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Abstract
Deep domain adaptation (DDA) approaches have
recently been shown to perform better than their
shallow rivals with better modeling capacity on
complex domains (e.g., image, structural data, and
sequential data). The underlying idea is to learn
domain invariant representations on a latent space
that can bridge the gap between source and target
domains. Several theoretical studies have estab-
lished insightful understanding and the benefit of
learning domain invariant features; however, they
are usually limited to the case where there is no la-
bel shift, hence hindering its applicability. In this
paper, we propose and study a new challenging
setting that allows us to use a Wasserstein dis-
tance (WS) to not only quantify the data shift but
also to define the label shift directly. We further
develop a theory to demonstrate that minimizing
the WS of the data shift leads to closing the gap
between the source and target data distributions
on the latent space (e.g., an intermediate layer of
a deep net), while still being able to quantify the
label shift with respect to this latent space. In-
terestingly, our theory can consequently explain
certain drawbacks of learning domain invariant
features on the latent space. Finally, grounded on
the results and guidance of our developed theory,
we propose the Label Matching Deep Domain
Adaptation (LAMDA) approach that outperforms
baselines on real-world datasets for DA problems.

1. Introduction
The great achievement of machine learning in general and
deep learning in particular can be attributed to the signifi-
cant advancement of in computational power and large-scale
annotated datasets. However, in many application domains,
it is often prohibitively labor-expensive, error-prone, and
time-consuming to collect and label high-quality data large
enough to train accurate deep models, such as in the domain
of medicine or autonomous driving. Domain adaptation
(DA) or transfer learning has emerged as a vital solution for
this issue by transferring knowledge from a label-rich do-
main (a.k.a. source domain) to a label-scarce domain (a.k.a.

target domain). Along with DA methods (Ganin & Lempit-
sky, 2015; Tzeng et al., 2015; Long et al., 2015; Shu et al.,
2018; French et al., 2018) achieved impressive performance
on real-world datasets, theoretical results (Mansour et al.,
2009; Ben-David et al., 2010; Redko et al., 2017; Zhang
et al., 2019a; Cortes et al., 2019) are abundant to provide
rigorous and insightful understanding of various aspects of
transfer learning.

Moving beyond using fixed features and taking advantage
of deep nets in learning rich and meaningful representations,
DDA aims to learn domain invariant representations, i.e.,
intermediate representations whose distribution is the same
in source and target domains. While relying on invariant
representations helps to reduce the data shift between the
source and target domains, Zhao et al. (2019) found that this
might seriously cause the label shift. More specifically, it
was shown that if the marginal label distributions are sig-
nificantly different between the source and target domains,
enforcing learning domain invariant representations leads to
an increase of the general loss on the target domain. More-
over, while data shift can be understood as a divergence
between the source and target data distributions, the label
shift is harder to quantify. It is commonly interpreted as the
difference in labeling mechanisms of the source and target
domains (i.e., ps (y | x) and pt (y | x)), however, it is not
an explicit definition for the label shift since the mechanic
to indicate how a source example couple to a target exam-
ple is missing. Another explanation is using a divergence
between the marginal label distributions of the source and
target domains (i.e., ps (y) and pt (y)), nevertheless, this
naive approach is simple and ignores individual conditional
distributions of labels w.r.t. data examples.

We propose in this paper a new theoretical setting for unsu-
pervised DA which enables us to study the data and label
shifts under a more rigorous framework. Specifically, let
Hs be the hypothesis class on source domain, we introduce
a transformation T that maps the target to source domains,
and hence inducing a new hypothesis class on the target
domain Ht := {ht : ht = hs ◦ T}, where ◦ represents the
function composition operator and hs ∈ Hs. Given a target
example x, our motivation is to use T to find its counter-
part source example T (x) and then use hs (T (x)) for a
prediction. We note that this setting is different from current
popular literature (Mansour et al., 2009; Ben-David et al.,
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2010; Redko et al., 2017; Zhang et al., 2019a; Cortes et al.,
2019) in which the source and target hypothesis classes are
decoupled. Moreover, by coupling the source and target
domains via the transformation T , our theory developed in
the sequel has two most important advantages: i) it enables
us to explicitly quantify the label shift, and ii) the transfor-
mation T can be constructed explicitly, e.g., as a deep net,
to yield tractable implementation.

Equipped with this setting, we demonstrate that the loss in
performance of a source hypothesis and its relevant target
hypothesis w.r.t. T can be upper-bounded by a Wasserstein
(WS) distance (Villani, 2008; Santambrogio, 2015) between
the source data distribution and the push-forward distribu-
tion of the target one (i.e., the data shift), and the expecta-
tion of the divergence between pt (y | x) and ps (y | T (x)),
where x is sampled from the target data distribution (i.e.,
the label shift). This bears similarity to previous results
(Mansour et al., 2009; Ben-David et al., 2010; Redko et al.,
2017; Cortes et al., 2019), however, different from existing
work, we conduct our theoretical analysis in a new setting
with multi-class classification, probabilistic label assign-
ment mechanism (Vapnik, 1999), continuous loss functions,
and use a WS to describe the data shift laying a novel frame-
work for describing the data and label shifts on a latent
space.

In our work, the transformation T is a deep neural network,
which can be decomposed into T = T 2 ◦ T 1 where T 1 is
a sub-network mapping data examples to a latent space (an
intermediate layer of T ). Under this assumption, we theo-
retically demonstrate that to resolve the data shift by means
of learning T to minimize the aforementioned WS distance,
we can simultaneously match the gap between source and
target distributions on the latent space and minimize a recon-
struction loss w.r.t. the ground metric c of a WS distance (cf.
Theorem 4). We note that although this result is similar to
(Zhao et al., 2019), our theoretical analysis is performed in
a more general setting (i.e., multi-class classification, proba-
bilistic labeling mechanism, and continuous loss function)
than (Zhao et al., 2019) (i.e., binary classification, determin-
istic labeling mechanism, and absolute loss). Additionally,
we make use of Wasserstein distance rather than JS distance
(Endres & Schindelin, 2006) as in (Zhao et al., 2019).

Our work suggests that the key ingredient to remedy the
label shift is to encourage target samples to move to suit-
able source class regions on the latent space while reducing
the data shift. With this motivation, we propose LAbel
Matching Domain Adaptation (LAMDA) with the aim to
minimize the discrepancy gap between two domains and si-
multaneously reduce the label mismatch on the latent space.
Different from existing works, LAMDA employs a multi-
class discriminator to be aware of source class regions and
an optimal transport based cost to encourage target samples

for moving to their matching source class region on the la-
tent space. We conduct extensive experiments on real-world
datasets to compare LAMDA with state-of-the-art baselines.
The experimental results on the real-world datasets show
that our LAMDA is able to reduce the label mismatch and
hence achieving better performances.

2. Related Work
Several attempts have been proposed to characterize the gap
between general losses of source and target domains in do-
main adaptation, notably (Mansour et al., 2009; Ben-David
et al., 2010; Redko et al., 2017; Zhang et al., 2019a; Cortes
et al., 2019). Ben-David & Urner (2014; 2012); Zhang
et al. (2019a) study the impossibility theorems for domain
adaptation, attempting to characterize the conditions under
which it is nearly impossible to perform transferability be-
tween domains. PAC-Bayesian view on domain adaptation
using weighted majority vote learning has been rigorously
studied in (Germain et al., 2013; 2016). Zhao et al. (2019);
Johansson et al. (2019) interestingly indicate the insuffi-
ciency of learning domain-invariant representation for suc-
cessful adaptation. Specifically, Zhao et al. (2019) points
out the degradation in target predictive performance if forc-
ing domain invariant representations to be learned while
two marginal label distributions of the source and target do-
mains are overly divergent. Johansson et al. (2019) analyzes
the information loss of non-invertible transformations and
proposes a generalization upper bound that directly takes it
into account.

Optimal transport theory has been theoretically leveraged
with domain adaptation (Courty et al., 2017). Moreover, our
theory development, motivations, and obtained results in
Section 3.3 are different from those in (Courty et al., 2017).
In addition, we compare our proposed LAMDA to DeepJ-
DOT (Damodaran et al., 2018) (a deep domain adaptation
approach developed based on the theoretical foundation of
(Courty et al., 2017)) and other OT-based DDA approaches,
including SWD (Lee et al., 2019), DASPOT (Xie et al.,
2019), ETD (Li et al., 2020) and RWOT (Xu et al., 2020) to
demonstrate the capability of our proposed method.

3. Main Theoretical Results
3.1. Theoretical setting

Let the data spaces of the source and target domains be X s
andX t. These are endowed with data generation probability
distributions Ps and Pt with the densities ps (x) and pt (x)
respectively. We also denote the probabilistic supervisor
distributions that assign labels to data samples in the source
and target domains by ps (y | x) and pt (y | x) (Vapnik,
1999). We consider the multi-class classification problem
with the label set Y = {1, 2, ..., C}.
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Consider the hypothesis family on the source do-
main Hs := {hs : X s → ∆C}, where ∆C ={
π ∈ RC : ‖π‖1 = 1 ∧ π ≥ 0

}
is the C-simplex. Let T :

X t → X s be a mapping.

The corresponding hypothesis family induced on
the target domain via T is denoted as Ht :=
{ht : X t → ∆C | ht (·) = hs (T (·)) for some hs ∈ Hs}.

The intuition here is that with x ∼ Pt, we apply the map-
ping T to reduce the difference between two domains and
then use a hypothesis hs ∈ Hs to predict the label of x.
This motivates us to seek the key properties of the transfor-
mation T in order to employ the hypothesis ht = hs ◦ T for
accurately predicting labels of target data.

To formulate this, let P# := T#Pt be the push-forward
distribution induced by transporting Pt via T , which con-
sequently introduces a new domain, termed the transport
domain having the density function p# (·) and probability
distribution P#. We further define the supervisor distribu-
tion for the transport domain as p# (y | T (x)) = pt (y | x)
for any x ∼ Pt. To ease the presentation, we denote the
general expected loss:

Ra,b (h) :=

∫
` (y, h (x)) pb (y | x) pa (x) dydx,

where a, b are in the set {s, t,#} and `(·, ·) specifies a loss
function. In addition, we shorten Ra,a as Ra, and given
a hypothesis hs ∈ Hs and ht = hs ◦ T , we measure the
variance of general losses of hs when predicting on the
source domain and general losses of ht when predicting on
the target domain as:

∆R
(
hs, ht

)
:=
∣∣Rt (ht)−Rs (hs)

∣∣ .
At the outset, we note that our theoretical setting is different
from popular literature (Mansour et al., 2009; Ben-David
et al., 2010; Redko et al., 2017; Zhang et al., 2019a; Cortes
et al., 2019). By introducing the transformation T , we cou-
ple target examples and hypotheses with source examples
and hypotheses which enables us to define the label shift
explicitly.

3.2. Gap between target and source domains

To investigate the variance ∆R (hs, ht) and derive a rela-
tion between Rt (ht) and Rs (hs), we make the following
assumptions w.r.t. loss function:

• (A.1) M := suphs∈Hs,x∈X s,y∈Y |` (y, hs (x))| <∞.

• (A.2) ` is a k-Lipschitz function w.r.t. a norm ‖·‖
over ∆C , that is, |` (y,a)− ` (y,b)|≤ k ‖a− b‖for
all y ∈ Y and a,b ∈ ∆C .

We note that these assumptions are easily satisfied when `
is a bounded loss, e.g., logistic or 0-1 loss, or when ` is any
continuous loss,X s is compact, and supx∈X s |hs (x)| <∞.
Equipped with Assumption (A.1), we have the following
key result to upper bound the gap ∆R (hs, ht):
Theorem 1. Given Assumption (A.1), then for any hypoth-
esis hs ∈ Hs, the following inequality holds:

∆R
(
hs, ht

)
≤M

(
Wc0/1

(
Ps,P#

)
+ EPt [‖∆p (· | x)‖1]

)
,

where ∆p (· | x) :=
∥∥∥[pt (y = i | x)− ps (y = i | T (x))

]C
i=1

∥∥∥
1
,

and Wc0/1 (·, ·) is the Wasserstein distance with respect
to the cost function c0/1 (x,x′) = 1x6=x′ , returning 1 if
x 6= x′ and 0 otherwise.
Remark 2. We have some observations in order.

• The quantity ∆p (· | x) quantifies the label shift. Note
that by coupling a target example x with a source exam-
ple T (x) using a transformation T , we can reasonably
define and tackle the label shift as the divergence be-
tween pt (y | x) and ps (y | T (x)).

• In addition, when ∆p (· | x) = 0 (i.e.,
ps (y | T (x)) = pt (y | x) for x ∼ Pt) and
Wc0/1

(
Ps,P#

)
= 0 (i.e., T#Pt = Ps), Theorem 1

shows that a perfect transfer learning without loss
of performance can be achieved. Hence, if we can
instrument a suitable mapping T , the adaptation is
achievable.

To arrive at a stronger result presented in Theorem 3 below,
we consider a Wasserstein distance between Ps and P# w.r.t.
a ground metric c over X s ×X s and p ≥ 1 as

Wc,p

(
Ps,P#

)
= inf
γ∈Γ(Ps,P#)

E(xs,x#)∼γ [c (xs,x#)
p
]
1/p

,

where γ ∈ Γ
(
Ps,P#

)
is a joint distribution admitting

Ps,P# as its marginals.

Furthermore, given a decreasing function φ : R→ [0, 1], a
hypothesis hs is said to be φ-Lipschitz transferable (Courty
et al., 2017) w.r.t. a joint distribution γ ∈ Γ

(
Ps,P#

)
, the

metric c, and the norm ‖·‖ if for all λ > 0, we have

P(xs,x#)∼γ [‖hs (xs)− hs (x#)‖ > λc (xs,x#)] ≤ φ (λ) .

Theorem 3. Assume that Assumptions (A.1) and (A2) hold,
the hypothesis hs satisfies φ-Lipschitz transferable w.r.t the
optimal joint distribution (transport plan) γ∗ ∈ Γ

(
Ps,P#

)
,

c and ‖·‖, the following inequality holds for all λ > 0:

∆R
(
hs, ht

)
≤M (EPt [‖∆p (· | x)‖1] + 2φ (λ))

+ kλWc,p

(
Ps,P#

)
.

Detailed proofs and further technical descriptions are given
in the supplementary material.
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3.3. Data shift via Wasserstein metric

Theorems 1 and 3 suggest that we need to construct a map
that transports the target to source distributions and makes
two supervisor distributions identical via this map for a
perfect transfer learning. This is consistent with what is
achieved in Theorem 1 for which the upper bound of the
loss variance ∆R (hs, ht) vanishes.

In particular, the upper bounds in Theorems 1 and 3
consist of two terms: the first term (i.e., Wc,p

(
Ps,P#

)
)

quantifies the data shift, while the second term (i.e.,
EPt [‖∆p (y | x)‖1]) reflects the label shift. Our strategy
is then to find the best hypothesis hs∗ by minimizing the
general loss Rs (hs), and the optimal transformation T ∗ by
minimizing Wc,p

(
Ps,P#

)
and EPt [‖∆p (y | x)‖1].

Due to the lack of target labels, we focus on minimiz-
ing the first term Wc,p

(
Ps,P#

)
by answering the follow-

ing question: among the transformations T that trans-
port the target to source distributions, which transforma-
tion incurs the minimal label shift EPt [‖∆p (y | x)‖1] =∥∥∥[pt (y = i | x)− ps (y = i | T (x))]

C
i=1

∥∥∥? Given the
ground metric c and p ≥ 1, this is formulated as:

min
T

W c,p

(
T#Pt,Ps

)
. (1)

Let Z be an intermediate space (i.e., the latent space
Z = Rm). We consider the composite mapping : T (x) =
T 2
(
T 1 (x)

)
where T 1 is a mapping from the target domain

X t to the latent space Z and T 2 maps from the latent space
Z to the source domain X s (note that if Z = X s then
T 2 = id is the identity function). The optimization problem
(OP) in (1) becomes:

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
. (2)

In the following theorem, we show that the above OP can
be transformed into another form involving the latent space
(see Figure 1 for an illustration of that theorem).

Theorem 4. The optimal objective value of the OP (2) is
equal to that of the OP (3), that is

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
=

min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
(3)

where G1 is a map from X s to Z .

We can interpret G1 and T 1 as two generators that map the
source and target domains to the common latent space Z .
The constraint T 1

#Pt = G1
#Ps enforces the gap between

the source and target distributions to be closed in the la-
tent space. Furthermore, T 2 maps from the latent space to

Figure 1. T = T 2 ◦ T 1 maps from the target to source domains.
We minimize D

(
G1

#Ps, T 1
#Pt

)
to close the discrepancy gap of

the source and target domains on the latent space and minimize
the reconstruction terms to avoid the mode collapse.

the source domain and aims to reconstruct G1. Similar to
(Tolstikhin et al., 2018), we do a relaxation and arrive at

min
T 1,T 2,G1

(
Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
+ αD

(
G1

#Ps, T 1
#Pt

))
, (4)

where D (·, ·) specifies a divergence between two distribu-
tions over the latent space and α > 0. When α approaches
+∞, the solution of the relaxation problem in Eq. (4) ap-
proaches the optimal solution in Eq. (3).

Let Ds =
{

(xs1, y1) , ...,
(
xsNs

, yNs

)}
, to enable the trans-

fer learning, we can train a supervised classifier A on
G1 (Ds) =

{(
G1 (xs1) , y1

)
, . . . ,

(
G1
(
xsNs

)
, yNs

)}
. Our

final OP becomes

min
T1,T2,G1

(
βEx∼Ps

[
c
(
x, T 2 (G1 (x)

))p]1/p
+αD

(
G1

#Ps, T 1
#Pt)+ E(x,y)∼Ds

[
`
(
y,A

(
G1 (x)

))])
, (5)

where β > 0 and we overload Ds to represent the empir-
ical distribution over the source training set. Moreover, to
reduce the discrepancy gap D

(
G1

#Ps, T 1
#Pt

)
in Eq. (5),

one can use the adversarial learning framework (Goodfel-
low et al., 2014) to implicitly minimize a Jensen-Shannon
(JS) divergence or explicitly minimize other divergences
and distances (e.g., a maximum mean discrepancy (Gretton
et al., 2007) or WS distance). Note that if we employ a
JS divergence or f−divergence for D, the OP in (5) can
be further rewritten in a min-max form (Goodfellow et al.,
2014; Nowozin et al., 2016).
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It is also worth mentioning that with regard to the latent
space and the above equipment for T = T 2 ◦ T 1, we have
the following formulations for the source classifier (i.e., hs)
and target classifier (i.e., ht) now become:

hs (x) = A
(
G1 (x)

)
andht (x) = A

(
G1 (T (x))

)
. (6)

3.4. Label shift via Wasserstein metric

Since G1 and T 1 are two mappings from the source and
target domains to the latent space, we can further define
the source and target supervisor distributions on the latent
space as p#,s

(
y | G1 (x)

)
= ps (y | x) for x ∼ Ps and

p#,t
(
y | T 1 (x)

)
= pt (y | x) for x ∼ Pt. With respect

to the latent space, the second term of the upper bound in
Theorem 1 can be rewritten as in the following corollary.
Corollary 5. The second term of the upper bound in Theo-
rem 1 can be rewritten as

EPt
[∥∥∥p#,s (· | G1 (T 2 (T 1 (x)

)))
− p#,t (· | T 1 (x)

)∥∥∥
1

]
.

(7)

We now analyze the ideal scenario to formulate the data
distribution and label shifts in the latent space Z . For suf-
ficiently powerful G1 and T 1, the OP in (3) peaks its mini-
mization at 0 when G1

#Ps = T 1
#Pt and G1 ◦ T 2 = id (i.e.,

the identity function), which further implies that

T#Pt = T 2
#

(
T 1

#Pt
)

= T 2
#

(
G1

#Ps
)

=
(
G1 ◦ T 2

)
#
Ps = Ps,

and Wc,p (T#Pt,Ps) = 0. Under that ideal scenario, the
label mismatch term in Eq. (7) reduces to

EPt

[∥∥p#,s
(
· | T 1 (x)

)
− p#,t

(
· | T 1 (x)

)∥∥
1

]
. (8)

We note that because G1
#Ps = T 1

#Pt, T 1 (x) with x ∼ Pt
is moved to a source class region on the latent space (e.g.,
the region of class ys). This sample would be classified
to class ys by a source classifier (i.e., the one that mim-
ics p#,s

(
y | T 1 (x)

)
). Assume that x has the ground-truth

label yt, minimizing the label mismatch term in Eq. (8) sug-
gests ys = yt . In other words, T 1 should transport x to the
proper class region to reduce the label mismatch. Moreover,
in unsupervised DA, since target labels are lacking and the
neural network generator T 1 can be sufficiently powerful
to map a target class region to a wrong source one on the
latent space (cf. Figure 2), it is almost impossible to tackle
perfectly the label mismatch.

Aligned with (Zhao et al., 2019), the label mismatch term
in (7) can be lower-bounded by a divergence between the
marginal label distributions of the source and target domains
as shown in Corollary 6.
Corollary 6. Under the ideal scenario, the label mismatch
term in (7) has a lower-bound∥∥∥[ps (y = i)− pt (y = i)

]C
i=1

∥∥∥
1
.

Figure 2. Label match and mismatch on the latent space.

Under the light of Corollary 6, we find that when pushing
G1

#Ps to T 1
#Pt by minimizing Wc,p

(
G1

#Ps, T 1
#Pt

)
, the

label mismatch term in (8) tends to become higher than
the L1 distance between the marginal label distributions of
source and target domains. Therefore, if the marginal label
distributions of source and target domains (i.e., ps (y) and
pt (y)) are significantly divergent, learning domain invariant
representations on a latent space can cause more label shift.
To strengthen this observation, we develop a theorem to
directly offer an upper bound for the L1 distance between
the label marginal distributions. To this end, we define a
new metric c̃ w.r.t. the familyHa of the classifier A in the
OP (5) as:

c̃ (z1, z2) = sup
A∈Ha

‖A (z1)−A (z2)‖1 ,

where z1 and z2 lie on the latent space. The following
lemma states under which conditions, c̃ is a proper metric
on the latent space.

Lemma 7. For any z1 and z2, if A (z1) = A (z2) ,∀A ∈
Ha leads to z1 = z2, c̃ is a proper metric.

It turns out that the necessary (also sufficient) condition in
Lemma 7 is realistic and not hard to be satisfied (e.g., the
familyHa contains any bijection). We now can define a WS
distance Wc̃,p that involves in the following theorem.

Theorem 8. If c̃ is a proper metric and p ≥ 1, the quantity∥∥∥[ps (y = i)− pt (y = i)]
C
i=1

∥∥∥
1

has the upper-bounds:

i) Rs1 (hs) + Rt1 (ht) + Wc̃,p

(
G1

#Ps, T 1
#Pt

)
if hs :=

A
(
G1 (x)

)
and ht := A

(
T 1 (x)

)
.

ii) Rs1 (hs) + Rt1 (ht) + Wc̃,p

(
G1

#Ps, T 1
#Pt

)
+

Wc̃,p

(
L#Pt, T 1

#Pt
)

where L := T ◦ G1, and hs

and ht are defined in (6).

Here Rs1 (hs) :=
∫
‖ps (· | x)− hs (x)‖1 ps (x) dx and

Rt1 (ht) :=
∫
‖pt (· | x)− ht (x)‖1 pt (x) dx are the gen-
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eral losses of hs and ht w.r.t. ‖·‖1.

Remark 9. Theorem 8 reveals that if the marginal label dis-
tributions are significantly different between the source and
target domains, forcing Wc̃,p

(
G1

#Ps, T 1
#Pt

)
to be smaller

increases Rs1 (hs) + Rt1 (ht), which directly hurts the pre-
dictive performance of the target classifier ht. The reason
is that Rs1 (hs) would be small since it is trained on labeled
source domain. Similar significant theoretical result was
discovered in (Zhao et al., 2019) (see Theorem 4.9 in that
paper). However, our theory is developed in a more gen-
eral context of multi-class classification and uses the WS
distance rather than the JS distance (Endres & Schindelin,
2006) as in (Zhao et al., 2019). Moreover, our Theorem 8
can be generalized to any metric on the simplex ∆C (e.g., a
Wasserstein distance).

4. Label Matching Domain Adaptation
As pointed by our theory and ablation study (see our sup-
plementary material), reducing label mismatch in the joint
space when bridging D

(
G1

#Ps, T 1
#Pt

)
(cf. Eq. (4)) be-

tween the source and target domains in this space is a key
factor to improve the predictive performance of deep unsu-
pervised domain adaptation. Existing approaches (Ganin
& Lempitsky, 2015; Tzeng et al., 2015; Long et al., 2015;
French et al., 2018) use a binary discriminator to guide
target samples for moving to source samples in the joint
space.

However, a binary discriminator is only able to distinguish
the entire source domain from the target domain, hence
cannot elegantly guide target samples moving to the most
suitable class in the source domain. Our idea is to increase
the resolution of discriminators by utilizing a multi-class dis-
criminator d that can simultaneously (i) distinguish source
and target domains and (ii) emphasize the class regions in
the source domain.

With the assistance of a multi-class discriminator d, we
hope to guide target samples to a suitable class in the source
domain. In addition, in conjunction with the multi-class dis-
criminator d, we propose minimizing an optimal transport
inspired cost which leverages the class information provided
by the multi-class discriminator d for guiding target samples
more accurately. We name the proposed method as LAbel
Matching Domain Adaptation (LAMDA).

To minimize the discrepancyD
(
G1

#Ps, T 1
#Pt

)
, we employ

the adversarial learning principle (Goodfellow et al., 2014)
with the support of the multi-class discriminator d. More-
over, to simultaneously discriminate the source and target
samples and distinguish the classes of the source domain, we
use a multi-class discriminator d with C+ 1 probability out-
puts (C is the number of classes) in which for x ∼ Ps and

1 ≤ i ≤ C, the i-th probability output specifies the proba-
bility of that example generated from the i-th class mixture
of the source domain, i.e., di

(
G1 (x)

)
= P (y = i | x) and

for x ∼ Pt, the C+ 1 probability output specifies the proba-
bility of that example generated from the target distribution,
i.e., dC+1

(
T 1 (x)

)
= P (y = C + 1 | x).

Training method. Since the discriminator can discriminate
the source and target samples and distinguish the classes of
the source domain, we solve the following OP for d:

max
d

(
Ld :=

C∑
i=1

E(x,y)∼Ds∧y=i

[
log di

(
G1 (x)

)]
+

Ex∼Pt

[
log dC+1

(
T 1 (x)

)]
+

Ex∼Ps

[
log
(
1− dC+1

(
G1 (x)

))])
. (9)

To train the generators G1, T 1, we update them as follows:

i) We move G1 (x) for x ∼ Ps to the region of high values
for dC+1 (·) (i.e., the region of target samples) by minimiz-
ing

I
(
G1
)

:= Ex∼Ps

[
log

(
1− dC+1

(
G1(x)

))]
.

ii) We move T 1 (x) for x ∼ Pt to one of class regions in the
source domain accordingly. Recalling that di (x) represents
the likelihood of x w.r.t. the i-th source class region, we
employ− log P(y = i | x) = − log di

(
T 1 (x)

)
as the cost

incurred if we move T 1 (x) to Dsi = {(x, y) ∈ Ds | y = i}.

To specify the probabilities that transports x ∼ Pt to the
source class regions, we use a transportation probability
network S (x) for which Si (x) points out probability to
transport x to Dsi . Therefore, the total transport cost in-
curred is

TC
(
T 1
)

:= Ex∼Pt

[
−

C∑
i=1

Si (x) log di
(
T 1 (x)

)]
.

In addition, we push T 1 (x) for x ∼ Pt to the the region of
low values for dC+1 (·) (i.e., the region of source samples)
by minimizing

J
(
T 1
)

:= Ex∼Pt

[
log dC+1

(
T 1 (x)

)]
.

Moreover, we need to minimize the loss on the source do-
main

LA := E(x,y)∼Ds

[
`
(
y,A

(
G1 (x)

))]
,

and the reconstruction term defined as

R
(
T 2, G1

)
:= EPs

[∥∥T 2
(
G1 (x)

)
− x

∥∥2

2

]
.
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Putting all above losses together, the OP to update
G1, T 1, T 2, and A has the following form:

min
G1,T 1,T 2,A

Lg, (10)

where we have defined

Lg := I
(
G1
)

+ J
(
T 1
)

+ αTC
(
T 1
)

+ βR
(
T 2, G1

)
+ LA.

The min-max OP of our LAMDA has the following form:

max
d

min
G1,T 1,T 2,A

(
I
(
G1
)

+ J
(
T 1
)

+K
(
d, T 1

)
+βR

(
T 2, G1

)
+ LA

)
, (11)

where the term K
(
d, T 1

)
is the first term of Ld as in (9) for

the outer max and αTC
(
T 1
)

for the inner min.

It is worth noting that although the min-max problem in
(11) is not mathematically rigorous, we still present it to
increase the comprehensibility of our LAMDA. In addition,
to reduce the model complexity, we share S and A because
the source classification A can also characterize the source
class regions. Finally, the pseudocode for training LAMDA
is presented in Algorithm 1.

Algorithm 1 Pseudocode for training LAMDA.

Input: Source Ds = {(xs
k, y

s
k)}Ns

k=1, target Dt =
{
xt
l

}Nt

l=1
.

Output: Generator G1∗, classifier A∗.
1: for number of training iterations do
2: Sample minibatch of source {(xs

k, y
s
k)}mk=1 and target{

xt
l

}m
l=1

.
3: Update d according to Eq. (9).
4: Update G1, T 1, T 2 and A according to Eq. (10).
5: end for

5. Experiment
5.1. Ablation Study

We start with the ablation study of the effect of the terms in
LAMDA especially the reconstruction term βR

(
T 2, G1

)
.

Due to the space limitation, we place other ablation studies,
the network architectures and implementation specifications
in our supplementary material. At the outset, we notice that
akin to other DDA works, we share two generators G1 and
T 1 (i.e., G1 = T 1 = G).

5.1.1. THE EFFECT OF RECONSTRUCTION TERM

We conduct the experiments on the three pairs of Office-31
as shown in Figure 3 (left). The experiments on the Office-
31 use ResNet-50 (He et al., 2016) as a backbone to extract

Figure 3. The effect of the reconstruction term (left) and the total
transport cost (right).

Figure 4. The t-SNE visualization of the transfer task A→D with
label and domain information. Each color denotes a class while
the circle and cross markers represent the source and target data
respectively.

the features. The representations of ResNet-50 are fed to
the latent space using a dense layer and on the top of this
dense layer, we have another dense layer to connect the
latent and the output layers. We employ the reconstruction
term to reconstruct the output representations of ResNet-50
from the latent representations (i.e., the output of ResNet-
50→ latent representation→ output of ResNet-50). Note
that we do not fine-tune the base ResNet-50. We vary β in
{0, 0.05, 0.1, 0.2, 0.5, 1.0, 5.0} and observe the target test
accuracies. As shown in Figure 3, the reconstruction term
slightly affects the final performance. Therefore, in our
experiments on real-world datasets, we set β = 0 to reduce
the training cost.

5.1.2. THE EFFECT OF THE TOTAL TRANSPORT COST

We vary the trade-off parameter α of the total transport cost
to inspect its effect on the final performance as shown in
Figure 3 (right). We empirically find that the appropriate
range for α is [0.1, 0.5]. In our experiments on the real-
world datasets, we set α = 0.5.

5.1.3. FEATURE VISUALIZATION

We visualize the features of ResNet-50 and our method
on the transfer task A→D (Office-31) by t-SNE (van der
Maaten & Hinton, 2008) in Figure 4. The sub-figure (a)
show that ResNet-50 classifies quite well on the source
domain (A) but poorly on the target domain (D), while the
representation in sub-figure (b) is generated by our method
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Table 1. Classification accuracy (%) on Office-Home dataset using ResNet-50 features.
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 (He et al., 2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN (Ganin & Lempitsky, 2015) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

DAN (Long et al., 2015) 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
CDAN (Long et al., 2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

CDAN+TransNorm (Wang et al., 2019) 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6
TPN (Pan et al., 2019) 51.2 71.2 76.0 65.1 72.9 72.8 55.4 48.9 76.5 70.9 53.4 80.4 66.2

MDD (Zhang et al., 2019a) 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
MDD+Implicit Alignment (Jiang et al., 2020) 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5

DeepJDOT (Damodaran et al., 2018) 48.2 69.2 74.5 58.5 69.1 71.1 56.3 46.0 76.5 68.0 52.7 80.9 64.3
SHOT (Liang et al., 2020) 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

ETD (Li et al., 2020) 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3
RWOT (Xu et al., 2020) 55.2 72.5 78.0 63.5 72.5 75.1 60.2 48.5 78.9 69.8 54.8 82.5 67.6

LAMDA 57.2 78.4 82.6 66.1 80.2 81.2 65.6 55.1 82.8 71.6 59.2 83.9 72.0

Table 2. Classification accuracy (%) on digits and natural image
datasets.

Source MNIST USPS MNIST SVHN MNIST CIFAR STL
Target USPS MNIST MNIST-M MNIST SVHN STL CIFAR

MMD (Long et al., 2015) - - 76.9 71.1 - - -
DANN (Ganin & Lempitsky, 2015) - - 81.5 71.1 35.7 - -

DRCN (Ghifary et al., 2016) - - - 82.0 40.1 66.4 -
DSN (Bousmalis et al., 2016) - - 83.2 82.7 - - -

ATT (Saito et al., 2017) - - 94.2 86.2 52.8 - -
P-model (French et al., 2018) - - - 92.0 71.4 76.3 64.2

CyCADA (Hoffman et al., 2018) 95.6 96.5 - 90.4 - - -
MSTN (Xie et al., 2018) 92.9 97.6 - 91.7 - - -

CDAN (Long et al., 2018) 95.6 98.0 - 89.2 - - -
MCD (Saito et al., 2018) 94.2 94.1 - 96.2 - - -

GTA (Sankaranarayanan et al., 2018) 90.8 95.3 - 92.4 - - -
DEV (You et al., 2019) 92.5 96.9 - 93.2 - - -

LDVA (Zhu et al., 2019) 98.8 96.8 - 95.2 - - -
DeepJDOT(Damodaran et al., 2018) 95.7 96.4 92.4 96.7 - - -

DASPOT (Xie et al., 2019) 97.5 96.5 94.9 96.2 - - -
SWD (Lee et al., 2019) 98.1 97.1 90.9 98.9 - - -

rRevGrad+CAT (Deng et al., 2019) 94.0 96.0 - 98.8 - - -
SHOT (Liang et al., 2020) 98.0 98.4 - 98.9 - - -
RWOT (Xu et al., 2020) 98.5 97.5 - 98.8 - - -

LAMDA 99.5 98.3 98.4 99.5 82.1 78.0 71.6

with better alignment. LAMDA achieves exactly 31 clusters
corresponding to 31 classes of Office-31, which represents
the ability of reducing not only the data shift but also the
label shift between two domains.

5.2. Our LAMDA Versus the Baselines

We conduct the experiments to compare our LAMDA
against the state-of-the-art baselines on the digit, traffic sign,
natural scene, Office-Home, Office-31, and ImageCLEF-DA
datasets. In addition to the baselines in general DDA, we
also compare our LAMDA to the ones developed based on
the theory of OT including DeepJDOT (Damodaran et al.,
2018), SWD (Lee et al., 2019), DASPOT (Xie et al., 2019),
ETD (Li et al., 2020) and RWOT (Xu et al., 2020).

For Office-Home, Office-31, and ImageCLEF-DA, we use
ResNet-50 as a feature extractor (He et al., 2016). As con-
sistently shown in Tables 1, 2, 3, and 4, our LAMDA out-
performs the baselines on the average performances and
achieves good performances on the individual pairs. We
note that the fact our LAMDA achieves superior perfor-
mances demonstrates that it can efficiently reduce the label
mismatch on the latent space.

6. Conclusion
Deep domain adaptation is a recent powerful learning frame-
work that aims to address the problem of scarcity of qualified

Table 3. Classification accuracy (%) on Office-31 dataset using
either ResNet-50 features or ResNet-50 based deep models.

Method A→W A→D D→W W→D D→A W→A Avg
ResNet-50 (He et al., 2016) 70.0 65.5 96.1 99.3 62.8 60.5 75.7

DeepCORAL (Sun & Saenko, 2016) 83.0 71.5 97.9 98.0 63.7 64.5 79.8
DANN (Ganin et al., 2016) 81.5 74.3 97.1 99.6 65.5 63.2 80.2

RTN (Long et al., 2016) 84.5 77.5 96.8 99.4 66.2 64.8 81.6
ADDA (Tzeng et al., 2017) 86.2 78.8 96.8 99.1 69.5 68.5 83.2
iCAN (Zhang et al., 2018) 92.5 90.1 98.8 100.0 72.1 69.9 87.2
CDAN (Long et al., 2018) 94.1 92.9 98.6 100.0 71.0 69.3 87.7

GTA (Sankaranarayanan et al., 2018) 89.5 87.7 97.9 99.8 72.8 71.4 86.5
DEV (You et al., 2019) 93.2 92.8 98.4 100.0 70.9 71.2 87.8
TPN (Pan et al., 2019) 91.2 89.9 97.7 99.5 70.5 73.5 87.1

MDD (Zhang et al., 2019a) 94.5 93.5 98.4 100.0 74.6 72.2 88.9
MDD+Implicit Alignment (Jiang et al., 2020) 90.3 92.1 98.7 99.8 75.3 74.9 88.8

SPL (Wang & Breckon, 2020) 92.7 93.0 98.7 99.8 76.4 76.8 89.6
DeepJDOT (Damodaran et al., 2018) 88.9 88.2 98.5 99.6 72.1 70.1 86.2

SHOT (Liang et al., 2020) 90.1 94.0 98.4 99.9 74.7 74.3 88.6
ETD (Li et al., 2020) 92.1 88.0 100.0 100.0 71.0 67.8 86.2

RWOT (Xu et al., 2020) 95.1 94.5 99.5 100.0 77.5 77.9 90.8
LAMDA 95.2 96.0 98.5 100.0 87.3 84.4 93.0

Table 4. Classification accuracy (%) on ImageCLEF-DA dataset
using ResNet-50 features.

Method I→P P→I I→C C→I C→P P→C Avg
ResNet-50 (He et al., 2016) 74.8 83.9 91.5 78.0 65.5 91.2 80.7

DeepCORAL (Sun & Saenko, 2016) 75.1 85.5 92.0 85.5 69.0 91.7 83.1
RTN (Long et al., 2016) 75.6 86.8 95.3 86.9 72.7 92.2 84.9

DANN (Ganin et al., 2016) 75.0 86.0 96.2 87.0 74.3 91.5 85.0
ADDA (Tzeng et al., 2017) 75.5 88.2 96.5 89.1 75.1 92.0 86.0
iCAN (Zhang et al., 2018) 79.5 89.7 94.7 89.9 78.5 92.0 87.4
CDAN (Long et al., 2018) 77.7 90.7 97.7 91.3 74.2 94.3 87.7

CDAN+TransNorm (Wang et al., 2019) 78.3 90.8 96.7 92.3 78.0 94.8 88.5
TPN (Pan et al., 2019) 78.2 92.1 96.1 90.8 76.2 95.1 88.1

CADA-P (Kurmi et al., 2019) 78.0 90.5 96.7 92.0 77.2 95.5 88.3
SymNets (Zhang et al., 2019b) 80.2 93.6 97.0 93.4 78.7 96.4 89.9

DeepJDOT (Damodaran et al., 2018) 77.5 90.5 95.0 88.3 74.9 94.2 86.7
ETD (Li et al., 2020) 81.0 91.7 97.9 93.3 79.5 95.0 89.7

RWOT (Xu et al., 2020) 81.3 92.9 97.9 92.7 79.1 96.5 90.0
LAMDA 80.7 95.0 96.7 95.0 80.7 95.8 90.6

labeled data for supervised learning. The key ingredient is
to learn domain invariant representations, which obviously
can address the data shift issue. However, the label shift
issue is significantly challenging to define and tackle. In
this paper, we propose a new theory setting that allows us to
couple the source and target hypotheses for explicitly defin-
ing the label shift. We further develop a theory to show the
link between minimizing the WS distance for the data shift
and bridging the gap between source and target domains on
a latent space. In addition, under the light of the theory de-
veloped, we can interpret the label shift on the latent space
and point out the drawback of learning domain invariant
representations. Finally, grounded on the developed theory,
we propose LAMDA which outperforms the baselines on
real-world datasets.
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Supplementary Material for
“LAMDA: Label Matching Deep Domain Adaptation”

In this supplementary material, we provide complete detail for all proofs presented in our main paper together with the related
background so that it can be as self-contained as possible. In the following part, we present the experiment on a synthetic dataset to
verify our theory, followed by the experimental settings and datasets for our LAMDA.

1 Related Background
In this section, we present the related background for our paper. We depart with the introduction of pushforward measure followed
by the definition of optimal transport and the introduction of a standard machine learning setting.

1.1 Pushforward Measure
Given two probability spaces (X ,F , µ) and (Y,G) where X ,Y are two sample spaces, F ,G are two σ-algebras over X ,Y respec-
tively, and µ is a probability measure, a map T : X → Y is said to be (Y,G)- (X ,F) measurable if for every A ∈ G, the inverse
T−1 (A) ∈ F . The (Y,G)- (X ,F) measurable map T when applied to (X ,F , µ) induces a distribution ν over (Y,G) which is
defined as:

ν (A) = µ
(
T−1 (A)

)
, ∀A ∈ G

We also say that the map T transport the probability measure µ to ν and denote as ν = T#µ. Furthermore, if µ and ν are two
given atomless probability measures over (X ,F) and (Y,G), there exists a bijection T : X → Y that transports µ to ν. This is
known as measurable isomorphism and formally stated in [32] (Chapter 1, Page 19).

Theorem 1. Given two probability spaces (X ,F , µ) and (Y,G, ν) with two atomless probability µ, ν over two Polish spaces X , Y
(i.e., separably complete metric spaces), there exist a bijection T : X → Y that transports µ to ν, i.e., T#µ = ν.

1.2 Optimal Transport
Given two probability measures (X , µ) and (Y, ν) and a cost function c (x, x′), under the conditions stated in Theorems 1.32 and
1.33 [26], two following definitions of Wasserstein (WS) distance are equivalent:

Wc,p (µ, ν) = inf
T#µ=ν

Ex∼µ [c (x, T (x))
p
]
1/p

Wc,p (µ, ν) = inf
π∈Γ(µ,ν)

E(x,x′)∼π
[
c (x,x′)

p]1/p
where p > 0 and Γ (µ, ν) specifies the set of joint distributions over X × Y which admits µ and ν as marginals. The first definition
is known as Monge problem (MP), while the second one is known as Kantorovich problem (KP).

We now restate the sufficient conditions for which (MP) and (KP) are equivalent (cf. Theorems 1.32 and 1.33 [26]).
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Theorem 2. If X and Y are compact, Polish metric spaces, µ and ν are atomless, and c is a lower semi-continuous function, (KP)
is equivalent to (MP) in the sense that two infima are equal.

In what follows, we assume that the relevant conditions are satisfied and use (KP) and (MP) interchangeably depending
on the contexts. More specifically, we use (MP) in Theorem (9), while using (KP) in the rest.

1.3 Machine Learning Setting and General Loss
According to [31], a standard machine learning system consists of three components: the generator, the supervisor, and the hypothesis
class.

Generator The generator is the mechanism to generate data examples x ∈ Rd and is mathematically formulated by an existed but
unknown distribution p (x).

Supervisor The supervisor is the mechanism to assign labels y (e.g., y ∈ {1, 2, . . . , C} for the classification problem and y ∈ R
for the regression problem) to a data example x and is mathematically formulated as a conditional distribution p (y | x).

Hypothesis class This specifies the hypothesis set H = {hθ | θ ∈ Θ} parameterized by θ which is used to predict label for the
data examples x.

Given a loss function l (x, y;θ) = ` (y, hθ (x)) where ` : ∆C → R (∆C is the C-simplex) and ` (y, y′) specifies the loss
suffered if predicting the data example x with the label y′ while its true label is y, the general loss of the hypothesis hθ is defined as
the expected loss caused by hθ :

R (θ) = Ep(x,y) [` (y, hθ (x))] =

∫
` (y, hθ (x)) p (x, y) dxdy

The optimal parameter θ∗ ∈ Θ is sought by minimizing the general loss as:

θ∗ = argmin
θ∈Θ

R (θ)

2 Theoretical Results

2.1 Gap between target and source domains
In this section, we investigate the variance ∆R (hs, ht) between the expected loss in target domain Rt (ht) and the expected loss in
source domain Rs (hs) where ht = hs ◦ T . We embark on with the following simple yet key proposition indicating the connection
between Rt (ht) and R# (hs).

Proposition 3. As long as ht = hs ◦ T , we have Rt (ht) = R# (hs).

Proof. The proof of the proposition is directly from the definitions of ht, hs, and expected losses. In particular, we find that

R# (hs) =

∫
` (y, hs (x)) p# (y | x) p# (x) dxdy = EP#

[∫
` (y, hs (x)) p# (y | x) dy

]
.
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Recall that, T transports the target distribution Pt to the source distribution P#, we achieve that

R# (hs) = EPt

[∫
` (y, hs (T (x))) p# (y | T (x)) dy

]
= EPt

[∫
`
(
y, ht (x)

)
pt (y | x) dy

]
= Rt

(
ht
)
,

where the second equality is due to the connection ht = hs ◦ T . As a consequence, we reach the conclusion of the proposition.

Theorem 4. (Theorem 1 in the main paper) Given Assumption (A.1), then for any hypothesis hs ∈ Hs, the following inequality
holds:

∆R
(
hs, ht

)
≤M

(
Wc0/1

(
Ps,P#

)
+ EPt [‖∆p (· | x)‖1]

)
,

where ∆p (· | x) :=
∥∥∥[pt (y = i | x)− ps (y = i | T (x))

]C
i=1

∥∥∥
1
, and Wc0/1

(·, ·) is the Wasserstein distance with respect to the cost
function c0/1 (x,x′) = 1x6=x′ , returning 1 if x 6= x′ and 0 otherwise.

Proof. Invoking the result from Proposition 3 and the basic triangle inequality, we obtain that

∆R
(
hs, ht

)
=
∣∣Rt (ht)−Rs (hs)

∣∣ =
∣∣R# (hs)−Rs (hs)

∣∣
=
∣∣R# (hs)−R#,s (hs) +R#,s (hs)−Rs (hs)

∣∣
≤
∣∣R# (hs)−R#,s (hs)

∣∣+
∣∣R#,s (hs)−Rs (hs)

∣∣ .
To achieve the conclusion of the theorem, it is sufficient to upper bound the two terms

∣∣R# (hs)−R#,s (hs)
∣∣ and

∣∣R#,s (hs)−Rs (hs)
∣∣.

For the first term, according the definition of expected losses, we find that

∣∣R# (hs)−R#,s (hs)
∣∣ =

∣∣∣∣∫ ` (hs (x) , y)
(
p# (y | x)− ps (y | x)

)
p# (x) dxdy

∣∣∣∣
=

∣∣∣∣∣
C∑
y=1

∫
` (hs (x) , y)

(
p# (y | x)− ps (y | x)

)
p# (x) dx

∣∣∣∣∣
≤

C∑
y=1

∫
` (hs (x) , y)

∣∣p# (y | x)− ps (y | x)
∣∣ p# (x) dx

≤M
C∑
y=1

∫ ∣∣p# (y | x)− ps (y | x)
∣∣ p# (x) dx

= M

∫ C∑
y=1

∣∣p# (y | x)− ps (y | x)
∣∣ p# (x) dx

≤MEP#

[∥∥∥[p# (y | x)− ps (y | x)
]C
y=1

∥∥∥
1

]
(1)
= MEPt

[∥∥∥[p# (y | T (x))− ps (y | T (x))
]C
y=1

∥∥∥
1

]
= MEPt

[∥∥∥[pt (y | x)− ps (y | T (x))
]C
y=1

∥∥∥
1

]
, (1)

where (1) is from the fact that T#Pt = P#.
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For the second term, similar argument as the above argument leads to

∣∣R#,s (hs)−Rs (hs)
∣∣ =

∣∣∣∣∣
C∑
y=1

∫
` (hs (x) , y) ps (y | x)

[
p# (x)− ps (x)

]
dx

∣∣∣∣∣
≤

C∑
y=1

∫
` (hs (x) , y) ps (y | x)

∣∣p# (x)− ps (x)
∣∣ dx

≤M
C∑
y=1

∫
ps (y | x)

∣∣p# (x)− ps (x)
∣∣ dx

= M

∫ C∑
y=1

ps (y | x)
∣∣p# (x)− ps (x)

∣∣ dx
= M

∫ ∣∣p# (x)− ps (x)
∣∣ dx = MWc0/1

(
Ps,P#

)
, (2)

where the final equality is from the fact that cost matrix c0/1 is given by c0/1 (x,x′) = 1x6=x′ , which returns 1 if x 6= x′ and 0
otherwise (for the second equality, please refer to [12], Page 7 and the coupling characterization of total variance distance).

Combining the results from (1) and (2), we arrive at the bound that

∆R
(
hs, ht

)
≤M

(
Wc0/1

(
Ps,P#

)
+ EPt

[∥∥pt (y | x)− ps (y | T (x))
∥∥

1

])
= M

(
Wc0/1

(
Ps,P#

)
+ EPt [‖∆p (y | x)‖1]

)
.

As a consequence, we reach the conclusion of the theorem.

Remark 5. If the following assumptions hold:

(i) The transformation mapping T (x) = x, i.e., we use the same hypothesis set for both the source and target domains,

(ii) The loss ` (y, h (x)) = 1
2 |y − h (x)| where we restrict to consider hypothesis h : X → {−1, 1},

then we recover the theoretical result obtained in [2].
Remark 6. When Wc0/1

(
Ps,P#

)
= 0 , i.e., T#Pt = Ps, and there is a harmony between two supervisors of source and target

domain, i.e., pt (y | x) = ps (y | T (x))), Theorem 4 suggests that we can perfectly do transfer learning without loss of performance.
This fact is summarized in the following corollary.

Corollary 7. Assume that T#Pt = Ps and the source and target supervisor distributions are harmonic in the sense that ps (y | T (x)) =
pt (y | x) for x ∼ Pt. Then, we can do a perfect transfer learning between the source and target domains.

Proof. For any hs ∈ Hs, denote ht = hs ◦ T , we have

Rs (hs) = EPs

[∫
` (y, hs (x)) ps (y | x) dy

]
=EPt

[∫
` (y, hs (T (x))) ps (y | T (x)) dy

]
=EPt

[∫
`
(
y, ht (x)

)
pt (y | x) dy

]
= Rt

(
ht
)
,

where the second equality is from the fact T transport Pt to Ps.
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Furthermore, given a decreasing function φ : R → [0, 1], a hypothesis hs is said to be φ-Lipschitz transferable [6] w.r.t. a joint
distribution γ ∈ Γ

(
Ps,P#

)
, the metric c, and the norm ‖·‖ if for all λ > 0, we have

P(xs,x#)∼γ [‖hs (xs)− hs (x#)‖ > λc (xs,x#)] ≤ φ (λ) .

Theorem 8. (Theorem 3 in the main paper) Assume that Assumptions (A.1) and (A2) hold, the hypothesis hs satisfies φ-Lipschitz
transferable w.r.t the optimal joint distribution (transport plan) γ∗ ∈ Γ

(
Ps,P#

)
, c and ‖·‖, the following inequality holds for all

λ > 0:

∆R
(
hs, ht

)
≤M (EPt [‖∆p (· | x)‖1] + 2φ (λ))

+ kCλWc,p

(
Ps,P#

)
.

Proof. We have

∆R
(
hs, ht

)
=
∣∣Rt (ht)−Rs (hs)

∣∣ =
∣∣R# (hs)−Rs (hs)

∣∣
=
∣∣R# (hs)−R#,s (hs) +R#,s (hs)−Rs (hs)

∣∣
≤
∣∣R# (hs)−R#,s (hs)

∣∣+
∣∣R#,s (hs)−Rs (hs)

∣∣ .
We know that the first term can be bounded as∣∣R# (hs)−R#,s (hs)

∣∣ ≤MEPt [‖∆p (· | x)‖1] .

We manipulate the second term as

∣∣R#,s (hs)−Rs (hs)
∣∣ =

∣∣∣∣∫ ` (hs (x) , y) ps (y | x)
[
p# (x)− ps (x)

]
dxdy

∣∣∣∣
=

∣∣∣∣∣
C∑
y=1

∫
` (hs (x) , y) ps (y | x)

(
p# (x)− ps (x)

)
dx

∣∣∣∣∣
≤

C∑
y=1

∣∣∣∣∫ ` (hs (x) , y) ps (y | x) p# (x) dx−
∫
` (hs (x) , y) ps (y | x) ps (x) dx

∣∣∣∣
=

C∑
y=1

∣∣∣∣∫ `
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
dP#

(
x#
)
−
∫
` (hs (xs) , y) ps (y | xs) dPs (xs)

∣∣∣∣
=

C∑
y=1

∣∣∣∣∫ [` (hs (x#
)
, y
)
ps
(
y | x#

)
− ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)∣∣∣∣
≤

C∑
y=1

(∣∣∣∣∫
A

[
`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
− ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)∣∣∣∣
+

∣∣∣∣∫
Ac

[
`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
− ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)∣∣∣∣
)
,

where we denote A =
{(

x#,xs
)

:
∥∥h (x#

)
− h (xs)

∥∥ ≤ λc (x#,xs
)}

, hence γ∗ (Ac) ≤ φ (λ).
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We manipulate the second term as:

C∑
y=1

∣∣∣∣∫
Ac

[
`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
− ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)∣∣∣∣
≤

C∑
y=1

∫
Ac

[
`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
+ ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)
≤M

C∑
y=1

∫
Ac

[
p
(
y | x#

)
+ ps (y | xs)

]
dγ∗

(
x#,xs

)
= M

∫
Ac

[
C∑
y=1

p
(
y | x#

)
+

C∑
y=1

ps (y | xs)
]
dγ∗

(
x#,xs

)
= 2Mγ∗ (Ac) ≤ 2Mφ (λ) .

We derive the first term as:

U =

C∑
y=1

∣∣∣∣∫
A

[
`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
− ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)∣∣∣∣
=

C∑
y=1

∣∣∣∣∫
A

`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
dP#

(
x#
)
−
∫
A

` (hs (xs) , y) ps (y | xs) dPs (xs)

∣∣∣∣
=

C∑
y=1

∣∣∣∣∫
A

` (hs (x) , y) ps (y | x) p# (x) dx−
∫
A

` (hs (x) , y) ps (y | x) ps (x) dx

∣∣∣∣
≤

C∑
y=1

∫
A

` (hs (x) , y) ps (y | x)
∣∣p# (x)− ps (x)

∣∣ dx
≤

C∑
y=1

∫
A

` (hs (x) , y)
∣∣p# (x)− ps (x)

∣∣ dx
Denote A1 =

{
x ∈ A : p# (x)− ps (x) ≥ 0

}
, we then have

U ≤
C∑
y=1

∫
A

` (hs (x) , y)
∣∣p# (x)− ps (x)

∣∣ dx
=

C∑
y=1

[∫
A1

` (hs (x) , y)
(
p# (x)− ps (x)

)
dx +

∫
A\A1

` (hs (x) , y)
(
ps (x)− p# (x)

)
dx

]

=

C∑
y=1

[∫
A1

[
`
(
hs
(
x#
)
, y
)
− ` (hs (xs) , y)

]
dγ∗

(
x#,xs

)
+

∫
A\A1

[
` (hs (xs) , y)− `

(
hs
(
x#
)
, y
)]
dγ∗

(
x#,xs

)]

≤
C∑
y=1

∫
A

∣∣` (hs (x#
)
, y
)
− ` (hs (xs) , y)

∣∣ dγ∗ (x#,xs
)
.
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U ≤
C∑
y=1

∫
A

∣∣` (hs (x#
)
, y
)
− ` (hs (xs) , y)

∣∣ dγ∗ (x#,xs
)

(1)

≤ k

C∑
y=1

∫
A

∥∥hs (x#
)
− hs (xs)

∥∥
1
dγ∗

(
x#,xs

)
= kC

∫
A

∥∥hs (x#
)
− hs (xs)

∥∥
1
dγ∗

(
x#,xs

)
(2)

≤ λkC

∫
A

c
(
x#,xs

)
dγ∗

(
x#,xs

)
≤ λkC

∫
c
(
x#,xs

)
dγ∗

(
x#,xs

)
= λkCWc

(
P#,Ps

)
(3)

≤ λkCWc,p

(
P#,Ps

)
.

Here we note that we have (1) due to ` is k-Lipschitz w.r.t ‖·‖, (2) due to the definition of A, and (3) due to p ≥ 1 hence
Wc

(
P#,Ps

)
≤Wc,p

(
P#,Ps

)
(see Section 5.1 in [26]).

2.2 Data shift via Wasserstein metric
Let Z be an intermediate space (i.e., the joint space Z = Rm). We consider the composite mappings: T (x) = T 2

(
T 1 (x)

)
where

T 1 is a mapping from the target domain X t to the joint space Z and T 2 maps from the joint space Z to the source domain X s (note
that if Z = X s then T 2 = id is the identity function). Based on this structure, we consider the following optimization problem:

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
. (3)

In the following theorem, we demonstrate that the above optimization problem can be equivalently transformed into another form
involving the joint space (see Figure 1 for an illustration of that theorem).

Theorem 9. (Theorem 4 in the main paper) The optimal objective value of the OP (3) is equal to that of the OP (4), that is

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
=

min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p (4)

where G1 is a map from X s to Z .

Proof. From the definition of Wasserstein metric, we obtain that

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
= inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

.

Therefore, we can rewrite the optimization problem in the left side of (4) as follows:

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
= min
T 1,T 2

inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

.

We first prove that

min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p ≥ min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
.
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Figure 1: The mapping T = T 2 ◦ T 1 maps from the target to source domains. We minimize D
(
G1

#Ps, T 1
#Pt

)
to close the

discrepancy gap of the source and target domains in the joint space.

Given the mappings T 1, T 2, for any mapping G1 satisfying the equation T 1
#Pt = G1

#Ps, we let T ′ = T 2 ◦ G1. Then, we arrive at
T ′#Ps = T#Pt. Hence, we find that

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
= Ex∼Ps

[
c (x, T ′ (x))

p]1/p ≥ inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

.

The above inequality directly leads to

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p ≥ inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

.

As a consequence, we achieve the following inequality

min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p ≥ min
T 1,T 2

inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

= min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
.

We now prove that

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
≥ min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

Given the mapping T 1, we consider the distribution Q over the source domain such that there exists a map T 2 for which T 2
#

(
T 1

#Pt
)

=

Q. For any mapping L satisfying the equation L#Ps = Q, we can find mappings U, V such that U#Ps = T 1
#Pt and L = V ◦ U . To
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this end, there exists a bijective mapping V satisfying V#

(
T 1

#Pt
)

= Q since these two distributions are atomless (see Theorem 1).

Additionally, we can set U = V −1 ◦L. It is obvious that U#Ps = T 1
#Pt and L = V ◦U from the definitions of U and V . Therefore,

we have that

Ex∼Ps [c (x, L (x))
p
]
1/p

=Ex∼Ps [c (x, V (U (x)))
p
]
1/p

≥ min
T 2:T 2

#(T 1
#Pt)=Q

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

Invoking the above equality, we find that

inf
L:L#Ps=Q

Ex∼Ps [c (x, L (x))
p
]
1/p ≥ min

T 2:T 2
#(T 1

#Pt)=Q
min

G1:T 1
#Pt=G1

#Ps
Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

With that inequality, we directly achieve the following inequality

min
Q

inf
L:L#Ps=Q

Ex∼Ps [c (x, L (x))
p
]
1/p

≥ min
Q

min
T 2:T 2

#(T 1
#Pt)=Q

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

min
T 2

inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p ≥ min

T 2
min

G1:T 1
#Pt=G1

#Ps
Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

Note that from the definitions of Q and T 2, it is obvious that

min
Q

inf
L:L#Ps=Q

Ex∼Ps [c (x, L (x))
p
]
1/p

= min
T 2

inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

.

min
T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
= min

Q
min

T 2:T 2
#(T 1

#Pt)=Q
min

G1:T 1
#Pt=G1

#Ps
Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

By varying the mapping T 1 in both sides of the above inequality, we arrive at the following inequality

min
T 1,T 2

inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p ≥ min

T 1,T 2
min

G1:T 1
#Pt=G1

#Ps
Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

Hence, we obtain that

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
≥ min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

Finally, we reach the conclusion as:

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
= min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.
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It is interesting to interpret G1 and T 1 as two generators that map the source and target domains to the common joint space Z
respectively. The constraint T 1

#Pt = G1
#Ps further indicates that the gap between the source and target distributions is closed in the

joint space via two generators G1 and T 1. Furthermore, T 2 maps from the joint space to the source domain and aims to reconstruct
G1. Similar to [29], we do relaxation and arrive at the optimization problem:

min
T 1,T 2,G1

(
Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
+ αD

(
G1

#Ps, T 1
#Pt

))
, (5)

where D (·, ·) specifies a divergence between two distributions over the joint space and α > 0.

2.3 Label shift via Wasserstein metric
Since G1 and T 1 are two maps from the source and target domains to the joint space, we can further define two source and target
supervisor distributions on the joint space as p#,s

(
y | G1 (x)

)
= ps (y | x) and p#,t

(
y | T 1 (x)

)
= pt (y | x). With respect to the

joint space, the second term of the upper bound in Theorem 4 can be rewritten as in the following corollary.

Corollary 10. (Corollary 5 in the main paper) The second term of the upper bound in Theorem 4 can be rewritten as

EPt

[∥∥p#,s
(
y | G1

(
T 2
(
T 1 (x)

)))
− p#,t

(
y | T 1 (x)

)∥∥
1

]
. (6)

Proof. The proof is trivial from the definitions of p#,s
(
y | G1 (x)

)
= ps (y | x) and p#,t

(
y | T 1 (x)

)
= pt (y | x).

Corollary 11. (Corollary 6 in the main paper) Under the ideal scenario, the label mismatch term in (6) has a lower-bound∥∥∥[ps (y = i)− pt (y = i)
]C
i=1

∥∥∥
1
.

Proof. Under the ideal scenario, the label mismatch term becomes

EPt

[∥∥p#,s
(
y |
(
T 1 (x)

))
− p#,t

(
y | T 1 (x)

)∥∥
1

]
.

We derive as follows:

U =EPt

[∥∥p#,s
(
y |
(
T 1 (x)

))
− p#,t

(
y | T 1 (x)

)∥∥
1

]
=

C∑
i=1

∫ ∣∣p#,s
(
y = i |

(
T 1 (x)

))
− p#,t

(
y = i | T 1 (x)

)∣∣ pt (x) dx

≥
C∑
i=1

∣∣∣∣∫ (p#,s
(
y = i |

(
T 1 (x)

))
− p#,t

(
y = i | T 1 (x)

))
pt (x) dx

∣∣∣∣
=

C∑
i=1

∣∣∣∣∫ p#,s
(
y = i |

(
T 1 (x)

))
pt (x) dx−

∫
p#,t

(
y = i | T 1 (x)

)
pt (x) dx

∣∣∣∣
=

C∑
i=1

∣∣∣∣∫ p#,s
(
y = i |

(
T 1 (x)

))
dPt −

∫
p#,t

(
y = i | T 1 (x)

)
dPt
∣∣∣∣

=

C∑
i=1

∣∣∣∣∫ p#,s (y = i | z) dT 1
#Pt −

∫
p#,t

(
y = i | T 1 (x)

)
dPt
∣∣∣∣

=

C∑
i=1

∣∣∣∣∫ p#,s (y = i | z) dG1
#Ps −

∫
p#,t

(
y = i | T 1 (x)

)
dPt
∣∣∣∣

10



U ≥
C∑
i=1

∣∣∣∣∫ p#,s (y = i | z) dG1
#Ps −

∫
p#,t

(
y = i | T 1 (x)

)
dPt
∣∣∣∣

=

C∑
i=1

∣∣∣∣∫ p#,s
(
y = i | G1 (x)

)
dPs −

∫
p#,t

(
y = i | T 1 (x)

)
dPt
∣∣∣∣

=

C∑
i=1

∣∣∣∣∫ ps (y = i | x) dPs −
∫
pt (y = i | x) dPt

∣∣∣∣
=

C∑
i=1

∣∣∣∣∫ ps (y = i | x) ps (x) dx−
∫
pt (y = i | x) pt (x) dx

∣∣∣∣
=

C∑
i=1

∣∣ps (y = i)− pt (y = i)
∣∣

=
∥∥∥[ps (y = i)− pt (y = i)

]C
i=1

∥∥∥
1
.

It is also worth mentioning that with regard to the latent space and the above equipment for T = T 2 ◦ T 1, we have the following
formulations for the source classifier (i.e., hs) and target classifier (i.e., ht) now become:

hs (x) = A
(
G1 (x)

)
andht (x) = A

(
G1 (T (x))

)
. (7)

We define a new metric c̃ w.r.t. the familyHa of the classifier A as:

c̃ (z1, z2) = sup
A∈Ha

‖A (z1)−A (z2)‖1 ,

where z1 and z2 lie on the latent space. The following lemma states under which conditions, c̃ is a proper metric on the latent space.

Lemma 12. (Lemma 7 in the main paper) For any z1 and z2, if A (z1) = A (z2) ,∀A ∈ Ha leads to z1 = z2, c̃ is a proper metric.

Proof. First, c̃ (z1, z2) ≥ 0 and c̃ (z1, z2) = 0 meansA (z1) = A (z2) ,∀A ∈ Ha, which leads to z1 = z2. Second, it is obvious that
c̃ (z1, z2) = c̃ (z2, z1) ,∀z1, z2.

Given any z1, z2, z3, we have

c̃ (z1, z3) = sup
A∈Ha

‖A (z1)−A (z3)‖1 ≤ sup
A∈Ha

(‖A (z1)−A (z2)‖1 + ‖A (z2)−A (z3)‖1)

≤ sup
A∈Ha

(‖A (z1)−A (z2)‖1) + sup
A∈Ha

(‖A (z2)−A (z3)‖1)

= c̃ (z1, z2) + c̃ (z2, z3) .

Therefore, c̃ is a proper metric.

It turns out that the necessary (also sufficient) condition in Lemma 12 is realistic and not hard to be satisfied (e.g., the familyHa
contains any bijection). We now can define a WS distanceWc̃,p that involves in Theorem 14 whose proof needs the following lemma.
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Lemma 13. Let ph
s

be the density of the distribution Phs

formed by pushing forward Ps via hs and ph
t

be the density of the
distribution Pht

formed by pushing forward Pt via ht. If γ ∈ Γ
(
Phs

,Pht
)

, there exists γ′ ∈ Γ (Ps,Pt) such that (hs, ht)# γ′ = γ.

Proof. Let denote γs as the joint distribution of the samples (xs, hs (xs)) where xs ∼ Ps and γt as the joint distribution of the
samples (xt, ht (xt)) where xt ∼ Pt. It is obvious that γs is a joint distribution of Ps and Phs

and γt is a joint distribution of
Pt and Pht

. According to the gluing lemma (see Lemma 5.5 in [26]), there exists a joint distribution µ such that for any draw
(xs, τ s, τ t,xt) ∼ µ then (xs, τ s) ∼ γs, (τ s, τ t) ∼ γ, and (xt, τ t) ∼ γt.

Let γ′ be the distribution of samples (xs,xt) (i.e., the projection of µ onto the first and fourth dimensions). This follows that
γ′ is a joint distribution of Ps and Pt (i.e., γ′ ∈ Γ (Ps,Pt)). In addition, since (xs, τ s) ∼ γs, τ s = hs (xs), since (xt, τ t) ∼ γt,
τ t = ht (xt), and (τ s, τ t) ∼ γ. Therefore, we reach (hs, ht)# γ′ = γ.

We note that in the above proof, we employ a general form of the gluing lemma for 4 distributions and spaces. The proof is
mainly based on the gluing lemma for 3 distributions and spaces and trivial.

Theorem 14. (Theorem 8 in the main paper) If c̃ is a proper metric and p ≥ 1, the quantity
∥∥∥[ps (y = i)− pt (y = i)]

C
i=1

∥∥∥
1

has the
upper-bounds:

i) Rs1 (hs) +Rt1 (ht) +Wc̃,p

(
G1

#Ps, T 1
#Pt

)
if hs := A

(
G1 (x)

)
and ht := A

(
T 1 (x)

)
.

ii) Rs1 (hs) +Rt1 (ht) +Wc̃,p

(
G1

#Ps, T 1
#Pt

)
+Wc̃,p

(
L#Pt, T 1

#Pt
)

where L := T ◦G1, and hs and ht are defined in (7).

Here Rs1 (hs) :=
∫
‖ps (· | x)− hs (x)‖1 ps (x) dx and Rt1 (ht) :=

∫
‖pt (· | x)− ht (x)‖1 pt (x) dx are the general losses of hs

and ht w.r.t. ‖·‖1.

Proof. i) We derive as follows:∥∥∥[ps (y = i)− pt (y = i)
]C
i=1

∥∥∥
1
≤
∥∥∥∥[ps (y = i)− phs

(y = i)
]C
i=1

∥∥∥∥
1

+

∥∥∥∥[phs

(y = i)− pht

(y = i)
]C
i=1

∥∥∥∥
1

+

∥∥∥∥[pht

(y = i)− pt (y = i)
]C
i=1

∥∥∥∥
1

,

where ph
s

is the density of the distribution Phs

formed by pushing forward Ps via hs and ph
t

is the density of the distribution Pht

formed by pushing forward Pt via ht.
We manipulate the first term as:∥∥∥∥[ps (y = i)− phs

(y = i)
]C
i=1

∥∥∥∥
1

=

C∑
i=1

∣∣∣ps (y = i)− phs

(y = i)
∣∣∣

=

C∑
i=1

∣∣∣∣∫ (ps (y = i,x)− phs

(y = i,x)
)
ps (x) dx

∣∣∣∣ =

C∑
i=1

∣∣∣∣∫ (ps (y = i,x)− hsi (x)) ps (x) dx

∣∣∣∣
≤
∫ C∑

i=1

|ps (y = i,x)− hsi (x)| ps (x) dx =

∫ C∑
i=1

∥∥∥[ps (y = i,x)− hsi (x)]
C
i=1

∥∥∥
1
ps (x) dx = Rs1 (hs) .

Similarly, we can bound the third term as:∥∥∥∥[pht

(y = i)− pt (y = i)
]C
i=1

∥∥∥∥
1

≤ Rt1
(
ht
)
.
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To handle the second term
∥∥∥∥[phs

(y = i)− pht

(y = i)
]C
i=1

∥∥∥∥
1

, we first prove that

∥∥∥∥[phs

(y = i)− pht

(y = i)
]C
i=1

∥∥∥∥
1

≤W1

(
Ph

s

,Ph
t
)
,

where the WS w.r.t. the metric ‖·‖1 . Indeed, consider a joint distribution γ ∈ Γ
(
Phs

,Pht
)

. According to Lemma 13, there exists

γ′ ∈ Γ (Ps,Pt) such that (hs, ht)# γ′ = γ, we then have

E(ys,yt)∼γ
[∥∥ys − yt

∥∥
1

]
= E(xs,xt)∼γ′

[∥∥hs (xs)− ht
(
xt
)∥∥

1

]
=

∫ ∥∥hs (xs)− ht
(
xt
)∥∥

1
dγ′
(
xs,xt

)
=

C∑
i=1

∫ ∣∣hsi (xs)− hti
(
xt
)∣∣ dγ′ (xs,xt)

≥
C∑
i=1

∣∣∣∣∫ (hsi (xs)− hti
(
xt
))
dγ′
(
xs,xt

)∣∣∣∣ =

C∑
i=1

∣∣∣∣∫ hsi (xs) dPs (xs)−
∫
hti
(
xt
)
dPt

(
xt
)∣∣∣∣

=

C∑
i=1

∣∣∣phs

(y = i)− pht

(y = i)
∣∣∣ =

∥∥∥∥[phs

(y = i)− pht

(y = i)
]C
i=1

∥∥∥∥
1

.

Therefore, we achieve

W1

(
Ph

s

,Ph
t
)

= inf
γ∈Γ(Phs ,Pht)

E(ys,yt)∼γ
[∥∥ys − yt

∥∥
1

]
≥
∥∥∥∥[phs

(y = i)− pht

(y = i)
]C
i=1

∥∥∥∥
1

.

We now need to prove that W1

(
Phs

,Pht
)
≤ Wc̃,p

(
G1

#Ps, T 1
#Pt

)
(p ≥ 1). Indeed, given any γ′ ∈ Γ

(
G1

#Ps, T 1
#Pt

)
, let

denote γ = A#γ
′, then γ ∈ Γ

(
Phs

,Pht
)

. We then have:

E(ys,yt)∼γ
[∥∥ys − yt

∥∥
1

]
= E(τs,τ t)∼γ′

[∥∥A (τ s)−A
(
τ t
)∥∥

1

]
≤E(τs,τ t)∼γ′

[
c̃
(
τ s, τ t

)]
.

This follows that
W1

(
Ph

s

,Ph
t
)
≤ E(ys,yt)∼γ

[∥∥ys − yt
∥∥

1

]
≤ E(τs,τ t)∼γ′

[
c̃
(
τ s, τ t

)]
,

which further implies

W1

(
Ph

s

,Ph
t
)
≤ inf
γ′∈Γ(G1

#Ps,T 1
#Pt)

E(τs,τ t)∼γ′
[
c̃
(
τ s, τ t

)]
= Wc̃

(
G1

#Ps, T 1
#Pt

)
≤Wc̃,p

(
G1

#Ps, T 1
#Pt

)
.

ii) Using the same derivation as in (i) in which T 1 is replaced by L, we achieve∥∥∥[ps (y = i)− pt (y = i)
]C
i=1

∥∥∥
1
≤ Rs1 (hs) +Rt1

(
ht
)

+Wc̃,p

(
G1

#Ps, L#Pt
)

≤Rs1 (hs) +Rt1
(
ht
)

+Wc̃,p

(
G1

#Ps, T 1
#Pt

)
+Wc̃,p

(
T 1

#Pt, L#Pt
)
.

We note that our proof is still applicable if we generalize ‖·‖1 to any metric d in ∆C , which can be decomposed d (ys,yt) =∑C
i=1 di (ysi ,y

t
i) .
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3 Experiments

3.1 Ablation Study
3.1.1 Experiment on Synthetic Data

Synthetic Dataset for the Source and Target Domains

We generate two synthetic labeled datasets for the source and target domains. We generate the 10, 000 data examples of the source
dataset from the mixture of two Gaussian distributions: ps (x) = πs1N (x | µs1,Σs1) + πs2N (x | µs2,Σs2) where πs1 = πs2 = 1

2 ,
µs1 = [1, 1, ..., 1] ∈ R10, µs2 = [2, 2, ..., 2] ∈ R10 and Σs1 = Σs2 = I10. Similarly, we generate the another 10, 000 data examples of
the target dataset from the mixture of two Gaussian distributions: pt (x) = πt1N (x | µt1,Σt1) + πt2N (x | µt2,Σt2) where πt1 = 1

3 ,
πt2 = 2

3 , µt1 = [4, 4, ..., 4] ∈ R10, µt2 = [5, 5, ..., 5] ∈ R10 and Σt1 = Σt2 = I10. For each data example in the source and target
domains, we assign label y = 0 if this data example is generated from the first Gauss and y = 1 if this data example is generated
from the second Gauss using Bayes’ s rule.

Figure 2: Architecture of networks for deep domain adaptation on the synthetic datasets.

Deep Domain Adaptation on the Synthetic Dataset

Figure 2 shows the architectures of networks used in our experiments on the synthetic datasets. Two generators G1, T 1 with the
same architectures (10 → 5 (ReLu) → 5 (ReLu)) map the source and target data to the intermediate joint layer. Note that different
from other works in deep domain adaptation, we did not tie G1 and T 1. The network T 2 with the architecture (10 → 5 (ReLu) →
5 (ReLu)) maps from the intermediate joint layer to the source and target domains respectively. To break the gap between the
source and target domains in the joint layer, we employ GAN principle [13, 10] wherein we invoke a discriminator network d
(5 → 5 (ReLu) → 1 (sigmoid)) to discriminate the source and target data examples in the joint space. The classifier network A
(5 → 5 (ReLu) → 1 (sigmoid)) is employed to classify the labeled source data examples. To approximate the 0/1 cost function,
we use the modified sigmoid function [23]: cγ (x,x′) = 2/ [1 + exp {−γ ‖x− x′‖2}] − 1 with γ = 100. It can be seen that when
γ → +∞, the cost function cγ approaches the 0/1 cost function. More specifically, we need to update G1, T 1, T 2,A, and d as
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Figure 3: Left: the accuracies on the source and target datasets. Middle: the plots of three terms in Theorem 4. Right: the plot of
empirical losses on the source and target datasets.

follows: (
G1, T 1, T 2,A

)
= argmin

G1,T1,T2,A

I
(
G1, T 1, T 2,A

)
and d =argmax

d

J (d),

where α is set to 0.1 and we have defined

I
(
G1, T 1, T 2,A

)
=

+ Ex∼Ps

[
cγ
(
x, T 2

(
G1 (x)

))]
+ E(x,y)∼Ds

[
`
(
y,A

(
G1 (x)

))]
+ α

[
Ex∼Ps

[
log
(
d
(
G1 (x)

))]
+ Ex∼Pt

[
log
(
1− d

(
T 1 (x)

))]]
J (d) = Ex∼Ps

[
log
(
d
(
G1 (x)

))]
+ Ex∼Pt

[
log
(
1− d

(
T 1 (x)

))]
.

Based on the classifier A on the joint space, we can identify the corresponding hypotheses on the source and target domains as:
hs (x) = A

(
G1 (x)

)
and ht (x) = A

(
T 1 (x)

)
.

Verification of Our Theory for Unsupervised Domain Adaptation

In this experiment, we assume that none of data example in the target domain has label. We measure three terms, namely |R (ht)−R (hs)|,
W
(
Ps,P#

)
and EPt [‖∆p (y | x)‖1] (M = 1 since we are using the logistic loss) as defined in Theorem 4 across the training

progress. Actually, we approximate R (ht) , R (hs) using the corresponding empirical losses. As shown in Figure 3 (middle), the
green plot is always above the blue plot and this empirically confirms the inequality in Theorem 4. Furthermore, the fact that three
terms consistently decrease across the training progress indicates an improvement when P# is shifting toward Ps. This improvement
is also reflected in Figure 3 (left and right) wherein the target accuracy and empirical loss gradually increase and decrease accordingly.

3.1.2 The Effect of Class Alignment in the Joint Space.

In this experiment, we inspect the influence of the harmony of two labeling assignment mechanisms to the predictive performance.
In particular, we assume that a portion (r = 5%, 15%, 25%, 50% ) of the target domain has label and consider two settings: i) the
labels of the target and source domains are totally properly matched in the joint space (i.e., 0 matches 0, 1 matches 1,..., and 9 matches
9) and ii) the labels of the target and source domains are totally improperly matches in the joint space (i.e., 0 matches 1, 1 matches
2,..., and 9 matches 0).

To push a specific labeled portion of the target domain to the corresponding label portion of the source domain in the joint space
(the label i to i in the first setting and the label i to (i + 1) mod 10 in the second setting for i = 0, 1, . . . , 9), we again make use of
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GAN principle and employ additional discriminators to push the corresponding labeled portions together. Note that the parameters
of the additional discriminators and the primary discriminator (used to push the target data toward source data in the joint space) are
tied up to the penultimate layer.

It can be observed from Table 1 that for the case of proper matching, when increasing the ratio of labeled portion, we increase the
chance to match the corresponding labeled portions properly, hence significantly improving the predictive performance. In contrast,
for the case of improper matching, when increasing the ratio of labeled portion, we increase the chance to match the corresponding
labeled portions improperly, hence significantly reducing the predictive performance.

Table 1: The variation of predictive performance in percentage as increasing the ratio of labeled portion when the labels of the target
domain are properly or improperly matched to those in the source domain. Note that we emphasize in bold and italic/bold the best
and worse performance.

Proper match Improper match Base
r 5% 15% 25% 50% 5% 15% 25% 50% 0%

MNIST→MNIST-M 86.4 88.8 92.9 93.2 75.5 70.2 64.5 58.4 81.5
SVHN→MNIST 72.3 74.1 76.2 77.5 69.8 60.8 56.8 56.4 71.0

3.2 Experimental Setting for our LAMDA
3.2.1 The Objective Function of LAMDA

Note that in our implementation, to reduce the model complexity, we set G1 = T 1 = G, T 2 = T , S = A (S is a transportation
probability network which is shared weights with the classifier A). Let us further denote:

LA := E(x,y)∼Ds [` (y,A (G (x)))] ,

Lg := Ex∼Ps [log (1− dC+1 (G(x)))] + Ex∼Pt [log dC+1 (G (x))]

+ αEx∼Pt

[
−

C∑
i=1

Ai (x) log di (G (x))

]
+ βR (T,G) + LA,

where R (T,G) is the reconstruction term defined as

R (T,G) := EPs

[
‖T (G (x))− x‖22

]
.

Ld :=

C∑
i=1

E(x,y)∼Ds∧y=i [log di (G (x))] +Ex∼Pt [log dC+1 (G (x))]

+Ex∼Ps [log (1− dC+1 (G (x)))] .

To update G,T and A, we solve:
min
G,T,A

Lg.

To update d, we solve:
max
d
Ld.
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Table 2: The full experimental results in percent of our LAMDA and the baselines on digits, traffic sign, and natural image datasets.
Source MNIST USPS MNIST SVHN MNIST DIGITS SIGNS CIFAR STL
Target USPS MNIST MNIST-M MNIST SVHN SVHN GTSRB STL CIFAR

MMD [21] - - 76.9 71.1 - 88.0 91.1 - -
DANN [10] - - 81.5 71.1 35.7 90.3 88.7 - -
DRCN [11] - - - 82.0 40.1 - - 66.4 58.7

DSN [4] - - 83.2 82.7 - 91.2 93.1 - -
kNN-Ad [27] - - 86.7 78.8 40.3 - - - -
PixelDA [3] - - 98.2 - - - - - -

ATT [24] - - 94.2 86.2 52.8 92.9 96.2 - -
P-model [9] - - - 92.0 71.4 94.2 98.4 76.3 64.2
ADDA [30] 89.4 90.1 - 76.0 - - - - -

CyCADA [15] 95.6 96.5 - 90.4 - - - - -
MSTN [33] 92.9 97.6 - 91.7 - - - - -
CDAN [22] 95.6 98.0 - 89.2 - - - - -
MCD [25] 94.2 94.1 - 96.2 - - 94.4 - -
PFAN [5] 95.0 - - 93.9 57.6 - - - -

DADA [28] 96.1 96.5 - 95.6 - - - - -
DeepJDOT[7] 95.7 96.4 92.4 96.7 30.8 84.2 70.0 61.6 49.6
DASPOT [34] 97.5 96.5 94.9 96.2 - - - - -

GPDA [16] 96.5 96.4 - 98.2 - - 96.2 - -
SWD [18] 98.1 97.1 90.9 98.9 49.5 88.7 98.6 65.3 52.1

rRevGrad+CAT [8] 94.0 96.0 - 98.8 - - - - -
SHOT [20] 98.0 98.4 - 98.9 - - - - -
RWOT [35] 98.5 97.5 - 98.8 - - - - -

LAMDA 99.5 98.3 98.4 99.5 82.1 95.9 99.2 78.0 71.6
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3.2.2 Experimental Datasets

Digit datasets

MNIST. The dataset is commonly used in domain adaptation literature. To adapt from MNIST to MNIST-M or SVHN, the MNIST
images are replicated from single greyscale channel to obtain digit images which has three channels.
MNIST-M. Following by the implementation in [10], we generate the MNIST-M images by replacing the black background of
MNIST images by the color ones. We eventually obtain the same number of training and test samples as the MNIST dataset.
SVHN. The dataset consists of images obtained by detecting house numbers from Google Street View images. This dataset is a
benmark for recognizing digits and numbers in real-world images.
DIGITS. There are roughly 500,000 images are generated using various data augmentation schemes, i.e., varying the text, position-
ing, orientation, background, stroke color, and the amount of blur.

We compare our LAMDA with renown baselines especially OT-based ones (e.g., SWD [18], DeepJDOT [7], DASPOT [34], ETD
[19] and RWOT [35]). As shown in Table 2, LAMDA outperforms other baselines on most of digit datasets. It is noticeable that
although the transfer task MNIST→SVHN is extremely challenging in which the source dataset includes grayscale handwritten digits
whereas the target dataset is created by real-world digits, our LAMDA is still capable of matching the gap between source and target
domains and outperforms the second-best method by a sizeable margin (10.7%).

Traffic sign datasets

SIGNS. A synthetic dataset for traffic sign recognition. Images are collected from Wikipedia and then applied various types of
transformations to generate 100,000 images for training and test.
GTSRB. Road sign images are extracted from videos recorded on different road types in Germany. We preprocess the data by croping
out the region of interest of each image, and then scale them to a resolution of 32× 32.

Natural scene datasets

CIFAR. The CIFAR-10 [17] dataset includes 50,000 training images and 10,000 test images. However, to adapt with STL dataset,
we base on [9] to remove one non-overlapping class (“frog”). The numbers of training examples and test examples therefore are
reduced to 45,000 and 9,000 respectively.
STL. Similar to CIFAR-10, we remove class named “monkey” to obtain a 9-class classification problem. Also, STL-10 images are
down-scaled to a resolution of 96× 96 to 32× 32.

Object recognition datasets

Office-Home consists of roughly 15,500 images in a total of 65 object classes and belonging to 4 different domains: Artistic (Ar),
Clip Art (Cl), Product (Pr) and Real-world (Rw).
Office-31 is a popular dataset for domain adaptation that contains 3 domains Amazon (A), Webcam (W), and DSLR (D). There are
31 common classes for all domains and the total number of images is 4,110.
ImageCLEF-DA contains three domains: Caltech-256 (C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P). There are total
600 images in each domain and 12 common classes. We follow the work in [19] to evaluate 6 adaptation tasks.

We resize the resolution of each sample in digits, traffic sign, and natural image datasets to 32 × 32, and normalize the value of
each pixel to the range of [−1, 1]. For object recognition datasets, we use features have 2048 dimensions extracted from ResNet-50
[14] pretrained on ImageNet.
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Table 3: Small, medium and large network architecture of LAMDA. We use the small network for object recognition datasets,
medium network for digits and traffic sign, and the large one for natural scene datasets. The parameter a for Leaky ReLU (lReLU)
activation function is set to 0.1.

Architecture Small Network Medium Network Large Network
Input size 2048 32× 32× 3 32× 32× 3

Generator
G

instance normalization instance normalization
256 dense, ReLU 3× 3 conv. 64 lReLU 3× 3 conv. 96 lReLU
dropout, p = 0.5 3× 3 conv. 64 lReLU 3× 3 conv. 96 lReLU

Gaussian noise, σ = 1 3× 3 conv. 64 lReLU 3× 3 conv. 96 lReLU
2× 2 max-pool, stride 2 2× 2 max-pool, stride 2

dropout, p = 0.5 dropout, p = 0.5
Gaussian noise, σ = 1 Gaussian noise, σ = 1
3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU
3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU
3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU

2× 2 max-pool, stride 2 3× 3 max-pool, stride 2
dropout, p = 0.5 dropout, p = 0.5

Gaussian noise, σ = 1 Gaussian noise, σ = 1

Classifier
A

C dense, softmax 3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU
3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU
3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU
global average pool global average pool
C dense, softmax C dense, softmax

3.2.3 Network Architectures

We use small and large network architecture for specific datasets, which are described in Table 3 and 4. Noticeably, batch normal-
ization layers are applied on the top of convolutional layers (6 for the generator and 3 for the classifier) to prevent the overfitting.
For Office-31, Office-Home, and ImageCLEF-DA, we removed the dense layers of the pretrained models and replaced by two dense
layers (i.e., the first layer has 256 neurons and the second one has C neurons where C is the number of classes).

Table 4: The architecture of discriminator d.
Digits, traffic sign and natural scene datasets Object recognition datasets

3× 3 conv. 64 lReLU C + 1 dense, softmax
3× 3 conv. 64 lReLU
3× 3 conv. 64 lReLU
global average pool
C + 1 dense, softmax

3.2.4 Hyperparameter setting

We apply Adam Optimizer (β1 = 0.5,β2 = 0.999) with the learning rate 0.001 digits, traffic sign and natural scene datasets, whereas
0.0001 is the learning rate for object recognition datasets. All experiements was trained for 20000 iterations on Office-31, Office-
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Home, and ImageCLEF-DA and 80000 for the other datasets. The batch size for each dataset is set to 128. We set β = 0, α = 0.5 as
described in the ablation study, and γ is searched in {0.1, 0.5}. We implement our LAMDA in Python (version 3.5) using Tensorflow
(version 1.9.0) [1] and run our experiments on a computer with a CPU named Intel Xeon Processor E5-1660 which has 8 cores at 3.0
GHz and 128 GB of RAM, and a GPU called NVIDIA GeForce GTX Titan X with 12 GB memory.
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