upper bounds for the mean-squared variance and bias ofr r bgn;R when f is lower-supersmooth
density function.

Theorem 7. Assume that f and g satisfy the assumptions of Theorem 5. Furthermore,
g 2 Cr (�) for given r 2 N. Then, there exist universal constantsf C0

i g
r
i =1 and f �Ci gr

i =1 such
that as long asR � C0 where C0 > 0 is some universal constant andi 2 [r ], we have

sup
� 2 �

kE
�
r i bgn;R (� )

�
� r i g(� )kmax � C0

i R
maxf i +1 � � 2 ;0g exp (� C1R� 2 ) ;

sup
� 2 �

E
�
kr i bgn;R (� ) � E

�
r i bgn;R (� )

�
k2

2

�
� �Ci

R2(i + d) exp(2C2dR� 1 )
n

;

where C1 and C2 are constants associated with supersmooth density functions given in De�-
nition 1.

The proof of Theorem 7 is in Section 9.5. The results of Theorem 7 demonstrate that the
MISE of r r bgn;R for any r 2 N can be upper bounded as follows:

MISE( r r bgn;R (� )) � C0
r Rmaxf 2(r +1 � � 2 );0g exp (� 2C1R� 2 ) + �Cr R2(r + d) exp(2C2dR� 1 ):

Therefore, by choosing the radiusR such that (2C1 + 2C2d)R� 2 = log n, the MISE rate of

r r bgn;R becomes �Cn� C 1
C 1+ C 2d (log n)maxf 2(r +1 � � 2 )=� 2 ;2(d+ r )=� 2g, which is still polynomial up to

some logarithmic factor, where �C is some universal constant.
We now move to our next result with the upper bounds of variance and bias ofr r bgn;R

when f is lower-ordinary smooth density function.

Theorem 8. Assume thatf is a lower{ordinary smooth density function of order � 1 > 0 and
g 2 Cr (�) for given r 2 N. Then, for any 1 � i � r , the following holds:
(a) When g is an upper{supersmooth density function of order� > 0, there exist universal
constants f C0

i g
r
i =1 and f �Ci gr

i =1 such that as long asR � C0 where C0 is some universal
constant, we have

sup
� 2 �

kE
�
r i bgn;R (� )

�
� r i g(� )kmax � C0

i R
maxf i +1 � �; 0g exp (� C1R� ) ;

sup
� 2 �

E
�
kr i bgn;R (� ) � E

�
r i bgn;R (� )

�
k2

2

�
� �Ci

R(2+2 � 1 )d+2 i

n
;
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where C1 is a given constant with upper-smooth density function from De�nition 1.
(b) When g is an upper{ordinary smooth density function of order � 2 > 1 + r , there exist
universal constantsf c0

i g
r
i =1 such that

sup
� 2 �

kE
�
r i bgn;R (� )

�
� r i g(� )kmax �

c0
i

R� 2 � ( i +1)
;

sup
� 2 �

E
�
kr i bgn;R (� ) � E

�
r i bgn;R (� )

�
k2

2

�
� �Ci

R(2+2 � 1 )d+2 i

n
:

The proof for Theorem 8 is similar to that of Theorem 7 when the density function f is
upper-supersmooth; therefore, it is omitted.

The result of part (a) of Theorem 8 suggests that the optimal choice of the radiusR
satis�es 2C1R� = log n when f is lower-ordinary smooth density function of order � 1 > 0
and g is upper-supersmoth density function of order � > 0. Under this choice of R, the
MISE of r r bgn;R has convergence rate of the order�Cn� 1 (log n)maxf 2(r +1 � � )=�; ((2+2 � 1 )d+2 r )=� g,
which is parametric up to some logarithmic factor, where �C is some universal constant. On
the other hand, when f is lower-ordinary smooth density function of order � 1 > 0 and g is

upper-ordinary smooth density function of order � 2 > 1 + r , by choosingR = n
1

2( � 2 � 1+(1+ � 1 ) d) ,

the MISE rate of r r bgn;R becomes �cn� � 2 � ( r +1)
� 2 � 1+(1+ � 1 ) d where �c is some universal constant.

4. Nonparametric mode clustering

In this section, we consider an application of Fourier (mixing) density estimators to mode
clustering problem (Azzalini and Torelli, 2007; Chac�on and Duong, 2013; Chac�on, 2015; Chen
et al., 2016b). We �rst study mode clustering via the data density in Section 4.1. Then, we
consider another approach to study mode clustering via a mixing density function when the
data density is assumed to be a mixture; Section 4.2.

4.1 Mode clustering via data density

We assume that X 1; : : : ; X n are i.i.d. samples from the unknown distribution P admitting
the density function p0 supported on X � Rd. When p0 admits a second order derivative, we
say that x is the local mode ofp0 if

r p0(x) = 0 and � 1(r 2p0(x)) < 0

where recall that � 1(r 2p0(x)) denotes the largest eigenvalue of the Hessian matrixr 2p0(x).
We de�ne M the collection of local modes of the true density functionp0 and K = jMj the
total number of local modes of p0. For the mode clustering problem via data density, we
would like to estimate the local modes ofp0 in M and the number of local modesK . To
do that, we �rst obtain the Fourier density estimator bf n;R for p0. Then, we calculate the
local modes of bf n;R , which serve as an estimation for the local modes ofp0. Note that, in the
multivariate setting, the local modes of bf n;R can be determined by the well-known mean-shift
algorithm (Fukunaga and Hostetler, 1975; Comaniciu and Meer, 2002; Arias-Castro et al.,
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2016). Finally, the total number of total modes of bf n;R can be used as an estimation for the
total number of local modesK .

In order to faciliate the ensuing discussion, we denoteM n the collection of local modes
of the Fourier density estimator bf n;R and K n the number of local modes ofbf n;R . We use the
Hausdor� metric to measure the convergence of local modes inM n to those of M (Chen,
2016), which is given by:

H(M n ; M ) := max
�

sup
x2M n

d(x; M ); sup
x2M

d(x; M n )
�

:

We impose the following assumptions on the densityp0 so as to establish the consistency of
K n to K as well as the convergence rate ofM n to M under the Hausdor� metric:

Assumption 1. There exists universal constant � � < 0 such that � d(r 2p0(x)) � : : : �
� 1(r 2p0(x)) � � � for any x 2 M .

Assumption 2. The density function p0 2 C3(X ) and kr 3p0(x)k � C for some universal
constant C for all x 2 X . Furthermore, there exists universal constant � such that f x :
kr p0(x)k � �; � 1(r 2p0(x)) � � �

2 g � M � j � � j
2Cd where � � is constant in Assumption 1.

Note that, Assumptions 1 and 2 had been employed in (Chen, 2016) to analyze mode
clustering via data density based on kernel density estimator. The idea of these assumptions
is as follows. Assumption 1 is to guarantee that the Hessian matrixr 2p0(x) is not degenerate
at each local modex 2 M . Assumption 2 is to make sure that for any points that have quite
similar behaviors to local modes, they should also be close to these local models.

Given Assumptions 1 and 2 at hand, we proceed to only provide the result with mode
clustering when the density function p0 is upper-supersmooth as the result when the density
function p0 is upper-ordinary smooth can be argued in the similar fashion (see our discussion
after Proposition 5).

Proposition 5. Assume that Assumptions 1 and 2 hold. Furthermore,p0 is upper-supersmooth
density function of order � and X is a bounded subset ofRd. Then, for any � > 0, when
R � C and n � cR2(d+2) log(R) log(6=� ) where C and c are some universal constants, the
following holds:
(a) (Consistency of estimating the number of modes) We have

P( bK n 6= K ) � �:

(b) (Convergence rates of modes estimation) There exists universal constantc1 such that

P

 

H(M n ; M ) � c1

 

Rmaxf 2� �; 0g exp (� C1R� ) +

r
Rd+2 log(2=� )

n

!!

� 1 � �;

where C1 is a constant associated with upper-supersmooth density function in De�nition 1.
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The proof of Proposition 5 is in Appendix A.1.
A few comments with Proposition 5 are in order. First, given the result of part (b), we

can choose the radiusR such that C1R� = log n=2. Then, the convergence rate ofH(M n ; M )

becomes �Cn� 1
2 (log(n))maxf 2=� � 1;(d+2) =(2� )g, where �C is some universal constant. That para-

metric convergence rate of estimating modes is faster than the raten� 2=(d+6) of estimating
modes from kernel density estimator (Chen, 2016).

Second, whenp0 is an upper{ordinary smooth density function of order � > 3, with the
similar proof argument as that of Proposition 5, we can demonstrate that whenR is su�ciently
large and n � �cR2(d+2) logR log(6=� ) where �c is some universal constant, the following hold:

P( bK n 6= K ) � �; and P

 

H(M n ; M ) �
c0

1

R� � 2 + c0
2

r
Rd+2 log(2=� )

n

!

� 1 � �;

wherec0
1 and c0

2 are some universal constants. Therefore, under the upper-ordinary smoothness
setting of p0, we can chooseR such that R� � 2+( d+2) =2 =

p
n. Then, the convergence rate

of H(M n ; M ) is at the order of n� � � 2
2( � � 2)+ d+2 . If we further have � > 4, that convergence

of modes estimation under the upper-ordinary smooth setting ofp0 is faster than the rate
n� 2=(d+6) from kernel density estimator (Chen, 2016).

4.2 Mode clustering via mixing density

In this section, we assume that the density functionp0 of X 1; : : : ; X n takes the mixture form
p0(x) =

R
� f (x � � )g(� )d� . Here, the density function f is known and only the mixing density

function g is unknown. When g is the mixture of Dirac delta functions, it is well-known
that we can cluster the data based on estimating the support points of these Dirac delta
distributions. For general g, we would like to take this perspective of clustering and estimate
the modes ofg so as to cluster the data.

Since the mixing density g is unknown, we use the Fourier deconvolution estimatorbgn;R

in equation (17) to estimate g and then use the local modes ofbgn;R to estimate those of g.
To ease the presentation, we denoteM 0 and M 0

n respectively the set of all local modes ofg
and bgn;R . Furthermore, we denoteK 0 = jM 0j and K 0

n = jM 0
n j respectively as the number of

local modes ofg and bgn;R .
Since the proof techniques are similar for di�erent smoothness settings off and g, we

only focus on the setting when bothf and g are supersmooth densities. The following result
establishes the consistency ofK 0

n and the convergence rate ofH(M 0
n ; M 0) when n goes to

in�nity.

Proposition 6. Assume that the mixing density functiong satis�es Assumptions 1 and 2.
Furthermore, f is a symmetric lower-supersmooth density function of order� 1 > 0 while
g is upper-smooth density function of order � 2 > 0 such that � 2 � � 1. Then, for any
� > 0, when R � C and n � cR2(d+2)+ � 1 exp(2C2dR� 1 ) log(6=� ) where C and c are some
universal constants andC2 is a given constant associated with the lower-supersmoothness of
f in De�nition 1, the following holds:
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(a) (Consistency of estimating the number of modes) We �nd that

P(K 0
n 6= K 0) � �:

(b) (Convergence rates of modes estimation) There exists universal constantsc1 such that

P
�

H(M 0
n ; M 0) � c1Rmaxf 2� � 2 ;0g exp (� C1R� 2 )

+ c1

r
R2(d+1)+ � 1 exp(2C2dR� 1 ) log(2=� )

n

�
� 1 � �;

where C1 is a given constant associated with the upper-supersmoothness ofg in De�nition 1.

The proof of Proposition 6 is in Appendix A.2.
Given the result of Proposition 6, we can choose (2C1 +2C2d)R� 2 = log n. Then, the con-

vergence rate ofH(M 0
n ; M 0) is at the order of n� C1=(2C1+2 C2d) (up to some logarithmic factor)

where C1 and C2 are respectively the constants associated with the upper-supersmoothness
and lower-supersmoothness ofg and f . This polynomial convergence rate is much faster than
the non-polynomial rate of using deconvolution estimators for mode clustering from the kernel
density estimators (Fan, 1991).

5. Nonparametric regression

In this section we consider an application of the Fourier integral theorem to the setting of
nonparametric regression. We assume thatYi = m(X i ) + � i for all i 2 [n] where � 1; : : : ; � n are
i.i.d. additive noises satisfying E(� i ) = 0 and var( � i ) = � 2. In our model, the function m is
unknown and to be estimated. We consider the random design setting, namely,X 1; : : : ; X n 2
X � Rd are i.i.d. samples from some density functionp0. Furthermore, to simplify the
argument later, we assume the additive noises� 1; : : : ; � n are independent of the observations
X 1; : : : ; X n .

Based on the Fourier density estimator studied in Section 2, we propose the follow-
ing Fourier nonparametric regression version of Nadaraya{Watson kernel estimator, named
Fourier regression estimator, for estimating the unknown function m:

bm(x) :=

P n
i =1 Yi �

Q d
j =1

sin(R(x j � X ij ))
x j � X ij

P n
i =1

Q d
j =1

sin(R(x j � X ij ))
x j � X ij

=
ba(x)

bf n;R (x)
; (20)

whereba(x) = 1
� d n

P n
i =1 Yi �

Q d
j =1

sin(R(x j � X ij ))
x j � X ij

and bf n;R is the Fourier density estimator given
in equation (5). One notable advantage of the Fourier regression estimatorbm is that both
its denominator and numerator can automatically capture the dependence between the co-
variates of X 1; : : : ; X n , without the need to model a covariance matrix, as it is in the stan-
dard Nadaraya{Watson Gaussian kernel (Wasserman, 2006; Tsybakov, 2009). Therefore, the
Fourier regression estimator is convenient to use as we only need to choose the radiusR.

Another bene�t of using the estimator (20) for estimating the function m is that it can
have parametric MSE rate when the density function p0 of the observations X 1; : : : ; X n is
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upper-supersmooth. Indeed, under this setting ofp0, we have the following upper bound
regarding the MSE of bm(x).

Theorem 9. Assume that p0 is an upper{supersmooth density function of order� > 0 and
kp0k1 < 1 . Furthermore, assume that the functionm is such that km2 � p0k1 < 1 and

�
� \m � p0(t)

�
� � C � Q(jt1j; : : : ; jtdj) exp

 

� C1

 
dX

i =1

jt i j �
!!

; (21)

whereC is some universal constant,C1 is given constant in De�nition 1, and Q(jt1j; : : : ; jtdj)
is some polynomial in terms of jt1j; : : : ; jtdj with non-negative coe�cient. Then, there exist
universal constantsC0; (C0

i )
3
i =1 such that as long asR � C0 we have

E
�
( bm(x) � m(x))2�

�
C0

1Rmaxf 2 deg(Q)+2 � 2�; 0g exp(� 2C1R� ) + C0
2

(m(x)+ C0
3 )Rd

n

p2
0(x)J (R)

;

where J (R) = 1 �
�

Rmaxf 2� 2�; 0g exp (� 2C1R� ) + Rd log(nR )
n

�
=p2

0(x).

The proof of Theorem 9 is in Section 9.6.
We have a few remarks with Theorem 9. First, the assumptions with the unknown function

m in Theorem 9 is quite mild. It is satis�ed when p0 is a multivariate Gaussian distribution
and m is a polynomial function or polynomial trigonometric function. Second, by choosing
the radius R such that 2C1R� = log n, the rate of the MSE of bm(x) becomes

E
�
( bm(x) � m(x))2�

�
�C(m(x) + �C1)

p2
0(x)

�
(log n)maxf 2 deg( Q )+2 � 2�

� ; d
� g

n

where �C and �C1 are some universal constants. Therefore, we have parametric rate of MSE
of bm(x) for each x 2 X when p0 is an upper{supersmooth density function and m satis-
�es the assumptions in Theorem 9. This rate is also faster than the well-known MSE rate
n� 1=(4+ d) of Nadaraya-Watson regression kernel when bothp0 and m have bounded second
order derivatives (Wasserman, 2006; Tsybakov, 2009).

Based on the result of Theorem 9, our next result provides the point-wise con�dence
interval for m(x) based on the Fourier regression estimatorbm(x).

Proposition 7. Assume that the assumptions of Theorem 9 hold andX is a bounded subset
of Rd. Then, for each x 2 X , as R� = C logn where C is some universal constant and
n ! 1 , we have

r
n

Rd ( bm(x) � m(x)) d! N
�

0;
� 2

p0(x)� d

�
:

The proof of Proposition 7 is in Appendix A.5.
Based on the result of Proposition 7, for any� 2 (0; 1) we can construct the 1� � point-wise

con�dence interval for m(x) as follows:

bm(x) � z1� �= 2

s
� 2Rd

n� dp0(x)
;
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where z1� �= 2 stands for critical value of standard Gaussian distribution at the tail area �=2.
Since the noise variance� 2 and the value of p0(x) are unknown, we utilize the plug-in esti-

mators for these terms. Forp0(x), we can use
�
�
� bf n;R (x)

�
�
� as plug-in estimator. Note that, we

do not use maxf bf n;R (x); 0g as a plug-in estimator for p0(x) in this case since the inverse of
this estimator will be in�nity as long as bf n;R (x) < 0. For � 2, the common plug-in estimator
is as follows (Hall and Marron, 1990; Wasserman, 2006):

b� 2 =
(
P n

i =1 Yi � bm(X i ))
2

n � 2 trace(L ) + trace( L > L)
;

where the matrix L 2 Rn� n satis�es

L ij =

Q d
u=1

sin(R(X iu � X ju ))
X iu � X ju

P n
k=1

Q d
u=1

sin(R(X iu � X ku ))
X iu � X ku

:

Given these plug-in estimators, the 1� � point-wise con�dence interval for m(x) becomes

NPCI 1� � (x) = bm(x) � z1� �= 2

vu
u
t

b� 2Rd

n� d
�
�
� bf n;R (x)

�
�
�
; (22)

whereR� = O(log n). In the random design setting, constructing the con�dence band for the
function m based on the Fourier regression estimator is complicated due to the involvement of
the Fourier density estimator bf n;R (x) in the denominator of bm(x). We leave the development
of con�dence band of the function m for the future work.

6. Nonparametric modal regression

In this section, we consider an extension of local mode estimation to the regression set-
ting (Sager and Thisted, 1982; Chen et al., 2016a; Feng et al., 2020). It is di�erent from the
traditional conditional mean nonparametric regression being considered in Section 5. In par-
ticular, assume that Y 2 Y � R is the response variable whileX 2 X � Rd is the predictor
variable. In nonparametric modal regression, we would like to study the conditional local
mode at X = x, which is given by:

M (x) :=
�

y :
@p0
@y

(x; y) = 0 ;
@2p0

@y2
(x; y) < 0

�
;

where p0(x; y) is the joint density between X and Y . Since p0 is unknown, we utilize the
Fourier density estimator to estimate it, which admits the following form:

bf n;R (x; y) =
1

n� d

nX

i =1

0

@
dY

j =1

sin(R(x j � X ij ))
x j � X ij

1

A �
sin(R(y � Yi ))

y � Yi
: (23)
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Note that, even though Yi and X i are not independent, their dependence can be captured via
the Fourier integral theorem; therefore, the estimator (23) is comfortable to use as we only
need to choose the radiusR. The corresponding conditional local mode atX = x based on
the estimator bf n;R is given by:

M n (x) :=

(

y :
@bf n;R

@y
(x; y) = 0 ;

@2 bf n;R

@y2
(x; y) < 0

)

: (24)

Similar to the mode clustering setting, we would like to establish the convergence rates of
local modes inM n (x) to those in M (x) based on the Hausdor� metric for all x 2 X . To
facilitate the later discussion, we denote the modal manifold collection as follows:

S = f (x; y) : x 2 X ; y 2 M (x)g

We impose the following assumption with S, which had been employed in the previous
work (Chen et al., 2016a):

Assumption 3. The modal manifold collection S = [ K
i =1 Si where the modal manifoldSi =

f (x; m i (x)) : x 2 A i g for some modal function mi and open setA i .

The Assumption 3 is to guarantee that the number of local modes ofp(x; y) for eachx 2 X
is �nite. Furthermore, under this assumption, we can rewrite M (x) as follows:

M (x) = f m1(x); : : : ; mK (x)g:

When the true density p0 is second order di�erentiable, the modal functions mi are also
di�erentiable and the set of local modesM (x) is smooth under Hausdor� metric (cf. Lemma 1
in Chen et al. (2016a)). To guarantee that the decomposition of the modal manifold collection
S in Assumption 3 is unique, we need the following non-degenerate assumption regarding the
curvature around the critical points, i.e., those when @p0

@y(x; y) = 0:

Assumption 4. For any (x; y) 2 X � Y such that @p0
@y(x; y) = 0 , we havej @2p0

@y2 (x; y)j � � �

where � � > 0 is some universal constant.

Given Assumptions 3 and 4 at hand, we have the following result regarding the uniform
convergence rate ofM n (x) to M (x) under the Hausdor� distance:

Proposition 8. Assume that Assumptions 3 and 4 hold. Furthermore,p0 2 C3(X �Y ) where
X and Y are bounded subsets ofRd and R respectively. Then, the following holds:
(a) When p0 is an upper-supersmooth density function of order� > 0, there exists universal
constant C such that

P

 

sup
x2X

H(M n (x); M (x)) � C

"

Rmaxf 2� �; 0g exp(� C1R� ) +

r
Rd+3 logR log(2=� )

n

#!

� 1 � �:

Here, C1 is a given constant associated with upper{supersmooth density function in De�ni-
tion 1.
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(b) When p0 is an upper-ordinary smooth density function of order � > 3, there exists uni-
versal constantc such that

P

 

sup
x2X

H(M n (x); M (x)) � c

"

R2� � +

r
Rd+3 logR log(2=� )

n

#!

� 1 � �:

The proof of Proposition 8 is in Appendix A.3.
The result of part (a) of Proposition 8 indicates that by choosing the radius R such that

C1R� = log n=2 whereC1 is given in part (a), we have

sup
x2X

H(M n (x); M (x)) = OP

 
(log n)maxf 2

� � 1; d+3
2� g

p
n

!

:

Therefore, we can estimate the local modes ofM (x) with parametric rate when the joint
density function p0 of (X; Y ) is supersmooth. That parametric rate is also faster than the
rate n� 2=(d+7) from kernel density estimator in Chen et al. (2016a). On the other hand,
when p0 is upper-ordinary smooth density function, by choosing the radiusR such that
R = n1=(2� + d� 1) , the result of part (b) shows that the rate of supx2X H(M n (x); M (x)) is
at the order of

p
logn n � (� � 2)=(2� + d� 1) . It is also faster than the rate n� 2=(d+7) from kernel

density estimator in (Chen et al., 2016a).
Furthermore, since the results of Proposition 8 hold for allx 2 X , the conclusions in parts

(a) and (b) still hold for
R

x2X H(M n (x); M (x)), i.e., the MISE of H(M n (x); M (x)). Finally,
we also can construct the con�dence interval and con�dence band forH(M n (x); M (x)) based
on the previous argument with con�dence interval and band in Section 2.4.

7. Dependent data

In this section, we discuss an application of the Fourier integral theorem to estimate the
Markov transition probability when the data X 1; : : : ; X n 2 X � Rd are a Markov sequence
with stationary density function p0 and transition probability distribution f (� j � ). This relies
speci�cally on the Fourier integral theorem and the Monte Carlo estimate and the ergodic
theorem. A unique combination involving the Fourier kernel.

For the density function p0, we can use the Fourier density estimatorbf n;R in equation (5).
Since we can writef (y j x) = p(x; y)=p0(x) where p(�; �) is the joint stationary density of
(X i ; X i +1 ), we can also use the Fourier density estimator to estimate the joint stationary
density p. An estimate of the transition probability distribution based on the Fourier integral
theorem is

bpn;R (y j x) :=
1
� d

P n� 1
i =1

Q d
j =1

sin(R(x� X ij ))
x� X ij

�
sin(R(y� X ( i +1) j ))

y� X ( i +1) j
P n

i =1
Q d

j =1
sin(R(x� X ij ))

x� X ij

: (25)

We refer the estimator bpn;R to as Fourier transition estimator . To study the MSE of the
Fourier transition estimator bpn;R (x) for each x 2 X , we impose a mixing condition on the
transition probability function of the Markov sequence (X 1; : : : ; X n ). In particular, we de�ne
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the following transition probability operator ( T h)(x) :=
R

h(y)f (y j x)dy, for any bounded
function h : X ! R. Then, we denote theL2 norm of the operator T as follows:

jT j2 = sup
h6=0

kT h � E [h(X )] k2

kh � E [h(X )] k2
;

where the expectations are taken with respect toX � p0 and khk2
2 =

R
(h(x))2p0(x)dx. It

is clear that jT j j2 � 1 for all j 2 N. We impose the following assumption on the transition
probability operator T so as to guarantee geometric ergodicity (Yakowitz, 1985; Rosenblatt,
2011):

Assumption 5. There exist � 2 N and � 2 (0; 1) such that the transition probability operator
T satis�es jT � j2 � � .

As an example, and as pointed out in Rosenblatt (2011), Assumption 5 is satis�ed when the
stationary density function is a standard multivariate Gaussian distribution and the transition
probability density is

f (y j x) =
1

(2� )d=2

dY

j =1

1
q

(1 � � 2
j )

exp(� (yj � � j x j )2=(2(1 � � 2
j ))) ; (26)

for some� 1; : : : ; � d 2 (0; 1). Then, we can verify that jT j2 �
Q d

j =1 � 2
j .

For the simplicity of the presentation of the results, we only focus on studying the MSE of
bpn;R (x) when both the stationary density function p0 and the stationary joint density function
p are upper{supersmooth.

Theorem 10. Assume that the stationary density and joint density functionsp0 and p are
respectively upper{supersmooth density functions of order� 1 > 0 and � 2 > 0, such that
maxfk p0k1 ; kpk1 g < 1 . Furthermore, the transition probability operator T satis�es As-
sumption 5. Then, for almost all x; y 2 X , there exist universal constantsC1; C2; c1; c2 such
that as long asR � C for some universal constantC, we have

E
�
(bp(y j x) � f (y j x))2�

�
C(p2

0(x) + p2(x; y))
p4

0(x) �J (R)

�
Rmaxf 2(1� �� );0g exp

�
� C1R �� �

+
R2d

n

�
;

where �� = min f � 1; � 2g and �J (R) = 1 �
�

cRmaxf 2� 2� 1 ;0g exp (� c1R� 1 ) + Rd log(nR )
n

�
=p2

0(x).

The proof of Theorem 10 is in Section 9.7.
A few comments with Theorem 10 are in order. First, the assumptions of Theorem 10 are

satis�ed when p0 is standard multivariate Gaussian distribution and the transition probability
distribution f (:j:) takes the form (26). Under this example, both the stationary density and
joint density functions p0 and p are upper{supersmooth of second order. Second, the result
of Theorem 10 indicates that we can choose the radiusR such that R �� = O(log n). Then,
given that choice of R, the MSE rate of the Fourier transition estimator is at the order of
(log n)maxf 2(1� �� );2dg=n. It is faster than the MSE rate n� 1=(2d+4) of kernel density estimator
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for estimating transition probability density function from Markov sequence data (Yakowitz,
1985). Finally, since the Fourier transition estimator bpn;R is constructed based on Fourier
integral theorem, it already preserves the dependence structure of the Markov sequence data.
It is di�erent from the standard kernel density estimator where the choice of covariance matrix
is non-trivial to choose.

We note in passing that the idea of Fourier integral theorem can also be adapted to the
nonparametric regression for Markov sequence in the similar fashion as when the data are
independent in Section 5. We leave a detailed development of this direction for the future
work.

8. Illustrations

In this section, we provide experimental results illustrating the performance of Fourier esti-
mators developed in the previous sections. In the �rst one we highlight the di�erence between
using the Gaussian kernel and the Fourier kernel in the nonparametric regression setting.
This is in the multivariate setting and in many instances, such as (Chen et al., 2016a), even if
there is a dependence between variables, a product of independent Gaussian kernels is used.
On the other hand, a consequence of the special Fourier kernel and its connection with the
Fourier intergral theorem, a product of independent Fourier kernels work and are adequate
even when modeling dependent variables.

The next two examples involve multidimensional regression models. To report the good
estimation properties using the Fourier integral we present a curve on the surface of the
regression function. We also consider estimation of a mixing density, speci�cally the gradient
of the density which would allow us to search for the modes, opening up the possibility of
modal regression. A further example indeed is concerned with modal regression. We conclude
the section with dependent data, speci�cally Markov sequence data.

8.1 Example 1.

First we make a comparison between the Fourier regression estimator and the multivariate
Gaussian estimator based on a diagonal covariance matrix. With the sample sizen = 1000,
we generate the data from the model with (X i 1) as independent standard normal andX i 2 =
X i 1 + 0 :1 � Z i , where the (Z i ) are also independent standard normal. Then

Yi = X 2
i 1 � 3X i 2 + � i ; � i � standard normal:

We then compare the Fourier kernel estimator bmR (x) in equation (6) when R = 9 with the
Gaussian kernel regression estimator

bmh(x) =
P n

i =1 Yi K h(x1 � X i 1)K h(x2 � X i 2)
P n

i =1 K h(x1 � X i 1)K h(x2 � X i 2)
;

with K h(u) = h� 1 exp(� u2=(2h2)). We use the literature recommended choice ofh =
n� 1=(4+ d) = n� 1=6. The issue is that the denominator is attempting to estimate the joint
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Figure 1: Top: Histogram of bmR (1; 2) samples, Bottom: Histogram ofm̂h (1; 2).

density of (x1; x2) from the sample and, without a covariance matrix modeling the depen-
dence, bmh will struggle to provide a decent estimator (Wand and Jones, 1993, 1994). In this
simple illustration we compare the estimators evaluated atx = (1 ; 2); the true value being � 5.
We repeated the experiments 1000 times and hence for each estimator we have 1000 sample
estimates for this true value. The histogram representation of the two sets of samples are
presented in Fig. 1. As can be seen, the samples from the Fourier kernel are centered about
5; while those from the Gaussian kernel are not accurate.

To highlight the point about the dependence betweenX 1 and X 2; without any, so we can
generate them as two independent standard normals, the Gaussian kernel estimator performs
much better.

8.2 Example 2.

In this example we take the dimensiond = 4 and generate the data from

yi =
dX

j =1

aj x ij + 0 :01� i ; (27)

and take n = 106. Here the (x ij ) are taken as independent standard normal andaj = j=4.
We then estimate a particular curve for � 0:4 < t < 0:4 with

x1 =
p

t + 2 ; x2 = t; x 3 = sin(25( t + 2) =� ); x4 = exp(( t + 2) =4):

So we are estimating the curvem(x) = m(x1(t); x2(t); x3(t); x4(t)) and comparing with the
true one.
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Figure 2. Simulations with the Fourier regression estimator (20) for nonparametric regression
model (27) when d 2 f 4; 5g. In both �gures, the estimated and true regression functions are
respectively represented in bold and dashed lines. (a)d = 4; (b) d = 5.

The Fourier regression estimator is provided by equation (20) withR = 7. The Fig. 2(a)
presents the estimated curve (bold line) alongside the true curve (dashed line).

8.3 Example 3.

Here we present a similar example to Example 2 except now we extend the dimension to 5,
take n = 100; 000. All other aspects are the same as in Example 2, though now we estimate
the line curve m(x) with x = ( x1; x2; x3; x4; x5) and x1 = x2 = x3 = x4 = x5 = t, with
� 0:6 < t < 0:6.

Again, the Fourier regression estimator is provided in equation (20) with R = 5. The
Fig. 2(b) presents the estimated curve (bold line) alongside the true curve (dashed line).

8.4 Example 4.

In this example we are investigating the problem of estimating mixing density with a normal
kernel. The data model is given by

p(x) =
Z

f (x � � ) g(� ) d�

where f (x � � ) is a normal kernel with a �xed variance (the standard deviation h is set at
h = 0 :1) and location � . We focus on obtaining the derivative ofg; i.e., g0(� ) for the purposes
of obtaining the modes ofg. So speci�cally identifying the � values (in increasing order the
odd values) for whichg0(� ) = 0. The density estimator we use is a modi�cation to the Fourier
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Figure 3. Simulations with Fourier mode estimators. (a) We consider estimating modes
of mixing density. The estimated �rst order derivative of mixing density bg0

n;R (� ) is in bold
line while the �rst order derivative of true mixing density g0(� ) is in dashed line. (b) We
illustrate mode estimation from nonparametric modal regression problem. The true modes are
represented in dashed lines while the estimated modes are in bold line.

deconvolution estimator (17);

bgn;R (� ) =
R
n�

nX

i =1

eu2
i h2=2 cos(ui (� � x i ))

where the (x i ) are the observed sample fromp(x), and the (ui ) are independent samples from
the uniform distribution on (0 ; R), with R = 5. Hence, straightforwardly we get

bg0
n;R (� ) =

� R
n�

nX

i =1

ui eu2
i h2=2 sin(ui (� � x i )) :

We present an illustration in Fig. 3(a), where we compare with the true g0(� ) which is

g(� ) = 0 :6N (� j � 2; 0:62) + 0 :4N (� j 2; 0:62):

As indicated in Fig. 3(a), bg0
n;R (� ) gives a good estimate ofg0(� ).

8.5 Example 5.

In this example we look at nonparametric modal regression; see for example (Sager and
Thisted, 1982) and (Chen et al., 2016a). For a regression model with conditional density
p(y j x), the idea is to �nd the modes given values ofx. Of course, there may be more than
a single mode for somex, which indeed separates modal regression from other types, such
as mean regression, which yield a single answer. The possibly multiple modes can provide
necessary information concerningp(y j x).
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Figure 4. Simulations with the Fourier transition estimator (25) for Markov sequences. In
both �gures, the estimated and true transition probabilities are respectively represented in bold
and dashed lines. (a) One dimensional Gaussian Markov process; (b) Two dimensional Markov
process (28).

In the example we take p(y j x) as a bivariate normal density with modes at � x2 and
+ x2, and both with standard deviation 0.6, and with equal probability of 1 =2 assigned to
each component. The estimate of the modes over a range ofx values is provided in Fig. 3(b).
In this example, the sample size wasn = 10; 000, the data (x i )n

i =1 we sampled uniformly from
the interval ( � 2; 2), and the value of R was 7.

8.6 Example 6.

Here we consider estimation of transition densities associated with a Markov sequence via the
Fourier transition estimator (25). The �rst case is a classic Gaussian Markov process

X n+1 = �X n +
p

1 � � 2Zn ;

where the (Zn ) are independent standard normal random variables. The stationary density
p0 is well known to be the standard normal distribution. Starting with X 0 = 1

2 , we generated
10000 samples with� = 0 :6.

The true transition density f (y j x) and its Fourier transition estimator are shown in
Fig. 4(a) with x = 1.

The second case is a two{dimensional process (X n1; X n2) given by:

X n+1 1 = �X n 1 +
p

1 � � 2Zn 1;

X n+1 2 = � 1 X n 1 + � 2X n 2 +
q

1 � � 2
1 � � 2

2Zn 2; (28)

where the (Zn 1; Zn;2) are two independent sequences of standard normal random variables.
In our simulation, we took X 0 1 = 0 :5 and X 0 2 = 0 :2 and � = 0 :6, � 1 = 0 :3, and � 2 = 0 :7,
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Figure 5: Raw data of 9311 daily records of NYSE Composite Index.

and n = 100000. The estimated transition density f (y j x1; x2), also given by (25), is shown
in Fig. 4(b) with x1 = 1 and x2 = � 1.

8.7 Example 7.

In this subsection we use Fourier kernels on a real data set. The data set can be found in
the R packagefBasics and consists ofn = 9311 data points of daily records of the NYSE
Composite Index. A plot of the data is given in Fig. 5.

We analyse the transformed datazi = 10 log(yi +1 =yi ), where (yi ) are the raw data. This
gives us a sample size ofn = 9310. First, we model the data (zi ) using the Fourier kernels
with the value of R = 50. The density estimator alongside a histogram of the (z) samples is
given in Fig. 6(a).

We than estimated the conditional density conditioning on the value of 0:15. We obtained
an approximate sample estimate of this by constructing the histogram of samples which
have the immediately previous sample being an absolute value of no more than a distance
of 0.05 from 0:15. The histogram sample along with our conditional density estimator is
given in Fig. 6(b). The reason why there is little shift in the conditional density from the
marginal density is due to the low autocorrelation from the (zi ) data. The data has a lag{1
autocorrelation of 0.1 and is negligible for lag{2.

9. Proofs

In this section, we provide the proofs of the main results in the paper. The values of universal
constants (e.g.,C, c0 etc.) can change from line-to-line.
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Figure 6. Simulations with the Fourier density estimator (4) and Fourier transition esti-
mator (25) for the NYSE Composite Index dataset. (a) Transformed data (zi ) as histogram
with density estimator using the Fourier kernel; (b) Histogram of conditional samples with
conditional density estimator using the Fourier kernel.

9.1 Proof of Theorem 1

Given the upper{supersmoothness or upper{ordinary smoothness of the density functionp0,
its Fourier transform bp0 is integrable. Therefore, the Fourier inversion transform and integral
theorem in equations (4) and (3) hold. An application of Fourier integral theorem leads to

�
�
�E

h
bf n;R (x)

i
� p0(x)

�
�
� =

�
�
�
�
�

1
(2� )d

Z

Rd n[� R;R ]d

Z

Rd
cos(s> (x � t))p0(t)dsdt

�
�
�
�
�

=

�
�
�
�
�

1
(2� )d

Z

Rd n[� R;R ]d

h
cos(s> x)Re(bp0(s)) � sin(s> x)Im( bp0(s))

i
ds

�
�
�
�
�

�
1

(2� )d

Z

Rd n[� R;R ]d
[jcos(sx)j jRe(bp0(s)) j + jsin(sx)j j Im( bp0(s)) j] ds

�

p
2

(2� )d

Z

Rd n[� R;R ]d
jbp0(s)jds �

p
2

(2� )d

dX

i =1

Z

A i

jbp0(s)jds; (29)

where Re(bp0), Im( bp0) respectively denote the real and imaginary part of the Fourier transform
bp0 and A i = f x 2 Rd : jx i j � Rg for all i 2 [d]. Here, the second inequality is due to Cauchy-
Schwarz inequality.
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