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Abstract

Exploiting the power of pre-trained models, prompt-based approaches stand out compared to
other continual learning solutions in effectively preventing catastrophic forgetting, even with very
few learnable parameters and without the need for a memory buffer. While existing prompt-based
continual learning methods excel in leveraging prompts for state-of-the-art performance, they
often lack a theoretical explanation for the effectiveness of prompting. This paper conducts a
theoretical analysis to unravel how prompts bestow such advantages in continual learning, thus
offering a new perspective on prompt design. We first show that the attention block of pre-trained
models like Vision Transformers inherently encodes a special mixture of experts architecture,
characterized by linear experts and quadratic gating score functions. This realization drives us
to provide a novel view on prefix tuning, reframing it as the addition of new task-specific experts,
thereby inspiring the design of a novel gating mechanism termed Non-linear Residual Gates
(NoRGa). Through the incorporation of non-linear activation and residual connection, NoRGa
enhances continual learning performance while preserving parameter efficiency. The effectiveness
of NoRGa is substantiated both theoretically and empirically across diverse benchmarks and
pretraining paradigms.

1 Introduction

Humans possess a remarkable ability to learn continuously by integrating new skills and knowledge
while retaining past experiences. However, current AI models often fail to retain this ability. Unlike
humans, they often suffer from catastrophic forgetting [24, 25, 27], a phenomenon where they struggle
to retain knowledge from previous tasks while learning new ones. Inspired by human learning,
Continual Learning [2, 24, 23, 1] is an ongoing field that aims to train a model across a sequence of
tasks while mitigating this challenge. Traditional continual learning methods often rely on storing
past data for fine-tuning, which can raise concerns about memory usage and privacy [5, 32, 42]. To
address these limitations, prompt-based approaches have emerged as a promising alternative within
rehearsal-free continual learning. By attaching prompts - small sets of learnable parameters - to a
frozen pre-trained model, these approaches enable efficient adaptation to new tasks with minimal
modifications to the underlying model [47, 21, 50]. The effectiveness of prompt-based methods
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has been demonstrated by several recent works achieving state-of-the-art performance on various
continual learning benchmarks [40, 44, 45].

While prompt-based methods have demonstrably achieved impressive results, their emphasis largely
lies on prompt utility, leaving a gap in our theoretical comprehension of their effectiveness. This
absence of a theoretical foundation hinders our ability to further refine and optimize these methods.
In this work, we offer a new perspective by focusing on prefix tuning [21] and its connection to
mixture of experts models [15, 14, 12, 11]. We demonstrate that self-attention blocks in Vision
Transformers [8] implicitly encode a special mixture of experts architecture, revealing a surprising
connection between these seemingly disparate concepts. Leveraging this connection, we propose that
applying Prefix Tuning within pre-trained models can be interpreted as introducing new experts. The
newly introduced experts collaborate with the pre-trained experts, facilitating efficient adaptation of
the model to new tasks.

Drawing insights from this analysis, we observe that the original Prefix Tuning suffers from suboptimal
sample efficiency, requiring a substantial amount of data for reasonable parameter estimation. To
address this challenge, we propose a novel gating mechanism termed Non-linear Residual Gates
(NoRGa). This architecture integrates non-linear activation functions and residual connections
within the gating score functions. Our work focuses on improving within-task prediction accuracy,
a key component of continual learning performance as identified in previous research [17, 40]. We
posit that NoRGa can enhance this aspect, which contributes to improved overall continual learning
performance while maintaining parameter efficiency. We further provide theoretical justification for
this improvement, demonstrating how NoRGa accelerates parameter estimation rates.

Our contributions can be summarized as follows: (1) We reveal a novel connection between
self-attention and a mixture of experts, providing a fresh perspective on prompt-based continual
learning approaches; (2) Leveraging this insight, we propose Non-linear Residual Gates (NoRGa),
an innovative gating mechanism that enhances continual learning performance while maintaining
parameter efficiency, and provide a theoretical justification for this improvement; (3) Extensive
experiments across various continual learning benchmarks and pretraining settings demonstrate that
our approach achieves state-of-the-art performance compared to existing methods.

Notation. For any n ∈ N, we denote [n] as the set {1, 2, . . . , n} . Next, for any set S, we let |S|
stand for its cardinality. For any vector u := (u1, u2, . . . , ud) ∈ Rd and α := (α1, α2, . . . , αd) ∈ Nd,
we let uα = uα1

1 uα2
2 . . . uαd

d , |u| := u1 + u2 + . . .+ ud and α! := α1!α2! . . . αd!, while ∥u∥ stands for
its 2-norm value. Lastly, for any two positive sequences {an}n≥1 and {bn}n≥1, we write an = O(bn)
or an ≲ bn if an ≤ Cbn for all n ∈ N, where C > 0 is some universal constant. The notation
an = OP (bn) indicates that an/bn is stochastically bounded.

2 Background and Related Works

We first provide background and related works on continual learning. Then, we define the attention
mechanism, followed by discussions on prompt-based continual learning and mixture of experts.

Continual Learning (CL) addresses the challenge of training a model incrementally on a sequence
of T tasks, denoted by D = {D1, ...,DT }. Each task’s training data Dt = {(x(t)

i , y
(t)
i )}Nt

i=1 contains
pairs of input sample x

(t)
i ∈ X (t), and corresponding label y(t)i ∈ Y(t). Notably, the class labels are

distinct for each task, i.e., Y(t)
⋂
Y(t′) = ∅, ∀t ̸= t′. Consider a neural network with a backbone
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function fθ and an output layer hψ. The model predicts a label ŷ = hψ(fθ(x)) ∈ Y =
⋃T
t=1 Y(t),

where x ∈ X =
⋃T
t=1X (t) is an unseen test sample from arbitrary tasks. Importantly, during training

on a new task, the model can only access the current data, without access to data from previous
tasks. Prior approaches often rely on storing past task samples for training on new tasks, raising
concerns regarding storage and privacy [5, 6, 32, 42, 49].

Our work focuses on the class-incremental learning (CIL) setting, where task identities are not
provided during inference, unlike in task-incremental learning (TIL) [37]. A recent theory by [17]
analyzes the CIL objective by decomposing the probability of a test sample x of the j-th class in
task t into two probabilities:

P (x ∈ X (t)
j |D) = P (x ∈ X (t)

j |x ∈ X
(t),D)P (x ∈ X (t)|D), (1)

where the first term involves within-task prediction (WTP) and the second term pertains to task-
identity inference (TII). This equation highlights that by improving either the WTP performance or
the TII, we can consequently improve the overall CIL performance, as shown in [17, 40].

Attention Mechanism. Within the Transformer architecture, the attention mechanism plays a
crucial role. One prevalent variant is scaled dot-product attention[38], formally defined as follows:

Definition 2.1 (Scaled Dot-Product Attention). Let K ∈ RN×dk be a key matrix with N key
vectors, and V ∈ RN×dv be a value matrix with N corresponding value vectors. Given a query
matrix Q ∈ RM×dk , Attention over (K,V ) is defined as

Attention(Q,K,V ) = softmax(
QK⊤
√
dk

)V (2)

where the softmax function acts on the rows of matrix QK⊤ ∈ RM×N .

Vision Transformer (ViT) [8] employs the same attention mechanism within multiple Multi-head
Self-Attention (MSA) layers, which is formally defined as follows:

Definition 2.2 (Multi-head Self-Attention Layer). Let XQ,XK ,XV denote the input query, key,
and value matrix, respectively, where XQ = XK = XV = [x1, ...,xN ]

⊤ ∈ RN×d, and N is the
length of the input sequence. The output is expressed as

MSA(XQ,XK ,XV ) := Concat(h1, ...,hm)W
O ∈ RN×d, (3)

hi := Attention(XQWQ
i ,X

KWK
i ,X

VW V
i ), i ∈ [m]. (4)

where WO ∈ Rmdv×d,WQ
i ∈ Rd×dk ,WK

i ∈ Rd×dk , and W V
i ∈ Rd×dv are projection matrices, and m

is the number of heads in the MSA layer. In ViTs, they use dk = dv = d/m.

Prompt-based continual learning. Prompt-based approaches have emerged as a promising
alternative within rehearsal-free continual learning [50, 43]. In vision tasks, prompt-based methods
often leverage a pre-trained ViT as a feature extractor fθ, with its parameters θ typically frozen.
These methods enhance the model by introducing prompts, small sets of learnable parameters that
influence the operations of the MSA layer [44]. Prompts are strategically injected into the query,
key, and value matrices to guide the ViT in learning new tasks. We denote the prompt parameters
by p ∈ RLp×d, where Lp is the sequence length and d is the embedding dimension. Previous work
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[44] outlines two main prompt-based approaches: Prompt Tuning (ProT) [20] and Prefix Tuning
(PreT) [21]. While Prompt Tuning directly concatenates the same prompt parameter p to the query,
key, and value, Prefix Tuning divides p into prefixes {pK ,pV } ∈ R

Lp
2
×d and appends it to the key

and value vectors:

fPre−T
prompt(p,X

Q,XK ,XV ) := MSA

(
XQ,

[
pK

XK

]
,

[
pV

XV

])
= Concat(h̃1, ..., h̃m)W

O (5)

Existing prompt-based methods in CL address catastrophic forgetting by creating new adaptive
prompts for each new task. During testing, the model chooses suitable prompt combinations to
handle unseen data from any encountered task [40]. L2P [45] proposes a shared prompt pool for
all tasks, utilizing a query-key mechanism for prompt selection. Instead of using the same prompt
pool across tasks, DualPrompt [44] introduces G-Prompt and E-Prompt to capture task-agnostic
and task-specific information, respectively. S-Prompt [43] focuses on learning task-specific prompts
and employs a ProT strategy similar to L2P. CODA-Prompt [35] expands the prompt pool across
tasks and performs a weighted summation of the prompt pool using attention factors. A recent
work, HiDe-Prompt [40], achieves state-of-the-art performance by introducing a new hierarchical
decomposition of CIL objectives and optimizing each component for better performance.

In this study, we focus on Prefix Tuning as our primary prompt-based methodology and follow the
framework presented in HiDe-Prompt [40]. During training, HiDe-Prompt co-optimizes task-specific
prompts pt and model’s output layer parameters ψ for each new task t using the WTP objective.
These prompts are stored within a prompt pool P = {p1, ...,pT }. At test time, a separate lightweight
auxiliary output layer ĥω : RD → RT , trained with the TII objective, takes the uninstructed
representation fθ(x) of a new data point x as input to infer the task identity, guiding the selection
of the most suitable prompt pk from the prompt pool P. Subsequently, the final prediction is given
as ŷ = hψ(fθ(x,pk)). For further details, please refer to Appendix C.

Mixture of experts (MoE) extends classical mixture models with an adaptive gating mechanism
[15, 16]. An MoE model consists of a group of N expert networks fi : Rd → Rdv , for all i ∈ [N ], and
a gate function G : Rd → RN . Given an input h ∈ Rd, MoE computes a weighted sum of expert
outputs fi(h) based on learned score function si : Rd → R for each expert:

y :=
N∑
j=1

G(h)j · fj(h) :=
N∑
j=1

exp (sj(h))∑N
ℓ=1 exp (sℓ(h))

· fj(h), (6)

where G(h) := softmax(s1(h), . . . , sN (h)). Building on this concept, works by [10, 34] established
the MoE layer as a fundamental building block to scale up model capacity efficiently.

3 Connection between Prefix Tuning and Mixture of Experts

We first explore the relationship between attention and mixture of experts in Section 3.1, followed
by establishing the connection between prefix tuning and the mixture of experts in Section 3.2.

3.1 Mixture of Experts Meets Attention
Following the notation established in Definition 2.2, let’s consider the l-th head within the MSA
layer. Let X =

[
x⊤
1 , . . . ,x

⊤
N

]⊤ ∈ RNd, which is the concatenation of input sequence embeddings
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into a single one-dimensional vector. We define the matrix Ei ∈ Rd×Nd such that EiX := xi for all
i ∈ [N ]. Furthermore, we introduce an MoE architecture consisting of a group of N expert networks
fj : RNd → Rdv , N gating functions Gi : RNd → RN with the score function for the j-th expert of
the i-th gating si,j : RNd → R, where

fj(X) :=W V
l

⊤
EjX =W V

l
⊤
xj , si,j(X) :=

X⊤E⊤
i W

Q
l W

K
l

⊤
EjX√

dv
=

x⊤
i W

Q
l W

K
l

⊤
xj√

dv

for i and j ∈ [N ]. From equation (4), we can express the output of the l-th head as follows:

hl = softmax

(
XQWQ

l W
K
l

⊤
XK⊤

√
dv

)
XVW V

l = [hl,1, . . . ,hl,N ]
⊤ ∈ RN×dv , (7)

hl,i =
N∑
j=1

exp

(
x⊤
i W

Q
l W

K
l

⊤
xj√

dv

)
∑N

k=1 exp

(
x⊤
i W

Q
l W

K
l

⊤
xk√

dv

)W V
l

⊤
xj =

N∑
j=1

exp(si,j(X))∑N
k=1 exp(si,k(X))

fj(X), (8)

for i ∈ [N ]. Expanding on equation (8), we can discern that each attention head within the MSA
layer implicitly embodies a special mixture of experts architecture. This architecture encompasses N
MoE models, each featuring its own quadratic gating function Gi. However, instead of employing N2

separate expert networks for each model, this architecture utilizes N shared linear expert networks
fj for j ∈ [N ], significantly reducing the number of parameters. Notably, each expert network and
its corresponding gating function process the entire input sequence directly, rather than individual
embedding xi as in traditional MoE layers [34]. This connection between self-attention and mixture
of experts motivates us to explore how prompt-based techniques can be viewed through this lens.

3.2 Prefix Tuning via the Perspective of Mixture of Experts
Building on the connection between self-attention and mixture of experts, we propose that applying
prefix tuning can be interpreted as the introduction of new experts to customize the pre-trained
model for a specific task. Specifically, similar to Section 3.1, we consider the l-th head within the
MSA layer. We denote pK =

[
pK1 , . . . ,p

K
L

]⊤ ∈ RL×d, pV =
[
pV1 , . . . ,p

V
L

]⊤ ∈ RL×d, where L =
Lp

2 .
We define new prefix experts fN+j : RNd → Rdv along with their corresponding new score functions
si,N+j : RNd → R as follows:

fN+j(X) :=W V
l

⊤
pVj , si,N+j(X) :=

X⊤E⊤
i W

Q
l W

K
l

⊤
pKj√

dv
=

x⊤
i W

Q
l W

K
l

⊤
pKj√

dv
(9)

for i ∈ [N ] and j ∈ [L]. Then from equation (5), the output of the l-th head can be expressed as:

h̃l = Attention

(
XQWQ

l ,

[
pK

XK

]
WK
l ,

[
pV

XV

]
W V
l

)
=
[
h̃l,1, . . . , h̃l,N

]⊤
∈ RN×dv , (10)

h̃l,i =

N∑
j=1

exp(si,j(X))∑N
k=1 exp(si,k(X)) +

∑L
k′=1 exp(si,N+k′(X))

fj(X)

+
L∑

j′=1

exp(si,N+j′(X))∑N
k=1 exp(si,k(X)) +

∑L
k′=1 exp(si,N+k′(X))

fN+j′(X) (11)
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It’s worth noting that WQ
l , WK

l , and W V
l remain fixed, with only pK and pV being learnable. By

examining equation (8) and equation (11), we can interpret each head in a multi-head self-attention
layer within a pre-trained model as a mixture of experts architecture with pre-trained experts fj
and gating score functions si,j for i and j ∈ [N ]. Prefix Tuning extends this MoE by introducing
L additional prefix experts fN+j′ defined by prefix vectors pVj′ and linear score functions si,N+j′

for i ∈ [N ] and j′ ∈ [L]. These new experts collaborate with the pre-trained ones within the MoE
model, facilitating the model’s adaptation to downstream tasks.

In the context of continual learning, the pre-trained experts serve as a knowledge base, while
Prefix Tuning augments it with task-specific knowledge encoded in new experts. Moreover, we
draw a parallel between the pre-trained experts and the G(eneral)-Prompt utilized in DualPrompt,
which captures task-agnostic information [44]. Both are shared across tasks, making them useful
for prediction, especially when task identification is incorrect. Notably, the new experts achieve
their efficiency through simple linear gating functions and independence from the input, unlike the
pre-trained experts. For simplicity, we call the MoE model (11) as linear gating prefix MoE.

Statistical suboptimality. The connection between prefix tuning and the MoE within the linear
gating prefix MoE model (11) allows us to theoretically explore the statistical behavior of the prefix
tuning. In Appendix A, by interpreting the linear gating prefix MoE as a regression problem with
sample size n, we demonstrate that the convergence rate for estimating the model parameters, e.g.,
prompts, can be as slow as O(1/ logτ (n)) where τ > 0 is some constant. This suggests that a huge
amount of data is required to achieve reasonable parameter estimation in the linear gating prefix
MoE model, which can be discouraging in practice. To address this statistical limitation, the next
section introduces a novel non-linear residual gating score function to replace the linear gating
function.

4 Non-linear Residual Gate Meets Prefix Tuning

As discussed earlier, prefix tuning introduces additional experts within MoE framework, resulting in
the linear gating prefix MoE model. However, as outlined in Appendix A, this approach suffers from
suboptimal sample efficiency for parameter estimation. To overcome this and enhance overall CIL
performance, we propose an innovative approach that significantly improves sample efficiency while
promoting WTP performance in Section 4.1 and provide theoretical explanations in Section 4.2.

4.1 NoRGa: Non-linear Residual Gate

We propose a simple yet effective modification to the linear gating prefix MoE model by incorporating
non-linear activation and residual connection within the score functions of prefix experts as follows:

ŝi,N+j(X) :=
X⊤E⊤

i W
Q
l W

K
l

⊤
pKj√

dv
+ α · σ

(
τ ·

X⊤E⊤
i W

Q
l W

K
l

⊤
pKj√

dv

)
= si,N+j(X) + α · σ(τ · si,N+j(X)), i ∈ [N ], j ∈ [L], (12)

where α, τ ∈ R are scalar factors, and σ is a non-linear activation function. The new score function
in equation (12) consists of a linear and a non-linear component. We call the new prefix MoE model
with score functions (12) as non-linear residual gating prefix MoE.
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The use of a non-linear activation function here is motivated by the algebraic independence condition
in Definition 4.2 to theoretically guarantee the optimal sample efficiency of expert and parameter
estimations (cf. Theorem 4.3). It’s worth noting that removing the linear component si,N+j(X) in
the score function (12) could potentially lead to the vanishing gradient problem during training.
To mitigate this challenge, we incorporate a residual connection [13] into the formulation. Our
modification introduces minimal additional parameters (α and τ) compared to the original score
function, ensuring parameter efficiency. This is particularly crucial in continual learning scenarios
where the number of parameters grows with each new task. Despite its simplicity, our modification

can significantly enhance sample efficiency and promote more reasonable parameter estimation, as
demonstrated in our theoretical analysis in Section 4.2. Within the HiDe-Prompt framework, task-
specific prompt parameters are trained using the WTP objective for each new task. Consequently,
our modification leads to better parameter estimation, which directly contributes to improved WTP
performance, ultimately improving overall continual learning efficacy. Here, we evaluated σ with
tanh, sigmoid, and GELU, finding tanh to perform well in most cases.

4.2 Theoretical Explanation for Non-linear Residual Gating Prefix MoE

Similar to the setting in Appendix A, we prove that estimating parameters in the non-linear residual
gating prefix MoE model (12) is statistically efficient in terms of the number of data. To provide a
fair comparison to the linear gating prefix MoE, we focus only on the first head and its first row,
namely, l = 1 and i = 1 in equation (12). Then, we proceed to provide a theoretical justification of
our claim by viewing this row as an output of a regression setting. In particular, we assume that
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ RNd × R are i.i.d. samples generated from model:

Yi = gG∗(Xi) + εi, i = 1, 2, . . . , n, (13)

where ε1, . . . , εn are independent Gaussian noise variables such that E[εi|Xi] = 0 and Var(εi|Xi) = ν2

for all 1 ≤ i ≤ n. Additionally, we assume that X1,X2, . . . ,Xn are i.i.d. samples from some
probability distribution µ. The regression function gG∗(·) in equation (13) then takes the form of a
non-linear residual gating prefix MoE model with N pre-trained experts and L unknown experts,

gG∗(X) :=
N∑
j=1

exp(X⊤B0
jX + c0j )

T (X)
· h(X, η0j )

+

L∑
j′=1

exp((β∗1j′)
⊤X + ασ(τ(β∗1j′)

⊤X) + β∗0j′)

T (X)
· h(X, η∗j′), (14)

where T (X) :=
∑N

k=1 exp(X
⊤B0

kX + c0k) +
∑L

k′=1 exp((β
∗
1k′)

⊤X + ασ(τ(β∗1k′)
⊤X) + β∗0k′), G∗ :=∑L

j′=1 exp(β
∗
0j′)δ(β∗

1j′ ,η
∗
j′ )

denotes a mixing measure, i.e., a weighted sum of Dirac measures δ, as-

sociated with unknown parameters (β∗1j′ , β
∗
0j′ , η

∗
j′)

L
j′=1 in RNd × R × Rq. Here, the matrix B0

j is

equivalent to (E⊤
1 W

Q
1 W

K
1

⊤
Ej/
√
dv) in the score function s1,j(X), and the vector β∗1j′ corresponds to

the vector (E⊤
1 W

Q
1 W

K
1

⊤
pKj′ /
√
dv) in ŝ1,N+j′(X). Furthermore, the experts h(X, η0j ) and h(X, η∗j′)

represent fj(X) and fN+j′(X), respectively. In our formulation, for the generality of the ensuing
theory, we consider general parametric forms of the experts h(X, η0j ) and h(X, η∗j′), i.e., we do not
only constrain these expert functions to be the forms of the simple experts in the aforementioned
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model. Similar to the setting in Appendix A, B0
j , c

0
j , and the expert parameters η0j are known. Our

goal is to estimate the unknown prompt-related parameters β∗1j′ , β
∗
0j′ , and η∗j′ .

Least squares estimation. We will use the least squares method [36] to estimate the unknown
parameters (β∗0j′ , β

∗
1j′ , η

∗
j′)

L
j′=1 or, equivalently, the ground-truth mixing measure G∗. In particular,

we take into account the estimator

Ĝn := argmin
G∈GL′ (Θ)

n∑
i=1

(
Yi − gG(Xi)

)2
, (15)

where we denote GL′(Θ) := {G =
∑ℓ

i=1 exp(β0i)δ(β1i,ηi) : 1 ≤ ℓ ≤ L′, (β0i, β1i, ηi) ∈ Θ} as the set
of all mixing measures with at most L′ atoms. In practice, since the true number of experts L is
typically unknown, we assume that the number of fitted experts L′ is sufficiently large, i.e., L′ > L.

To begin with, we explore the convergence behavior of the regression estimator g
Ĝn

(·) to the true
regression function gG∗(·) under the L2(µ)-norm in the following theorem:

Theorem 4.1 (Regression Estimation Rate). Equipped with a least squares estimator Ĝn given in
equation (15), the model estimation g

Ĝn
(·) converges to the true model gG∗(·) at the following rate:

∥g
Ĝn
− gG∗∥L2(µ) = OP (

√
log(n)/n). (16)

Proof of Theorem 4.1 is in Appendix B.1. The bound (16) implies that the rate for estimating the
regression function gG∗(·) is of order OP (

√
log(n)/n), which is parametric on the sample size n.

More importantly, it also indicates that if there exists a loss function among parameters L such
that ∥g

Ĝn
− gG∗∥L2(µ) ≳ L(Ĝn, G∗), then we would obtain the bound L(Ĝn, G∗) = OP (

√
log(n)/n),

which leads to the desired parameter and expert estimation rates.

We now turn our attention to the parameter and expert estimation problems. To understand how
the non-linear residual gating affects these problems, we analyze the properties of the expert h(·, η)
and the activation function σ(·) to determine which formulations will achieve favorable performance.

Definition 4.2 (Algebraic independence). We say that an expert function h(·, η) and an activation
function σ(·) are algebraically independent if they are twice differentiable w.r.t their parameters,
and if for any k ≥ 1 and pair-wise distinct parameters (β11, η1), . . . , (β1k, ηk), the following set of
functions in X is linearly independent for almost every X ∈ RNd:{

Xν
[
(1 + σ′(β⊤1jX))|ν| + 1{|ν|=2}σ

′′(β⊤1jX)
]
· ∂

|γ|h

∂ηγ
(X, ηj) : j ∈ [k∗],

ν ∈ NNd, γ ∈ Nq : 0 ≤ |ν|+ |γ| ≤ 2
}
.

Intuitively, the algebraic independence condition ensures that there will be no interactions among
parameters of the expert function h(·, η) and the activation function σ(·). Technically, a key step in
our argument is to decompose the regression discrepancy g

Ĝn
(X)− gG∗(X) into a combination of

linearly independent terms by applying Taylor expansions to the product of the softmax’s numerator
and the expert function, i.e., exp(β⊤1 X +ασ(τβ⊤1 X))h(X, η). Thus, the above condition guarantees
that all the derivative terms in the Taylor expansion are linearly independent. To exemplify the
algebraic independence condition, we consider the following simple examples of the expert functions
h(·, η) and the activation σ(·) that are algebraically independent.
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Example. When the expert function h(·, η) is formulated as a neural network h(X, (a, b)) =
φ(a⊤X + b) with the activation φ(·) ∈ {ReLU(·),GELU(·), z 7→ zp}, where (a, b) ∈ RNd × R, and
the activation function σ(·) is one among the functions sigmoid(·), tanh(·),GELU(·), then they
satisfy the algebraic independence condition in Definition 4.2.

Finally, we establish the rates for estimating parameters and experts in the non-linear residual gating
prefix MoE model in Theorem 4.3. Prior to presenting the theorem statement, let us design a loss
function among parameters based on a notion of Voronoi cells [22], which is a commonly employed
approach for the convergence analysis of expert estimation in MoE models [31, 29, 30, 28], yet
tailored to the setting of this paper. In particular, the Voronoi loss used for our analysis is defined as

L1(G,G∗) :=
∑

j′∈[L]:|Vj′ |>1

∑
i∈Vj′

exp(β0i)
[
∥∆β1ij′∥2 + ∥∆ηij′∥2

]

+
∑

j′∈[L]:|Vj′ |=1

∑
i∈Vj′

exp(β0i)
[
∥∆β1ij′∥+ ∥∆ηij′∥

]
+

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(β0i)− exp(β∗0j′)
∣∣∣, (17)

where we denote ∆β1ij′ := β1i − β∗1j′ and ∆ηij′ := ηi − η∗j′ . Above, Vj′ ≡ Vj′(G), for j′ ∈ [L], is a
Voronoi cell associated with the mixing measure G generated by the true component ω∗

j := (β∗1j′ , η
∗
j′),

which is defined as follows:

Vj′ := {i ∈ {1, 2, . . . , L′} : ∥ωi − ω∗
j′∥ ≤ ∥ωi − ω∗

ℓ ∥, ∀ℓ ̸= j′}, (18)

where we denote ωi := (β1i, ηi) as a component of G. Note that, the cardinality of each Voronoi
cell Vj′ indicates the number of components ωi of G approximating the true component ω∗

j′ of G∗.
Additionally, since L1(G,G∗) = 0 if and only if G ≡ G∗, it follows that when L1(G,G∗) becomes
sufficiently small, the differences ∆β1ij′ and ∆ηij′ are also small. This observation indicates that,
although L1(G,G∗) is a proper metric as it is not symmetric, it is an appropriate loss function for
measuring the discrepancy between the least square estimator Ĝn and the true mixing measures G∗.

Theorem 4.3. Assume that the expert function h(x, η) and the activation σ(·) are algebraically
independent, then we achieve the following lower bound for any G ∈ GL′(Θ):

∥gG − gG∗∥L2(µ) ≳ L1(G,G∗),

which together with Theorem 4.1 indicates that L1(Ĝn, G∗) = ÕP (n−1/2).

Proof of Theorem 4.3 is in Appendix B.2. A few comments on Theorem 4.3 are in order: (i) From
the bound L1(Ĝn, G∗) = ÕP (n−1/2), we deduce that the estimation rates for the over-specified
parameters β∗1j′ , η

∗
1j′ , where j′ ∈ [L] : |Vj′ | > 1, are all of order OP ( 4

√
log(n)/n). Since the expert

h(·, η) is twice differentiable over a bounded domain, it is also a Lipschitz function. Thus, denote
Ĝn :=

∑Ln
i=1 exp(β̂0i)δ(β̂n

1i,η̂
n
i )

, we achieve that

sup
X
|h(X, η̂ni )− h(X, η∗j′)| ≲ ∥η̂ni − η∗j′∥ ≲ OP (

4
√
log(n)/n). (19)

The above bound indicates that if the experts h(·, η∗j ) are fitted by at least two other experts, then
their estimation rates are also of order OP ( 4

√
log(n)/n); (ii) For exactly-specified parameters β∗1j′ , η

∗
j′ ,
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Table 1: Overall performance comparison on Split CIFAR-100 and Split ImageNet-R. We present
Final Average Accuracy (FA), Cumulative Average Accuracy (CA), and Average Forgetting Measure
(FM) of all methods under different pre-trained models.

PTM Method Split CIFAR-100 Split Imagenet-R

FA (↑) CA(↑) FM(↓) FA (↑) CA(↑) FM(↓)

Sup-21K

L2P 83.06± 0.17 88.27± 0.71 5.61± 0.32 67.53± 0.44 71.98± 0.52 5.84± 0.38
DualPrompt 87.30± 0.27 91.23± 0.65 3.87± 0.43 70.93± 0.08 75.67± 0.52 5.47± 0.19
S-Prompt 87.57± 0.42 91.38± 0.69 3.63± 0.41 69.88± 0.51 74.25± 0.55 4.73± 0.47
CODA-Prompt 86.94± 0.63 91.57± 0.75 4.04± 0.18 70.03± 0.47 74.26± 0.24 5.17± 0.22
HiDe-Prompt 92.61± 0.28 94.03± 0.01 1.50± 0.28 75.06± 0.12 76.60± 0.01 4.09± 0.13
NoRGa (Ours) 94.48± 0.13 95.83± 0.37 1.44± 0.27 75.40± 0.39 79.52± 0.07 4.59± 0.07

iBOT-21K

L2P 79.13± 1.25 85.13± 0.05 7.50± 1.21 61.31± 0.50 68.81± 0.52 10.72± 0.40
DualPrompt 78.84± 0.47 86.16± 0.02 8.84± 0.67 58.69± 0.61 66.61± 0.67 11.75± 0.92
S-Prompt 79.14± 0.65 85.85± 0.17 8.23± 1.15 57.96± 1.10 66.42± 0.71 11.27± 0.72
CODA-Prompt 80.83± 0.27 87.02± 0.20 7.50± 0.25 61.22± 0.35 66.76± 0.37 9.66± 0.20
HiDe-Prompt 93.02± 0.15 94.56± 0.05 1.26± 0.13 70.83± 0.17 73.23± 0.08 6.77± 0.23
NoRGa (Ours) 94.76± 0.15 95.86± 0.31 1.34± 0.14 73.06± 0.26 77.46± 0.42 6.88± 0.49

iBOT-1K

L2P 75.51± 0.88 82.53± 1.10 6.80± 1.70 59.43± 0.28 66.83± 0.92 11.33± 1.25
DualPrompt 76.21± 1.00 83.54± 1.23 9.89± 1.81 60.41± 0.76 66.87± 0.41 9.21± 0.43
S-Prompt 76.60± 0.61 82.89± 0.89 8.60± 1.36 59.56± 0.60 66.60± 0.13 8.83± 0.81
CODA-Prompt 79.11± 1.02 86.21± 0.49 7.69± 1.57 66.56± 0.68 73.14± 0.57 7.22± 0.38
HiDe-Prompt 93.48± 0.11 95.02± 0.01 1.63± 0.10 71.33± 0.21 73.62± 0.13 7.11± 0.02
NoRGa (Ours) 94.01± 0.04 95.11± 0.35 1.61± 0.30 72.77± 0.20 76.55± 0.46 7.10± 0.39

DINO-1K

L2P 72.23± 0.35 79.71± 1.26 8.37± 2.30 57.21± 0.69 64.09± 0.74 7.47± 0.96
DualPrompt 73.95± 0.49 81.85± 0.59 9.32± 1.42 57.98± 0.71 65.39± 0.27 9.32± 0.69
S-Prompt 74.39± 0.17 81.60± 0.74 9.07± 1.13 57.55± 0.72 64.90± 0.13 8.73± 0.56
CODA-Prompt 77.50± 0.64 84.81± 0.30 8.10± 0.01 63.15± 0.39 69.73± 0.25 6.86± 0.11
HiDe-Prompt 92.51± 0.11 94.25± 0.01 1.67± 0.20 68.11± 0.18 71.70± 0.01 6.45± 0.58
NoRGa (Ours) 93.43± 0.33 94.65± 0.62 1.65± 0.25 71.77± 0.44 75.76± 0.49 6.42± 0.68

MoCo-1K

L2P 77.24± 0.69 83.73± 0.70 5.57± 0.75 54.13± 0.67 62.09± 0.76 4.88± 0.42
DualPrompt 77.56± 0.63 84.37± 0.51 6.54± 0.50 54.45± 0.30 62.92± 0.41 5.34± 0.41
S-Prompt 77.20± 0.39 84.47± 0.37 7.00± 0.62 53.94± 0.32 62.42± 0.51 5.16± 0.48
CODA-Prompt 77.83± 0.34 84.97± 0.23 12.60± 0.02 55.75± 0.26 65.49± 0.36 10.46± 0.04
HiDe-Prompt 91.57± 0.20 93.70± 0.01 1.51± 0.17 63.77± 0.49 68.26± 0.01 9.37± 0.71
NoRGa (Ours) 93.52± 0.06 94.94± 0.29 1.63± 0.13 64.52± 0.16 70.21± 0.64 9.06± 0.19

where j′ ∈ [L] : |Vj′ | = 1, the rates for estimating them are faster than those of their over-specified
counterparts, standing at order OP (

√
log(n)/n). By arguing similarly to equation (19), the experts

h(·, η∗j′) also enjoy the faster estimation rate of order OP (
√
log(n)/n), which is parametric on the

sample size n; (iii) It follows from the above rates that we only need a polynomial number of
data (roughly ϵ−4 where ϵ is the desired approximation error) to estimate the parameters and
experts of the non-linear residual gating prefix MoE. By contrast, when using the linear gating, as
being demonstrated in Appendix A, it requires an exponential number of data. This highlights the
statistical benefits of using the non-linear residual gating MoE model over the linear gating prefix
MoE model.

5 Experiments

Datasets We evaluate various continual learning methods on widely used CIL benchmarks, including
Split CIFAR-100 [18] and Split ImageNet-R [18], consistent with prior work [40]. We further explore
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Table 2: Final average accuracy (FA) on Split CUB-200 and 5-Datasets.

Method Split CUB-200 5-Datasets

Sup-21K iBOT-21K Sup-21K iBOT-21K

L2P 75.46 46.60 81.84 82.25
DualPrompt 77.56 45.93 77.91 68.03
S-Prompt 77.13 44.22 86.06 77.20
CODA-Prompt 74.34 47.79 64.18 51.65
HiDe-Prompt 86.56 78.23 93.83 94.88
NoRGa (Ours) 90.90 80.69 94.16 94.92

Table 3: Ablation study of different activation functions, measured by final average accuracy (FA).

Method Split CIFAR-100 Split CUB-200

Sup-21K iBOT-21K Sup-21K iBOT-21K

HiDe-Prompt 92.61 93.02 86.56 78.23
NoRGa tanh 94.36 94.76 90.87 80.69
NoRGa sigmoid 94.48 94.69 90.90 80.18
NoRGa GELU 94.05 94.63 90.74 80.54

the model’s performance on fine-grained classification tasks with Split CUB-200 [39] and large
inter-task differences with 5-Datasets [9]. Please refer to Appendix D for more details.

Evaluation Metrics We utilize several established metrics described in [41]. These include: final
average accuracy (FA), which represents the average accuracy after the final task; cumulative average
accuracy (CA), which refers to the historical average accuracy; and average forgetting measure (FM).
We give more emphasis to FA and CA due to their comprehensiveness, as noted in [35].

Baselines For the comparison, we select representative prompt-based approaches including L2P [45],
DualPrompt [44], CODA-Prompt [35], S-Prompt [43], and HiDe-Prompt [40]. Additionally, in line
with [40], we utilize the checkpoints of ViT that use supervised pretraining of Imagenet-21K (denoted
as Sup-21K), and some self-supervised pretraining such as iBOT-21K, iBOT-1K [51], DINO-1K [4],
and MoCo-1K [7]. For implementation details, see Appendix D.

Main Results. In Table 1, we evaluate the performance of various continual learning methods
on the Split CIFAR-100 and Split ImageNet-R datasets using diverse pre-trained models. NoRGa
achieves state-of-the-art FA and CA across all datasets and models, consistently outperforming
HiDe-Prompt. On Sup-21K, NoRGa shows impressive FA results on CIFAR-100 and ImageNet-R.
It also maintains the highest CA, with significant gaps of 1.80% and 2.92% on CIFAR-100 and
ImageNet-R, respectively, compared to HiDe-Prompt. These results highlight NoRGa’s ability to
retain knowledge and sustain high accuracy throughout the continual learning process. Additionally,
NoRGa exhibits minimal forgetting behavior, as evidenced by the low FM values on both datasets.
When evaluated with self-supervised pre-training models, NoRGa continues to excel, outperforming
HiDe-Prompt by up to 1.95% and 3.66% on the two datasets in terms of FA. We further investigate
two scenarios: fine-grained classification tasks and large inter-task differences through experiments
on Split CUB-200 and 5-Datasets, respectively, in Table 2. On Split CUB-200, NoRGa achieves
an impressive FA with a gap of 4.34% with Sup-21k and 2.46% with iBOT-21k compared to HiDe-
Prompt. Similarly, on the 5-Datasets, NoRGa maintains its superiority with the highest FA. These
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results underscore NoRGa’s robustness and effectiveness across diverse datasets.

Ablation Study. To assess the impact of non-linear activation functions on NoRGa’s performance,
we evaluated the model’s behavior with different choices for the activation function σ, including
tanh, sigmoid, and GELU in Table 3. The results show that NoRGa achieves state-of-the-art
performance on both Split CIFAR-100 and Split CUB-200 datasets with all three activation functions.
These findings suggest that NoRGa exhibits robustness to the choice of non-linear activation within
a reasonable range. While all functions perform well, the tanh activation function demonstrates
generally strong performance across scenarios. To further validate NoRGa’s effectiveness in improving
WTP performance, we perform experiments on the task-incremental learning setting (see Appendix E).

6 Conclusion

This paper presents an initial exploration of self-attention and prefix-tuning through the lens of
mixture of experts. We find that applying prefix tuning can be viewed as introducing new prefix
experts to adapt the pre-trained model. However, limitations in sample efficiency exist. We address
this by proposing NoRGa, a novel gating mechanism to enhance continual learning performance.
Our results demonstrate NoRGa’s effectiveness both theoretically and empirically. While the current
implementation of the expert network prioritizes simplicity, future research directions could involve
investigating more intricate architectures. Furthermore, the choice of activation functions in our
work requires fine-tuning, which opens avenues for future research on adaptively learning activation.
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In this supplementary material, we first investigate the statistical suboptimality of the Linear
Gating Prefix MoE Model (11). Next, we provide proofs for the theoretical results presented in
Section 4.2. Subsequently, Appendix D specifies the details for the experiments conducted in
Section 5. Finally, Appendix E presents further experiments on the task-incremental learning setting
to empirically demonstrate the benefits of using our proposed Non-linear Residual Gating Prefix
MoE (12) over the Linear Gating Prefix MoE Model.

A Statistical Suboptimality of Linear Gating Prefix MoE Model

In this appendix, we demonstrate that estimating parameters and experts in the linear gating prefix
MoE model (11) can be statistically inefficient in terms of the number of data. To simplify our
findings, we particularly focus on the first head, namely, l = 1 in equation (11), and the first row of
this head, namely, i = 1 in equation (11). Then, we proceed to provide a theoretical justification of
our claim for the suboptimality of the linear gating prefix MoE by viewing this row as an output of
the regression setting. In particular, we assume that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ RNd × R is
an i.i.d. sample generated from the following model:

Yi = fG∗(Xi) + εi, i = 1, 2, . . . , n, (20)

where ε1, . . . , εn are independent Gaussian noise variables such that E[εi|Xi] = 0 and Var(εi|Xi) = ν2

for all 1 ≤ i ≤ n. Additionally, we assume that X1,X2, . . . ,Xn are i.i.d. samples from some
probability distribution µ. Motivated by linear gating prefix MoE model (11), the regression function
fG∗(·) in equation (20) admits the form of the linear gating prefix MoE model with pretrained N
experts and L unknown experts, namely

fG∗(X) : =

N∑
j=1

exp(X⊤B0
jX + c0j )∑N

k=1 exp(X
⊤B0

kX + c0k) +
∑L

k′=1 exp((β
∗
1k′)

⊤X + β∗0k′)
· h(X, η0j )

+
L∑

j′=1

exp((β∗1j′)
⊤X + β∗0j′)∑N

k=1 exp(X
⊤B0

kX + c0k) +
∑L

k′=1 exp((β
∗
1k′)

⊤X + β∗0k′)
· h(X, η∗j′), (21)

where G∗ :=
∑L

j′=1 exp(β
∗
0j′)δ(β∗

1j′ ,η
∗
j′ )

denotes a mixing measure, i.e., a weighted sum of Dirac

measures δ, associated with unknown parameters (β∗1j′ , β
∗
0j′ , η

∗
j′)

L
j′=1 in RNd × R × Rq. Here, the

matrix B0
j plays the role of the matrix E⊤

1 W
Q
1 W

K
1

⊤
Ej√

dv
in the score function s1,j(X). Furthermore, the

vector β∗1j′ corresponds to the vector
E⊤

i W
Q
l W

K
l

⊤
pK
j′√

dv
in the score function s1,N+j′(X). Furthermore,

the experts h(X, η0j ) correspond to the role of fj(X) and h(X, η∗j′) correspond to the role of
fN+j′(X). In our formulation, we consider general parametric forms of the experts h(X, η0j ) and
h(X, η∗j′), i.e., we do not only constrain these expert functions to be the forms of the simple experts
in the linear gating prefix MoE model.

Similar to the linear gating prefix MoE model (11), the matrices B0
j , the biases c0j , and the expert

parameters η0j are known. Our aim is to estimate the unknown gating parameters β∗1j′ , β
∗
0j′ , and η∗j′

that correspond to the prompts.

13



Least squares estimation: We will use the least squares method [36] to estimate the unknown
parameters (β∗0j′ , β

∗
1j′ , η

∗
j′)

L
j′=1 or, equivalently, the ground-truth mixing measure G∗. In particular,

we take into account the estimator

G̃n := argmin
G∈GL′ (Θ)

n∑
i=1

(
Yi − fG(Xi)

)2
, (22)

where we denote GL′(Θ) := {G =
∑ℓ

i=1 exp(β0i)δ(β1i,ηi) : 1 ≤ ℓ ≤ L′, (β0i, β1i, ηi) ∈ Θ} as the set of
all mixing measures with at most L′ atoms. In practice, since the true number of true experts L is
typically unknown, we assume that the number of fitted experts L′ is sufficiently large, i.e. L′ > L.

Let us recall that our main objective in this appendix is to show that using the linear gating in the
prefix MoE model is not sample efficient. To illustrate that point, we consider a simple scenario
when the expert function takes the form h(X, (a, b)) = (a⊤X + b)p, for some p ∈ N. Additionally,
we also design a new Voronoi loss function as below to facilitate our arguments.

L2,r(G,G∗) :=

L∑
j=1

∣∣∣∑
i∈Vj

exp(β0i)− exp(β∗0j)
∣∣∣+ L∑

j=1

∑
i∈Vj

exp(β0i)
[
∥∆β1ij∥r + ∥∆aij∥r + |∆bij |r

]
,

(23)

where we denote ∆β1ij′ := β1i − β∗1j′ and ∆ηij′ := ηi − η∗j′ .

Now, we are ready to state the result of parameter estimation under the linear gating prefix MoE
model in the following theorem:

Theorem A.1. Assume that the experts take the form h(X, (a, b)) = (a⊤X + b)p, for some p ∈ N,
then we achieve the following minimax lower bound of estimating G∗:

inf
Gn∈GL′ (Θ)

sup
G∈GL′ (Θ)\GL−1(Θ)

EfG [L2,r(Gn, G)] ≳ n−1/2,

for any r ≥ 1, where EfG indicates the expectation taken w.r.t the product measure with fnG.

There are two main implications of the result in Theorem A.1:

(i) The rates for estimating parameters β∗1j , a
∗
j and b∗j are slower than OP (n−1/2r), for any r ≥ 1.

This means that they are slower than any polynomial rates, and could be of order OP (1/ log(n)).
Using the same reasoning described after equation (19), we have

sup
x
|φ((âni )⊤X + b̂ni )− φ((a∗j )⊤X + b∗j )| ≲ ·∥âni − a∗j∥+ |̂bni − b∗j |. (24)

As a consequence, the rates for estimating experts φ((a∗j )
⊤X + b∗j ) are no better than those for

estimating the parameters a∗j and b∗j , and could also be as slow as OP (1/ log(n)).

(ii) The above rates imply that we need an exponential number of data (roughly exp(1/ϵτ ) where ϵ
is the desired approximation error) to estimate the parameters and experts of the linear gating prefix
MoE. This fact demonstrates that using the linear gating in the prefix MoE model is not sample
efficient from the perspective of the expert estimation problem.

Proof of Theorem A.1. Prior to presenting the main proof of Proposition A.1, let us introduce the
following key result:
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Lemma A.2. If the following holds for any r ≥ 1:

lim
ε→0

inf
G∈GL′ (Θ):L2,r(G,G∗)≤ε

∥fG − fG∗∥L2(µ)

L2,r(G,G∗)
= 0, (25)

then we obtain that

inf
Gn∈GL′ (Θ)

sup
G∈GL′ (Θ)\GL−1(Θ)

EfG [L2,r(Gn, G)] ≳ n−1/2. (26)

Proof of Lemma A.2. Indeed, from the Gaussian assumption on the noise variables ϵi, we obtain
that Yi|Xi ∼ N (fG∗(Xi), σ

2) for all i ∈ [n]. Next, the assumption in equation (25) indicates for
sufficiently small ε > 0 and a fixed constant C1 > 0 which we will choose later, we can find a mixing
measure G′

∗ ∈ GL′(Θ) such that L2,r(G′
∗, G∗) = 2ε and ∥fG′

∗ − fG∗∥L2(µ) ≤ C1ε. From Le Cam’s
lemma [48], as the Voronoi loss function L2,r satisfies the weak triangle inequality, we obtain that

inf
Gn∈GL′ (Θ)

sup
G∈GL′ (Θ)\GL−1(Θ)

EfG [L2,r(Gn, G)]

≳
L2,r(G′

∗, G∗)

8
exp(−nEX∼µ[KL(N (fG′

∗(X), σ2),N (fG∗(X), σ2))])

≳ ε · exp(−n∥fG′
∗ − fG∗∥2L2(µ)),

≳ ε · exp(−C1nε
2), (27)

where the second inequality is due to the fact that

KL(N (fG′
∗(X), σ2),N (fG∗(X), σ2)) =

(fG′
∗(X)− fG∗(X))2

2σ2
.

By choosing ε = n−1/2, we obtain that ε · exp(−C1nε
2) = n−1/2 exp(−C1). As a consequence, we

achieve the desired minimax lower bound in equation (26).

Main proof. We need to prove that the following limit holds true for any r ≥ 1:

lim
ε→0

inf
G∈GL′ (Θ):L2,r(G,G∗)≤ε

∥fG − fG∗∥L2(µ)

L2,r(G,G∗)
= 0. (28)

For that purpose, it suffices to build a sequence of mixing measures (Gn)n≥1 such that both
L2,r(Gn, G∗)→ 0 and

∥fGn − fG∗∥L2(µ)

L2,r(Gn, G∗)
→ 0,

as n→∞. To this end, we consider the sequence Gn =
∑L+1

i=1 exp(βn0i)δ(βn
1i,a

n
i ,b

n
i )

, where

• exp(βn01) = exp(βn02) =
1
2 exp(β

∗
01) +

1
2nr+1 and exp(βn0i) = exp(βn0(i−1)) for any 3 ≤ i ≤ L+ 1;

• βn11 = βn12 = β∗11 and βn1i = βn1(i−1) for any 3 ≤ i ≤ L+ 1;

• an1 = an2 = a∗1 and ani = ani−1 for any 3 ≤ i ≤ L+ 1;
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• bn1 = b∗1 +
1
n , bn2 = b∗1 − 1

n and bni = b∗i−1 for any 3 ≤ i ≤ L+ 1.

As a result, the loss function L2,r(Gn, G∗) is reduced to

L2,r(Gn, G∗) =
1

nr+1
+
[
exp(β∗01) +

1

nr+1

]
· 1
nr

= O(n−r). (29)

which indicates indicates that L2,r(Gn, G∗)→ 0 as n→∞.

Now, we prove that ∥fGn − fG∗∥L2(µ)/L2,r(Gn, G∗) → 0. For that purpose, let us consider the
quantity

Qn(X) :=
[ N∑
i′=1

exp(X⊤B0
i′X + c0i′) +

L∑
j′=1

exp((β∗1j′)
⊤X + β∗0j′)

]
· [gGn(X)− gG∗(X)].

For simplicity, let us consider the polynomial degree p = 1 as the arguments for other values of p
can be adapted accordingly. Recall from equation (43) that Qn(X) can be decomposed as follows:

Qn(X) =
L∑
j=1

∑
i∈Aj

exp(βn0i)
[
exp((βn1i)

⊤X)((ani )
⊤X + bni )− exp((β∗1j)

⊤X)((a∗j )
⊤X + b∗j )

]

−
L∑
j=1

∑
i∈Aj

exp(βn0i)
[
exp((βn1i)

⊤X)gGn(X)− exp((β∗1j)
⊤X)gGn(X)

]

+
L∑
j=1

( ∑
i∈Aj

exp(βn0i)− exp(β∗0j)
)[

exp((β∗1j)
⊤X)((a∗j )

⊤X + b∗j )− exp((β∗1j)
⊤X)gGn(X)

]
:= An(X)−Bn(X) + Cn(X).

From the definitions of βn1i, a
n
i and bni , we can rewrite An(X) as follows:

An(X) =
2∑
i=1

1

2

[
exp(β∗01) +

1

nr+1

]
exp((β∗11)

⊤X)[((ani )
⊤X + bni )− ((a∗1)

⊤X + b∗1)]

=
1

2

[
exp(β∗01) +

1

nr+1

]
exp((β∗11)

⊤X)[(bn1 − b∗1) + (bn2 − b∗1)]

= 0.

Additionally, it can also be checked that Bn(X) = 0, and Cn(X) = O(n−(r+1)). Therefore, it follows
that Cn(X)/L2,r(Gn, G∗)→ 0. As a consequence, Qn(X)/L2,r(Gn, G∗)→ 0 as n→∞ for almost
every X.

Since the term
[∑N

i′=1 exp(X
⊤B0

i′X + c0i′) +
∑L

j′=1 exp((β
∗
1j′)

⊤X + β∗0j′)
]

is bounded, we deduce
that [fGn(X)− fG∗(X)]/L2,r → 0 for almost every X. This result indicates that

∥fGn − fG∗∥L2(µ)/L2,r(Gn, G∗)→ 0

as n→∞. Hence, the proof of claim (28) is completed.
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B Proof of Theoretical Results

In this appendix, we present rigorous proofs for the theoretical results introduced in Section 4,
namely Theorem 4.1 and Theorem 4.3, in that order.

B.1 Proof of Theorem 4.1

For the proof of the theorem, we first introduce some notation. Firstly, we denote by FL′(Θ) the set
of conditional densities of all mixing measures in GL′(Θ), that is, FL′(Θ) := {gG(X) : G ∈ GL′(Θ)}.
Additionally, for each δ > 0, the L2(µ) ball centered around the conditional density gG∗(Y |X) and
intersected with the set FL′(Θ) is defined as

Fk(Θ, δ) :=
{
g ∈ Fk(Θ) : ∥g − gG∗∥L2(µ) ≤ δ

}
.

In order to measure the size of the above set, Geer et. al. [36] suggest using the following quantity:

JB(δ,FL′(Θ, δ)) :=

∫ δ

δ2/213
H

1/2
B (t,FL′(Θ, t), ∥ · ∥L2(µ)) dt ∨ δ, (30)

where HB(t,FL′(Θ, t), ∥ · ∥L2(µ)) stands for the bracketing entropy [36] of FL′(Θ, u) under the L2(µ)-
norm, and t ∨ δ := max{t, δ}. By using the similar proof argument of Theorem 7.4 and Theorem 9.2
in [36] with notations being adapted to this work, we obtain the following lemma:

Lemma B.1. Take Ψ(δ) ≥ JB(δ,FL′(Θ, δ)) that satisfies Ψ(δ)/δ2 is a non-increasing function of
δ. Then, for some universal constant c and for some sequence (δn) such that

√
nδ2n ≥ cΨ(δn), we

achieve that

P
(
∥g
Ĝn
− gG∗∥L2(µ) > δ

)
≤ c exp

(
−nδ

2

c2

)
,

for all δ ≥ δn.

We now demonstrate that when the expert functions are Lipschitz continuous, the following bound
holds:

HB(ε,FL′(Θ), ∥.∥L2(µ)) ≲ log(1/ε), (31)

for any 0 < ε ≤ 1/2. Indeed, for any function gG ∈ FL′(Θ), since the expert functions are
bounded, we obtain that h(X, η) ≤ M for all X where M is a bounded constant of the expert
functions. Let τ ≤ ε and {π1, . . . , πN̄} be the τ -cover under the L2 norm of the set FL′(Θ) where
N̄ := N(τ,FL′(Θ), ∥ · ∥L2(µ)) is the η-covering number of the metric space (Fk(Θ), ∥ · ∥L2(µ)). Then,
we construct the brackets of the form [Li(X), Ui(X)] for all i ∈ [N̄ ] as follows:

Li(x) := max{πi(X)− τ, 0},
Ui(x) := max{πi(X) + τ,M}.

From the above construction, we can validate that FL′(Θ) ⊂ ∪N̄i=1[Li(X), Ui(X)] and Ui(X) −
Li(X) ≤ 2min{2τ,M}. Therefore, it follows that

∥Ui − Li∥2L2(µ)
=

∫
(Ui − Li)2dµ(X) ≤

∫
16τ2dµ(X) = 16τ2,
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which implies that ∥Ui − Li∥L2(µ) ≤ 4τ . By definition of the bracketing entropy, we deduce that

HB(4τ,FL′(Θ), ∥ · ∥L2(µ)) ≤ logN = logN(τ,FL′(Θ), ∥ · ∥L2(µ)). (32)

Therefore, we need to provide an upper bound for the covering number N̄ . In particular, we denote
∆ := {(β1, β0) ∈ RNd×Nd × RNd × R : (β1, β0, η) ∈ Θ} and Ω := {η ∈ Rq : (β1, β0, η) ∈ Θ}. Since Θ
is a compact set, ∆ and Ω are also compact. Therefore, we can find τ -covers ∆τ and Ωτ for ∆ and
Ω, respectively. We can check that

|∆τ | ≤ OP (τ−(Nd+1)L′
), |Ωτ | ≲ OP (τ−qL

′
).

For each mixing measure G =
∑L′

i=1 exp(β0i)δ(β1i,ηi) ∈ GL′(Θ), we consider other two mixing
measures:

Ǧ :=

L′∑
i=1

exp(β0i)δ(β1i,ηi), G :=

L′∑
i=1

exp(β0i)δ(β1i,ηi)
.

Here, ηi ∈ Ωτ such that ηi is the closest to ηi in that set, while (β1i, β0i) ∈ ∆τ is the closest to
(β1i, β0i) in that set. From the above formulations, we get that

∥gG − gǦ∥
2
L2(µ)

=

∫ [ L′∑
j=1

exp(β⊤1jX + ασ(τβ⊤1jX) + β0j)∑N
i′=1 exp(X

⊤B0
i′X + c0i′) +

∑L′

j′=1 exp(β
⊤
1j′X + ασ(τβ⊤1j′x) + β0j′)

×
(
h(X, ηj)− h(X, ηj)

)]2
dµ(X)

≤ L′
∫ L′∑

j=1

[
exp(β⊤1jX + ασ(τβ⊤1jX) + β0j)∑N

i′=1 exp(X
⊤B0

i′X + c0i′) +
∑L′

j′=1 exp(β
⊤
1j′X + ασ(τβ⊤1j′X) + β0j′)

×
(
h(X, ηj)− h(X, ηj)

)]2
dµ(X)

≤ L′
∫ L′∑

j=1

[h(X, ηj)− h(X, ηj)]
2 dµ(X)

≤ L′
∫ L′∑

j=1

[L1 · ∥ηj − ηj∥]2 dµ(X)

≤ (L′L1τ)
2,

which indicates that ∥gG − gǦ∥L2(µ) ≲ τ . Here, the second inequality is according to the Cauchy-
Schwarz inequality, the third inequality occurs as the softmax weight is bounded by 1, and the fourth
inequality follows from the fact that the expert h(x, ·) is a Lipschitz function with Lipschitz constant

18



L1. Next, let us denote

D : =
N∑
i′=1

exp(X⊤B0
i′X + c0i′) +

L′∑
j′=1

exp(β⊤1j′X + ασ(τβ⊤1j′X) + β0j′),

D : =
N∑
i′=1

exp(X⊤B0
i′X + c0i′) +

L′∑
j′=1

exp(β
⊤
1j′X + ασ(τβ

⊤
1j′X) + β0j′).

Then, we have

∥gǦ − gG∥
2
L2(µ)

=

∫ [ 1
D

( N∑
i=1

exp(X⊤B0
iX + c0i )h(X, η0i ) +

L′∑
j=1

exp(β⊤1jX + ασ(τβ⊤1jX) + β0j)h(X, ηj)
)

+
1

D

( N∑
i=1

exp(X⊤B0
iX + c0i )h(X, η0i ) +

L′∑
j=1

exp(β
⊤
1jX + ασ(τβ

⊤
1jX) + β0j)h(X, ηj)

)]2
dµ(X)

≤ 1

2

∫ {[ N∑
i=1

(exp(X⊤B0
iX + c0i )

D
− exp(X⊤B0

iX + c0i )

D

)
h(X, η0i )

]2
+
[ L′∑
j=1

(exp(β⊤1jX + β0j)

D
−

exp(β
⊤
1jX + β0j)

D

)
h(X, ηj)

]2}
dµ(X)

≤ N

2

( 1

D
− 1

D

)2 ∫ N∑
i=1

[
exp(X⊤B0

iX + c0i )h(X, η0i )
]2
dµ(X)

+
L′

2

∫ L′∑
j=1

[(exp(β⊤1jX + β0j)

D
−

exp(β
⊤
1jX + β0j)

D

)
h(X, ηj)

]2
dµ(X). (33)

Now, we will bound two terms in the above right hand side. Firstly, since both the input space X
and the parameter space Θ are bounded, we have that

1

D
− 1

D
≲ |D −D|

=
∣∣∣ L′∑
j′=1

[
exp(β⊤1j′X + σ(β⊤1j′X) + β0j′)− exp(β

⊤
1j′X + σ(β

⊤
1j′X) + β0j′)

]∣∣∣
≲

L′∑
j=1

[
∥β1j − β1j∥ · ∥x∥+ |β0j − β0j |

]
≤ kτ(B + 1).

As a result, we deduce that

k0
2

( 1

D
− 1

D

)2 ∫ N∑
i=1

[
exp(X⊤B0

iX + c0i )h(X, η0i )
]2
dµ(X) ≲

1

2
N [L′τ(B + 1)]2. (34)
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Regarding the second term, note that

exp(β⊤1jX + β0j)

D
−

exp(β
⊤
1jX + β0j)

D

= exp(β⊤1jX + β0j)
( 1

D
− 1

D

)
+

1

D

[
exp(β⊤1jX + β0j)− exp(β

⊤
1jX + β0j)

]
.

Since

exp(β⊤1jX + β0j)
( 1

D
− 1

D

)
≲

1

D
− 1

D
≲ L′τ(B + 1),

1

D

[
exp(β⊤1jX + β0j)− exp(β

⊤
1jX + β0j)

]
≲
[
∥β1j − β1j∥ · ∥X∥+ |β0j − β0j |

]
≤ τ(B + 1),

it follows that

L′

2

∫ L′∑
j=1

[(exp(β⊤1jX + β0j)

D
−

exp(β
⊤
1jX + β0j)

D

)
h(x, ηj)

]2
dµ(x) ≲

1

2
(L′)2M2[τ(B + 1)]2 (35)

From equations (33), (34) and (35), we obtain that

∥gǦ − gG∥L2(µ) ≲ τ.

According to the triangle inequality, we have

∥gG − gG∥L2(µ) ≤ ∥gG − gǦ∥L2(µ) + ∥gǦ − gG∥L2(µ) ≲ τ.

By definition of the covering number, we deduce that

N(τ,FL′(Θ), ∥ · ∥L2(µ)) ≤ |∆τ | × |Ωτ | ≤ O(n−(Nd+1)L′
)×O(n−qL′

) ≤ O(n−(Nd+1+q)L′
). (36)

Combine equations (32) and (36), we achieve that

HB(4τ,FL′(Θ), ∥ · ∥L2(µ)) ≲ log(1/τ).

Let τ = ε/4, then we obtain that

HB(ε,FL′(Θ), ∥.∥L2(µ)) ≲ log(1/ε).

As a result, it follows that

JB(δ,FL′(Θ, δ)) =

∫ δ

δ2/213
H

1/2
B (t,FL′(Θ, t), ∥ · ∥L2(µ)) dt ∨ δ ≲

∫ δ

δ2/213
log(1/t)dt ∨ δ. (37)

Let Ψ(δ) = δ ·[log(1/δ)]1/2, then Ψ(δ)/δ2 is a non-increasing function of δ. Furthermore, equation (37)
indicates that Ψ(δ) ≥ JB(δ,FL′(Θ, δ)). In addition, let δn =

√
log(n)/n, then we get that

√
nδ2n ≥

cΨ(δn) for some universal constant c. Finally, by applying Lemma B.1, we achieve the desired
conclusion of the theorem.
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B.2 Proof of Theorem 4.3

Our goal is also to demonstrate the following inequality:

inf
G∈GL′ (Θ)

∥gG − gG∗∥L2(µ)/L1(G,G∗) > 0. (38)

For that purpose, we divide the proof of the above inequality into local and global parts in the
sequel.

Local part: In this part, we demonstrate that

lim
ε→0

inf
G∈GL′ (Θ):L1(G,G∗)≤ε

∥gG − gG∗∥L2(µ)/L1(G,G∗) > 0. (39)

Assume by contrary that the above claim is not true, then there exists a sequence of mixing measures
Gn =

∑L
i=1 exp(β

n
0i)δ(βn

1i,η
n
i )

in GL′(Θ) such that L1n := L1(Gn, G∗)→ 0 and

∥gGn − gG∗∥L2(µ)/L1n → 0, (40)

as n→∞. Let us denote by Vnj := Vj(Gn) a Voronoi cell of Gn generated by the j-th components
of G∗. Since our arguments are asymptotic, we may assume that those Voronoi cells do not depend
on the sample size, i.e., Vj = Vnj . Thus, the Voronoi loss L1n can be represented as

L1n :=
∑

j:|Vj |>1

∑
i∈Vj

exp(βn0i)
[
∥∆βn1ij∥2 + ∥∆ηnij∥2

]

+
∑

j:|Vj |=1

∑
i∈Vj

exp(βn0i)
[
∥∆βn1ij∥+ ∥∆ηnij∥

]
+

k∗∑
j=1

∣∣∣∑
i∈Vj

exp(βn1i)− exp(β∗1j)
∣∣∣, (41)

where we denote ∆βn1ij := βn1i − β∗1j and ∆ηnij := ηni − η∗j .

Since L1n → 0, we get that (βn1i, η
n
i )→ (β∗1j , η

∗
j ) and

∑
i∈Vj

exp(βn0i)→ exp(β∗0j) as n→∞ for any
i ∈ Vj and j ∈ [L]. Now, we divide the proof of the local part into three steps as follows:

Step 1 - Taylor expansion. In this step, we would like to decompose the quantity

Qn(X) :=
[ N∑
i′=1

exp(X⊤A0
i′X + c0i′) +

L∑
j′=1

exp((β∗1j′)
⊤X + ασ(τ(β∗1j′)

⊤X) + β∗0j′)
]

× [gGn(X)− gG∗(X)] (42)

into a combination of linearly independent elements using Taylor expansion. In particular, the
quantity Qn(X) is decomposed as follows:

L∑
j=1

∑
i∈Vj

exp(βn0i)
[
exp((βn1i)

⊤X + ασ(τ(βn1i)
⊤X))h(X; ηni )− exp((β∗1j)

⊤X + ασ(τ(β∗1j)
⊤X))h(X; η∗j )

]

−
L∑
j=1

∑
i∈Vj

exp(βn0i)
[
exp((βn1i)

⊤X + ασ(τ(βn1i)
⊤X))− exp((β∗1j)

⊤X + ασ(τ(β∗1j)
⊤X))

]
gGn(X)

+

L∑
j=1

(∑
i∈Vj

exp(βn0i)− exp(β∗0j)
)
exp((β∗1j)

⊤X + ασ(τ(β∗1j)
⊤X))

[
h(X; η∗j )− gGn(X)

]
:= An(X)−Bn(X) + Cn(X). (43)
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Decomposition of An(X). Let us denote E(X;β1) := exp(β⊤1 X + ασ(τβ⊤1 X)), then An can be
separated into two terms as follows:

An(X) :=
∑

j:|Vj |=1

∑
i∈Vj

exp(βn0i)
[
E(X;βn1i)h(x; η

n
i )− E(X;β∗1j)h(X; η∗j )

]
+

∑
j:|Vj |>1

∑
i∈Vj

exp(βn0i)
[
E(X;βn1i)h(X; ηni )− E(X;β∗1j)h(X; η∗j )

]
:= An,1(X) +An,2(X).

By means of the first-order Taylor expansion, we have

An,1(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(βn0i)

α!

∑
|α|=1

(∆βn1ij)
α1(∆ηnij)

α2
∂|α1|E

∂βα1
1

(X;β∗1j)
∂|α2|h

∂ηα2
(X; η∗j ) +Rn,1(X)

=
∑

j:|Vj |=1

∑
|α1|+|α2|=1

Sn,j,α1,α2

∂|α1|E

∂βα1
1

(X;β∗1j)
∂|α2|h

∂ηα2
(X; η∗j ) +Rn,1(X),

where Rn,1(X) is a Taylor remainder such that Rn,1(X)/L1n → 0 as n→∞, and

Sn,j,α1,α2 :=
∑
i∈Vj

exp(βn0i)

α!
(∆βn1ij)

α1(∆ηnij)
α2 .

On the other hand, by applying the second-order Taylor expansion, we get that

An,2(X) =
∑

j:|Vj |>1

∑
1≤|α1|+|α2|≤2

Sn,j,α1,α2

∂|α1|E

∂βα1
1

(X;β∗1j)
∂|α2|h

∂ηα2
(X; η∗j ) +Rn,2(X),

in which Rn,2(X) is a Taylor remainder such that Rn,2(X)/L1n → 0 as n→∞.

Decomposition of Bn. Recall that we have

Bn(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(βn0i)
[
E(X;βn1i)− E(X;β∗1j)

]
gGn(X)

+
∑

j:|Vj |>1

∑
i∈Vj

exp(βn0i)
[
E(X;βn1i)− E(x;β∗1j)

]
gGn(X)

:= Bn,1(X) +Bn,2(X).

By invoking first-order and second-order Taylor expansions to Bn,1(X) and Bn,2(X), it follows that

Bn,1(X) =
∑

j:|Vj |=1

∑
|ℓ|=1

Tn,j,ℓ ·
∂|ℓ|E

∂βℓ1
(X;β∗1j)gGn(X) +Rn,3(X),

Bn,2(X) =
∑

j:|Vj |>1

∑
1≤|ℓ|≤2

Tn,j,ℓ ·
∂|ℓ|E

∂βℓ1
(X;β∗1j)gGn(X) +Rn,4(X),
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where we define

Tn,j,ℓ :=
∑
i∈Vj

exp(βn0i)

ℓ!
(∆βn1ij)

ℓ.

Additionally, Rn,3(X) and Rn,4(X) are Taylor remainders such that Rn,3(X)/L1n → 0 and
Rn,3(X)/L1n → 0 as n→∞.

Collect the above results together, we can represent Qn(x) as

Qn(X) =

L∑
j=1

∑
0≤|α1|+|α2|≤2

Sn,j,α1,α2

∂|α1|E

∂βα1
1

(X;β∗1j)
∂|α2|h

∂ηα2
(X; η∗j ),

−
L∑
j=1

∑
0≤|ℓ|≤2

Tn,j,ℓ ·
∂|ℓ|E

∂βℓ1
(X;β∗1j)gGn(X) +

4∑
i=1

Rn,i(X), (44)

where we define Sn,j,0d×d,0q = Tn,j,0d×d
=
∑

i∈Vj
exp(βn0i)− exp(β∗0j) for any j ∈ [L].

Step 2 - Non-vanishing coefficients. In this step, we demonstrate that at least one among ratios
of the forms Sn,j,α1,α2/L1n and Tn,j,ℓ/L1n goes to zero as n tends to infinity. Indeed, assume by
contrary that

Sn,j,α1,α2

L1n
→ 0,

Tn,j,ℓ
L1n

→ 0,

for any j ∈ [L], 0 ≤ |α1|, |α2|, |ℓ| ≤ 2. Then, we get

1

L1n

L∑
j=1

∣∣∣∑
i∈Vj

exp(βn0i)− exp(β∗0j)
∣∣∣ = L∑

j=1

∣∣∣Sn,j,0d×d,0q

L1n

∣∣∣→ 0. (45)

Now, we consider indices j ∈ [L] such that its corresponding Voronoi cell has only one element, i.e.
|Vj | = 1.

• For arbitrary u, v ∈ [Nd], let α1 ∈ NNd×Nd and α2 = 0q such that α(uv)
1 = 1 while other

entries equal to zero. Then, we have 1
L1n
·
∑

i∈Vj
exp(βn0i)|(∆βn1ij)(uv)| = |Sn,j,α1,α2 |/L1n → 0

as n→∞. By taking the summation of the previous term with u, v ∈ [Nd], we achieve that
1

L1n

∑
i∈Vj

exp(βn0i)∥∆βn1ij∥1 → 0. Owing to the topological equivalence between norm-1 and
norm-2, it follows that

1

L1n

∑
i∈Vj

exp(βn0i)∥∆βn1ij∥ → 0. (46)

• For arbitrary u ∈ [Nd], let α1 = 0Nd×Nd and α2 ∈ Nq such that α(u)
2 = 1 while other

entries equal to zero. Then, we get 1
L1n
·
∑

i∈Vj
exp(βn0i)|(∆ηnij)(u)| = |Sn,j,α1,α2 |/L1n → 0

as n → ∞. By taking the summation of the previous term with u ∈ [q], we achieve that
1

L1n

∑
i∈Vj

exp(βn0i)∥∆ηnij∥1 → 0, or equivalently,

1

L1n

∑
i∈Vj

exp(βn0i)∥∆ηnij∥ → 0. (47)
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Combine the limits in equations (46) and (47), we obtain that

1

L1n

∑
j:|Vj |=1

∑
i∈Vj

exp(βn0i)[∥∆βn1ij∥+ ∥∆ηnij∥]→ 0, (48)

as n→∞.

Next, we consider indices j ∈ [L] such that its corresponding Voronoi cell has more than one element,
i.e. |Vj | > 1.

• For arbitrary u, v ∈ [Nd], let α1 ∈ NNd×Nd and α2 = 0q such that α(uv)
1 = 2 while other

entries equal to zero. Then, we have 1
L1n
·
∑

i∈Vj
exp(βn0i)|(∆βn1ij)(uv)|2 = |Sn,j,α1,α2 |/L1n → 0

as n→∞. By taking the summation of the previous term with u, v ∈ [Nd], we achieve that

1

L1n

∑
i∈Vj

exp(βn0i)∥∆βn1ij∥2 → 0. (49)

• For arbitrary u ∈ [Nd], let α1 = 0Nd×Nd and α2 ∈ Nq such that α(u)
2 = 2 while other entries

equal to zero. Then, we get 1
L1n
·
∑

i∈Vj
exp(βn0i)|(∆ηnij)(u)|2 = |Sn,j,α1,α2 |/L1n → 0 as n→∞.

By taking the summation of the previous term with u ∈ [q], we achieve that

1

L1n

∑
i∈Vj

exp(βn0i)∥∆ηnij∥2 → 0. (50)

Putting the limits in equations (46) and (47), we have

1

L1n

∑
j:|Vj |>1

∑
i∈Vj

exp(βn0i)[∥∆βn1ij∥+ ∥∆ηnij∥]→ 0, (51)

as n→∞. Taking the summation of three limits in equations (45), (48) and (51), we deduce that
1 = L1n/L1n → 0 as n→∞, which is a contradiction. Thus, at least one among ratios of the forms
Sn,j,α1,α2/L1n and Tn,j,ℓ/L1n goes to zero as n tends to infinity.

Step 3 - Application of Fatou’s lemma. In this step, we show that all the ratios Sn,j,α1,α2/L1n
and Tn,j,ℓ/L1n go to zero as n→∞, which contradicts to the conclusion in Step 2. In particular, by
denoting mn as the maximum of the absolute values of those ratios. From the result of Step 2, it
follows that 1/mn ̸→ ∞.

Recall from the hypothesis in equation (40) that ∥gGn − gG∗∥L2(µ)/L1n → 0 as n → ∞, which
indicates that ∥gGn − gG∗∥L1(µ)/L1n → 0. Therefore, by applying the Fatou’s lemma, we get that

0 = lim
n→∞

∥gGn − gG∗∥L1(µ)

mnL1n
≥
∫

lim inf
n→∞

|gGn(X)− gG∗(X)|
mnL1n

dµ(X) ≥ 0.

This result implies that 1
mnL1n

· [gGn(X)− gG∗(X)]→ 0 as n→∞ for µ-almost surely X. Look-

ing at the formulation of Qn(X) in equation (42), since the term
[∑k0

i′=1 exp(X
⊤A0

i′X + c0i′) +∑k∗
j′=1 exp((β

∗
1j′)

⊤X + σ((β∗1j′)
⊤X) + β∗0j′)

]
is bounded, we deduce that the term Qn(X)

mnL1n
→ 0 for

µ-almost surely X.
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Let us denote

Sn,j,α1,α2

mnL1n
→ ϕj,α1,α2 ,

Tn,j,ℓ
mnL1n

→ φj,ℓ,

with a note that at least one among them is non-zero. Then, from the decomposition of Qn(X) in
equation (44), we have

L∑
j=1

1+1{|Vj |>1}∑
|α1|+|α2|=0

ϕj,α1,α2 ·
∂|α1|E

∂βα1
1

(X;β∗1j)
∂|α2|h

∂ηα2
(X; η∗j ),

−
L∑
j=1

1+1{|Vj |>1}∑
|ℓ|=0

φj,ℓ ·
∂|ℓ|E

∂βℓ1
(X;β∗1j)gG∗(X) = 0,

for µ-almost surely X. It is worth noting that the term ∂|α1|E
∂β

α1
1

(X;β∗1j) · ∂
|α2|h
∂ηα2 (X; η∗j ) can be explicitly

expressed as

• When |α1| = 0, |α2| = 0: exp((β∗1j)
⊤X + σ((β∗1j)

⊤X))h(X; η∗j );

• When |α1| = 1, |α2| = 0: X(u)
(
1 + σ′((β∗1j)

⊤X)
)
exp((β∗1j)

⊤X + σ((β∗1j)
⊤X))h(X; η∗j );

• When |α1| = 0, |α2| = 1: exp((β∗1j)
⊤X + σ((β∗1j)

⊤X)) ∂h
∂η(w) (X; η∗j );

• When |α1| = 1, |α2| = 1:

x(u)
(
1 + σ′((β∗1j)

⊤x)
)
exp((β∗1j)

⊤x+ σ((β∗1j)
⊤x))

∂h

∂η(w)
(x; η∗j );

• When |α1| = 2, |α2| = 0:

X(u)x(v)
[
(1 + σ′((β∗1j)

⊤X))2 + σ′′((β∗1j)
⊤X)

]
exp((β∗1j)

⊤X + σ((β∗1j)
⊤X))h(X; η∗j )

• When |α1| = 0, |α2| = 2: exp((β∗1j)
⊤X + σ((β∗1j)

⊤X)) ∂2h
∂η(w)∂η(w

′) (X; η∗j ).

Recall that the expert function h satisfies the condition in Definition 4.2, i.e. the set{
Xν
[
(1 + σ′((β∗1j)

⊤X))|ν| + 1{|ν|=2}σ
′′((β∗1j)

⊤X)
]
· ∂

|γ|h

∂ηγ
(X, η∗j ) : j ∈ [L], 0 ≤ |ν|+ |γ| ≤ 2

}
is linearly independent for almost every X. Therefore, we obtain that ϕj,α1,α2 = φj,ℓ = 0 for all
j ∈ [L], 0 ≤ |α1|+ |α2|, |ℓ| ≤ 1 + 1{|Vj |>1}. This result turns out to contradict the fact that at least
one among them is different from zero. Hence, we achieve the inequality in equation (39).

Global part. It is worth noting that the inequality (39) suggests that there exists a positive
constant ε′ such that

inf
G∈GL′ (Θ):L1(G,G∗)≤ε′

∥gG − gG∗∥L2(µ)/L1(G,G∗) > 0.
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Therefore, it is sufficient to prove that

inf
G∈GL′ (Θ):L1(G,G∗)>ε′

∥gG − gG∗∥L2(µ)/L1(G,G∗) > 0. (52)

Assume by contrary that the inequality (52) does not hold true, then we can find a sequence of
mixing measures G′

n ∈ GL′(Θ) such that L1(G′
n, G∗) > ε′ and

lim
n→∞

∥gG′
n
− gG∗∥L2(µ)

L1(G′
n, G∗)

= 0,

which indicates that ∥gG′
n
− gG∗∥L2(µ) → 0 as n → ∞. Recall that Θ is a compact set, therefore,

we can replace the sequence G′
n by one of its subsequences that converge to a mixing measure

G′ ∈ GL′(Ω). Since L1(G′
n, G∗) > ε′, we deduce that L1(G′, G∗) > ε′.

Next, by invoking the Fatou’s lemma, we have that

0 = lim
n→∞

∥gG′
n
− gG∗∥2L2(µ)

≥
∫

lim inf
n→∞

∣∣∣gG′
n
(X)− gG∗(X)

∣∣∣2 dµ(X).

Thus, we get that gG′(X) = gG∗(X) for µ-almost surely X. From the identifiability property of
the non-linear residual gating prefix MoE (cf. the end of this proof), we deduce that G′ ≡ G∗.
Consequently, it follows that L1(G′, G∗) = 0, contradicting the fact that L1(G′, G∗) > ε′ > 0. Hence,
the proof is completed.

Identifiability of Non-linear Residual Gating MoE.

We now prove the identifiability of the non-linear residual gating prefix MoE. In particular, we will
show that if gG(X) = gG∗(X) for almost every X, then it follows that G ≡ G∗.

For ease of presentation, let us denote

softmaxG(u) : =
exp(u)∑N

i′=1 exp(X
⊤B0

i′X + c0i′) +
∑L

j′=1 exp((β1j′)
⊤X + ασ(τ(β1j′)⊤X) + β0j′)

,

softmaxG∗(u
∗) : =

exp(u∗)∑N
i′=1 exp(X

⊤B0
i′X + c0i′) +

∑L
j′=1 exp((β

∗
1j′)

⊤X + ασ(τ(β∗1j′)
⊤X) + β∗0j′)

,

where

u ∈
{
X⊤B0

i′X + c0i′ , (β1j′)
⊤X + σ((β1j′)

⊤X) + β0j′ : i
′ ∈ [N ], j′ ∈ [L′]

}
,

u∗ ∈
{
X⊤B0

i′X + c0i′ , (β
∗
1j′)

⊤X + ασ(τ(β∗1j′)
⊤X) + β∗0j′ : i

′ ∈ [N ], j′ ∈ [L]
}
.

Since gG(X) = gG∗(X) for almost every x, we have

N∑
i=1

softmaxG(X
⊤BiX + c0i ) · h(X, η0i ) +

L′∑
j=1

softmaxG

(
(β1j)

⊤X + ασ(τ(β1j)
⊤X) + β0j

)
· h(X, ηj)

=
N∑
i=1

softmaxG∗(X
⊤BiX + c0i ) · h(X, η0i ) +

L∑
j=1

softmaxG∗

(
(β∗1j)

⊤X + ασ(τ(β∗1j)
⊤X) + β∗0j

)
· h(X, η∗j ).

(53)
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As the expert function h satisfies the conditions in Definition 4.2, the set {h(X, η′i) : i ∈ [k′]},
where η′1, . . . , η′k′ are distinct vectors for some k′ ∈ N, is linearly independent. If L′ ≠ L, then there
exists some i ∈ [L′] such that ηi ̸= η∗j for any j ∈ [L]. This implies that

∑L′

j=1 softmaxG

(
(β1j)

⊤X +

ασ(τ(β1j)
⊤X) + β0j

)
· h(X, ηj) = 0, which is a contradiction. Thus, we must have that L = L′. As

a result,{
softmaxG

(
(β1j)

⊤X + ασ(τ(β1j)
⊤X) + β0j

)
: j ∈ [L′]

}
=
{
softmaxG∗

(
(β∗1j)

⊤X + ασ(τ(β∗1j)
⊤X) + β∗0j

)
: j ∈ [L]

}
,

for almost every X. WLOG, we may assume that

softmaxG

(
(β1j)

⊤X + ασ(τ(β1j)
⊤X) + β0j

)
= softmaxG∗

(
(β∗1j)

⊤X + ασ(τ(β∗1j)
⊤X) + β∗0j

)
,

(54)

for almost every X for any j ∈ [L]. Since the softmax function is invariant to translation, this
result indicates that β1j = β∗1j and β0j = β∗0j + v0 for some v0 ∈ R for any j ∈ [L]. Recall from the
universal assumption that β0L′ = β0L = 0, we get that β0j = β∗0j for any j ∈ [L]. Then, equation (53)
can be rewritten as

L∑
j=1

exp(β0j) exp
(
(β1j)

⊤X + ασ(τ(β1j)
⊤X)

)
h(X, ηj)

=
L∑
j=1

exp(β∗0j) exp
(
(β∗1j)

⊤X + ασ(τ(β∗1j)
⊤X

)
h(X, η∗j ), (55)

for almost every X. Next, we denote P1, P2, . . . , Pm as a partition of the index set [L], where m ≤ L′,
such that exp(β0i) = exp(β∗0i′) for any i, i′ ∈ Pj and j ∈ [L]. On the other hand, when i and i′ do
not belong to the same set Pj , we let exp(β0i) ̸= exp(β0i′). Thus, we can reformulate equation (55)
as

m∑
j=1

∑
i∈Pj

exp(β0i) exp
(
(β1i)

⊤X + ασ(τ(β1i)
⊤X

)
h(X, ηi)

=
m∑
j=1

∑
i∈Pj

exp(β∗0i) exp
(
(β∗1i)

⊤X + ασ(τ(β∗1i)
⊤X

)
h(X, η∗i ),

for almost every X. Recall that β1i = β∗1i and β0i = β∗0i for any i ∈ [L], then the above equation
leads to

{ηi : i ∈ Pj} ≡ {η∗i : i ∈ Pj},

for almost every X for any j ∈ [m]. As a consequence,

G =

m∑
j=1

∑
i∈Pj

exp(β0i)δ(β1i,ηi) =

m∑
j=1

∑
i∈Pj

exp(β∗0i)δ(β∗
1i,η

∗
i )

= G∗.

Hence, we reach the conclusion of this proposition.
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C Training Algorithm of HiDe-Prompt

Algorithm 1 HiDe-Prompt’s training algorithm
Input: Pre-trained transformer backbone fθ, training sets D1, ...,DT , number of tasks T , number

of epochs E, hyper-parameters α, τ and λ.
Output: Parameters p1, ...,pT , ω and ψ
1: Initialize e1, ω and ψ
2: for t = 1, ..., T do
3: for c ∈ Y(t) do
4: Obtain Ĝc from fθ and Dt ▷ Uninstructed Representations
5: if t > 1 then
6: Initialize et ← et−1

7: Construct pt = α
∑t−1

i=1 ei + (1− α)et
8: else
9: Construct pt = et

10: for epoch = 1, ..., E do
11: Optimize pt and ψ with LWTP in Eq.(57) ▷ Within-Task Prediction
12: Optimize ω with LTII in Eq.(59) ▷ Task-Identity Inference
13: Optimize ψ with LTAP in Eq.(58) ▷ Task-Adaptive Prediction
14: for c ∈ Y(t) do
15: Obtain Gc from fθ,pt and Dt ▷ Instructed Representations

return (p1, ...,pT , ω, ψ)

In this appendix, we outline the detailed algorithm of HiDe-Prompt, utilizing the same notation as
in Section 2.

Each previously encountered class c ∈ Y(i), i = 1, . . . , t − 1 has its instructed and uninstructed
representations approximated by Gaussian distributions, denoted as Gc and Ĝc, respectively.

HiDe-Prompt maintains an expandable pool of task-specific prompts et, each optimized for a specific
task Dt using a cross-entropy loss within the WTP objective. To prevent forgetting, previous prompts
e1, .., et−1 remain frozen. Knowledge transfer across tasks is facilitated by a prompt ensemble (PE)
strategy: the current prompt is initialized with the last one et ← et−1 and refined using a weighted
combination of all past prompts pt = α

∑t−1
i=1 ei + (1− α)et, where α is a hyper-parameter. Notably,

HiDe-Prompt incorporates contrastive regularization within the WTP objective, pushing features of
the new task away from those of past tasks represented by the prototypes of old class distributions
Gc. Let Ht = {fθ(x

(t)
i ,pt)| i = 1, .., Nt} be the embedding transformation of Dt and µc be the mean

of Gc. The contrastive loss can be written as

LCR(pt) =
∑
h∈Ht

t−1∑
i=1

∑
c∈Y(i)

log(
exp(h · µc/τ)∑

h′∈Ht
exp(h · h′/τ) +

∑t−1
i=1

∑
c′∈Y(i) exp(h · µc′/τ)

), (56)

where τ is the temperature that is set to 0.8. The overall objective function of WTP for learning a
new task t is defined as

LWTP(ψ,pt) = LCE(ψ,pt) + λLCR(pt), (57)
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where λ is a hyper-parameter. Following WTP, HiDe-Prompt performs a further refinement step on
the output layer parameters ψ using a separate objective called task-adaptive prediction (TAP). TAP
addresses potential classifier bias by considering the Gaussian distribution of all classes encountered
so far. The final output layer hψ can be further optimized for TAP objective,

LTAP(ψ) =

t∑
i=1

∑
c∈Y(i)

∑
h∈Hi,c

−log(
exp(hψ(h)[c])∑t

j=1

∑
c′∈Y(j) exp(hψ(h)[c′])

) (58)

where Hi,c is constructed by sampling an equal number of pseudo representations from Gc for c ∈ Y(i)

and i = 1, ..., t.

For TII, HiDe-Prompt leverages a lightweight auxiliary output layer ĥω : RD → RT , to map
uninstructed representations directly to task identity. This mapping is learned explicitly through a
cross-entropy loss function,

LTII(ω) =
∑
c∈Yt

∑
ĥ∈Ĥc

−log( exp(ĥω(ĥ)[c])∑
c′∈Yt

exp(ĥω(ĥ)[c′]
) (59)

where Ĥc is constructed by sampling an equal number of pseudo representations from Ĝc for c ∈ Y(i)

and i = 1, ..., t. Please refer to Algorithm 1 for more details.

D Experimental Details

Datasets We use commonly-used datasets in the field of continual learning, including (1) Split
CIFAR-100 [18]: This dataset comprises images from 100 classes. These classes are divided
randomly into 10 separate incremental tasks, with each task featuring a distinct set of classes.
(2) Split ImageNet-R [18]: This dataset is composed of images from 200 classes. It includes
challenging examples from the original ImageNet [33] dataset and newly gathered images representing
diverse styles. These classes are also randomly divided into 10 distinct incremental tasks. (3) Split
CUB-200 [39]: This dataset consists of fine-grained images of 200 different bird species. It is
randomly divided into 10 incremental tasks, each comprising a unique class subset. (4) 5-Datasets
[9]: This composite dataset incorporates CIFAR-10 [18], MNIST [19], Fashion-MNIST [46],
SVHN [26], and notMNIST [3]. Each of these datasets is treated as a separate incremental task,
permitting for the assessment of the effects of significant variations between tasks.

Prompt-Based Approaches We compare NoRGa against recent prompt-based continual learning
approaches: L2P [45], DualPrompt [44], CODA-Prompt [35], S-Prompt [43] and HiDe-Prompt [40].
To ensure a fair comparison, we replicate these methods using the configurations reported in their
respective papers. S-Prompt in the original paper trains a separate prompt and classifier head for
each task. At evaluation, it infers domain id as the nearest centroid obtained by applying K-Means
on the training data. To adapt S-Prompt to CIL, we use one common classifier head for all tasks. For
NoRGa, we adopt the same configuration as HiDe-Prompt, which utilizes Prefix Tuning [21] as its
prompt-based methodology. Learnable scalar factors α and τ are frozen after the first task’s training
to mitigate catastrophic forgetting. We further optimize NoRGa by selecting the best non-linear
activation function σ via cross-validation among tanh, sigmoid, and GELU.

29



Table 4: Performance comparison in task-incremental learning setting. Here we present Final Average
Accuracy (FA).

Method Split CIFAR-100 Split CUB-200

Sup-21K iBOT-21K Sup-21K iBOT-21K

HiDe-Prompt 97.87± 0.31 97.48± 0.33 97.57± 0.08 92.34± 0.34
NoRGa tanh 98.55± 0.45 98.26± 0.36 97.86± 0.14 92.85± 0.33
NoRGa sigmoid 98.63± 0.35 98.15± 0.29 97.89± 0.14 92.85± 0.22
NoRGa GELU 98.41± 0.47 98.17± 0.30 97.76± 0.10 93.00± 0.11

Evaluation Metric We employ three common metrics to measure the performance the methods,
including final average accuracy (FA), cumulative average accuracy (CA), and average forgetting
measure (FM). Let Si,t denote the accuracy on the i-th task after learning the t-th task, and At
represent the average accuracy as At = 1

t

∑t
i=1 Si,t. Upon learning all T tasks, we compute FA = AT ,

CA = 1
T

∑T
t=1At, and FM = 1

T−1

∑T−1
i=1 maxt∈{1,...,T−1}(Si,t − Si,T ). It’s worth noting that FA and

CA are prioritized over FM, as they inherently encompass both plasticity and forgetting, with FM
providing supplementary context [35].

Implementation Details We train and test on one NVIDIA A100 GPU for baselines and our
method. We leverage a pre-trained ViT-B/16 model as the backbone. Training employs an Adam
optimizer (β1 = 0.9, β2 = 0.999), a batch size of 128, and a constant learning rate of 0.005 for all
methods except CODA-Prompt. CODA-Prompt utilizes a cosine decaying learning rate starting at
0.001. Additionally, a grid search technique was implemented to determine the most appropriate
number of epochs for effective training.

E Task-incremental learning results

Because HiDe-Prompt optimizes prompt parameters specifically for within-task prediction (WTP),
NoRGa inherently aligns with this objective, leading to generally better continual learning per-
formance. We demonstrate this improvement through experiments in a task-incremental learning
setting, where task labels are available during inference (as in Table 4). While HiDe-Prompt performs
well, NoRGa shows consistent improvement across all scenarios. Notably, NoRGa with sigmoid
activation achieves the highest final average accuracy in both Split CIFAR-100 and Split CUB-200
with Sup-21K training. Additionally, NoRGa demonstrates its effectiveness even with self-supervised
pretraining, further solidifying its advantage over the original Prefix Tuning model. Overall, NoRGa
variants outperform HiDe-Prompt on both datasets and under both training conditions.
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