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Abstract

In the realm of computer vision and graphics, accu-001

rately establishing correspondences between geometric 3D002

shapes is pivotal for applications like object tracking, reg-003

istration, texture transfer, and statistical shape analysis.004

Moving beyond traditional hand-crafted and data-driven005

feature learning methods, we incorporate spectral methods006

with deep learning, focusing on functional maps (FMs) and007

optimal transport (OT). Traditional OT-based approaches,008

often reliant on entropy regularization OT in learning-based009

framework, face computational challenges due to their010

quadratic cost. Our key contribution is to employ the sliced011

Wasserstein distance (SWD) for OT, which is a valid fast op-012

timal transport metric in an unsupervised shape matching013

framework. This unsupervised framework integrates func-014

tional map regularizers with a novel OT-based loss derived015

from SWD, enhancing feature alignment between shapes016

treated as discrete probability measures. We also introduce017

an adaptive refinement process utilizing entropy regularized018

OT, further refining feature alignments for accurate point-019

to-point correspondences. Our method demonstrates supe-020

rior performance in non-rigid shape matching, including021

near-isometric and non-isometric scenarios, and excels in022

downstream tasks like segmentation transfer. The empirical023

results on diverse datasets highlight our framework’s effec-024

tiveness and generalization capabilities, setting new stan-025

dards in non-rigid shape matching with efficient OT metrics026

and an adaptive refinement module.027

1. Introduction028

Establishing precise correspondences between geometric029

3D shapes is a core challenge in various domains of com-030

puter vision and graphics, including but not limited to, ob-031

ject tracking, registration, texture transfer, and statistical032

shape analysis [7, 14, 52, 61]. To facilitate the mapping be-033

tween non-rigid shapes, early approaches [6, 9, 48] concen-034

trated on the development of hand-crafted features, lever-035

aging geometric invariance as a key principle. In the latter036

approaches [4, 10, 16, 27], there has been a shift towards 037

the utilization of data-driven methods for feature learning, 038

which has resulted in marked enhancements in terms of ac- 039

curacy, efficiency, and robustness. 040

Recently, an increasing body of work has exploited the 041

use of spectral methods [5, 18, 21, 32, 46], especially the 042

functional map (FM) representation [39]. Specifically, the 043

FM methods succinctly encode correspondences through 044

compact matrices, utilizing a truncated spectral basis. With 045

recent developments in deep learning, deep FM (DFM) is 046

quickly employed in numerous settings [11, 12, 27, 54] 047

by incorporating feature learning as geometric descriptors 048

for FM frameworks. Most DFM works focus on learn- 049

ing features that optimize FM priors to express desirable 050

map priors, e.g. area preservation, isometry, and bijectiv- 051

ity, which achieves remarkable results even without super- 052

vision [10, 12, 20, 21, 46]. On the other hand, less attention 053

is paid to the problem of explicitly aligning features out- 054

putted from the feature extractor network, due to the lack of 055

smoothness and consistency of linear assignment problems. 056

In this work, we focus on jointly learning features via 057

the functional map, and explicit features, i.e. directly from 058

the feature extractor to establish correct correspondence. 059

Nonetheless, learning to map explicit features is not easy 060

since the geometric objects might potentially undergo arbi- 061

trary deformations. Therefore, we propose to employ opti- 062

mal transport (OT), which is a well-known approach for lin- 063

ear assignment problems, to cast the feature alignment from 064

3D shapes as a probability measures matching problem. 065

The Wasserstein distance [41, 59] is widely acknowl- 066

edged as an effective OT metric for comparing two prob- 067

ability measures, particularly when their supports are dis- 068

joint. However, it comes with the drawback of high com- 069

putational complexity. Specifically, for discrete proba- 070

bility measures with at most m supports, the time and 071

memory complexities are O(m3 logm) and O(m2), re- 072

spectively. This computational burden is exacerbated in 073

3D shape applications where each shape, represented as 074

mesh, is treated as a distinct probability measure. To ame- 075

liorate the computational demands, entropic regularization 076
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coupled with the Sinkhorn algorithm [13] can yield an ✏-077

approximation of the Wasserstein distance with a time com-078

plexity of O(m2
/✏

2) [2, 29–31]. Nonetheless, this method079

does not alleviate the O(m2) memory complexity due to080

the necessity of storing the cost matrix. Additionally, the081

entropic regularization fails to produce a valid metric be-082

tween probability measures as it does not satisfy the tri-083

angle inequality. An alternative, more efficient method is084

the sliced Wasserstein distance (SWD) [8], which calculates085

the expectation of the Wasserstein distance between ran-086

dom one-dimensional push-forward measures derived from087

the original measures. SWD offers a time complexity of088

O(m logm) and a linear memory complexity of O(m).089

Motivated by the above discussion, we introduce a novel090

differentiable unsupervised OT-based loss derived from ef-091

ficient sliced Wasserstein distance, which accounts for asso-092

ciating two extracted extrinsic features to align two meshes093

combined with functional map regularizers. Our proposed094

approach leverages a valid efficient OT metric to obtain095

highly discriminative local feature matching. Addition-096

ally, the integration of functional map regularizers promotes097

smoothness in the mapping process, allowing our method to098

achieve both precise and smooth correspondence.099

Furthermore, we introduce an adaptive refinement pro-100

cess tailored for each pair of shapes, utilizing entropy regu-101

larized OT to enhance matching performance. The differen-102

tiable nature of entropic regularization in OT enables our re-103

finement strategy to leverage the Sinkhorn algorithm. This104

approach yields a soft point-wise map, which is instrumen-105

tal in calculating FM regularizers. These regularizers are106

then used to iteratively update features, thereby facilitating107

the retrieval of precise point-to-point correspondences.108

Finally, we demonstrate our proposed approach on a di-109

verse and extensive selection of datasets. Our contributions110

are as follows:111

• We propose an unsupervised learning framework that em-112

ploys efficient optimal transport to jointly learn with func-113

tional map in shape matching paradigm. Subsequently,114

we derive two novel unsupervised loss functions based115

on sliced Wasserstein distance, which is a valid fast op-116

timal transport metric, to effectively align mesh features117

by interpreting them as probability measures, potentially118

offering a promising avenue for advancements in shape119

matching through efficient optimal transport.120

• To enhance the quality of point mapping, we propose121

an adaptive refinement module that iteratively refines the122

optimal transport similarity matrix estimated via entropy123

regularization optimal transport.124

• We outperform previous state-of-the-art works in vari-125

ous settings of non-rigid shape matching including near-126

isometric and non-isometric shape matching. Addition-127

ally, when applied to a downstream task such as seg-128

mentation transfer, our approach continues to outperform129

contemporary state-of-the-art methods in non-rigid shape 130

matching. This success not only demonstrates the effi- 131

cacy of our method in specific applications but also under- 132

lines its strong generalization capabilities across various 133

use cases in shape matching. 134

2. Related work 135

Shape matching has been extensively explored for decades. 136

For a comprehensive examination of this topic, we encour- 137

age readers to consult the detailed analyses presented in sur- 138

veys [47, 56]. In this section, we focus specifically on the 139

literature subset that directly relates to our research objec- 140

tives. 141

2.1. Deep functional maps for shape correspon- 142

dence. 143

Our methodology is founded on the functional map repre- 144

sentation, initially introduced in [39] and substantially de- 145

veloped through subsequent research, e.g. [40]. The cen- 146

tral concept of functional maps revolves around expressing 147

shape correspondences as transformations between their re- 148

spective spectral embeddings. This is efficiently achieved 149

by utilizing compact matrices formulated from reduced 150

eigenbases. The functional maps approach has seen con- 151

siderable enhancements in terms of accuracy, efficiency, 152

and robustness, as evidenced by a variety of recent contri- 153

butions [22, 25, 45]. In contrast to axiomatic approaches 154

that rely on manually engineered features [53], deep func- 155

tional map methods aim to autonomously learn features 156

from training data. The pioneering work in this domain was 157

FMNet [32], which introduced a method to learn non-linear 158

transformations of SHOT descriptors [48]. Subsequent de- 159

velopments [21, 46] facilitated the unsupervised training of 160

FMNet by incorporating isometry losses in both spatial and 161

spectral domains. This unsupervised approach has been 162

further enhanced with the advent of robust mesh feature 163

extractors [49], leading to the development of new frame- 164

works [10, 12, 16, 27] that learn directly from geometric 165

data, achieving top-tier performance. 166

2.2. Optimal transport for shape correspondence 167

Optimal transport has emerged as a powerful tool in the field 168

of shape correspondence, offering innovative approaches 169

to match and analyze complex shapes in computer graph- 170

ics and computer vision. Starting with the axiomatic 171

shape matching approach, [51] proposed an algorithm for 172

probabilistic correspondence that optimizes an entropy- 173

regularized Gromov-Wasserstein (GW) objective [36] to 174

find the correspondence between two given shapes. The 175

proposed framework is inefficient since solving entropy- 176

regularized GW objective is relatively expensive and it does 177

not perform well on non-isometric shape matching. To ad- 178

dress the computational overhead of solving OT cost, [50] 179
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brought robust OT to the forefront, significantly enhancing180

the accuracy and efficiency of point cloud registration, but181

the framework is designed for point cloud that avoids the182

connectivity of the shape mesh. Perhaps the most relevant183

work to ours is Deep Shells [18], which is an improve-184

ment of [17]. Deep Shells demonstrated how OT can be185

seamlessly integrated into deep neural networks, offering a186

new perspective in shape matching with improved adapt-187

ability and precision. However, computing OT cost via188

Sinkhorn algorithm in Deel Shells [18] can be expensive189

since it has to store the cost matrix with quadratic memory190

cost and quadratic time complexity. In light of this, we pro-191

pose to employ an efficient OT in learning shape correspon-192

dence. To be specific, we employ sliced Wasserstein dis-193

tance, which calculates the expectation the Wasserstein dis-194

tance between two random one-dimensional push-forward195

measures derived from original measures. Recently, sliced196

Wasserstein distance has been successfully applied in point197

cloud [38] and shape [26] deformation. However, to the best198

of our knowledge, we are the first to employ sliced Wasser-199

stein distance on shape correspondence framework.200

3. Background201

In this section, we briefly recap functional map representa-202

tion [39]. After that, we review the definition of Wasserstein203

distance and its closed-formed solution sliced Wasserstein204

distance.205

3.1. (Deep) Functional Maps206

Given a pair of smooth shapes X and Y , which are dis-207

cretized as triangular meshes with nx and ny vertices, re-208

spectively. The functional map method aims to obtain a209

dense correspondence between the two shapes by com-210

pactly representing the correspondence matrix as a smaller211

matrix. Specifically, the leading k eigenfunctions of the212

Laplace-Beltrami operator are computed on both shapes X ,213

Y and are presented as �x 2 Rnx⇥k and �y 2 Rny⇥k, re-214

spectively. The geometric features of the shape are either215

precomputed [48] or extracted from a neural network [49],216

represented as Fx 2 Rnx⇥d and Fy 2 Rny⇥d, where d is217

the feature dimension. The extracted features are then pro-218

jected into the eigenbasis to get the corresponding coeffi-219

cients A = �†
x
Fx 2 Rk⇥d and B = �†

y
Fy 2 Rk⇥d, where220

† denotes the Moore-Penrose pseudo-inverse. After that, the221

bidirectional optimal functional map C⇤
xy
,C⇤

yx
2 Rk⇥k is222

obtained by solving the linear system:223

C⇤
xy

= argmin
C

Edata(C) + Ereg(C), (1)224

where Edata(C) = kCA � Bk
2 promotes the descriptor225

preservation, whereas the Ereg is a regularization term im-226

posing structural properties of C [39]. Finally, the dense227

correspondence can be reconstructed from estimated C⇤ by228

conducting nearest neighbor search between the rows of 229

�xCyx and that of �y , with possible post-processing [19, 230

35, 42]. 231

3.2. Efficient Optimal Transport 232

Wasserstein distance. For p � 1, given two probability 233

measures µ 2 Pp(Rd) and ⌫ 2 Pp(Rd), the Wasserstein 234

distance [57] between µ and ⌫ is : 235

Wp

p
(µ, ⌫) = inf

⇡2⇧(µ,⌫)

Z

Rd⇥Rd

kx� yk
p

p
d⇡(x, y), (2) 236

where ⇧(µ, ⌫) are the set of all couplings between µ and 237

⌫ i.e., joint probability measures that have marginals as µ 238

and ⌫ respectively. The Wasserstein distance is the optimal 239

transportation cost between µ and ⌫ since it is computed 240

with the optimal coupling. As mentioned in the introduction 241

section, the downside of Wasserstein distance is a high com- 242

putational complexity in the discrete case i.e., O(m3 logm) 243

in time and O(m2) in space for m is the number of supports. 244

To reduce the time complexity, entropic regularized optimal 245

transport [13] is introduced. 246

Sinkhorn divergence. For p � 1, given two probability 247

measures µ 2 Pp(Rd) and ⌫ 2 Pp(Rd), the Sinkhorn-p 248

divergence [13] between µ and ⌫ is : 249

Sp

✏,p
(µ, ⌫) = inf

⇡2⇧✏(µ,⌫)

Z

Rd⇥Rd

cd⇡(x, y) + ✏H(⇡), (3) 250

where ⇧✏(µ, ⌫) = {⇡ 2 ⇧(µ, ⌫)|KL(⇡, µ ⌦ ⌫)  ✏} 251

with KL denotes the Kullback Leibler divergence. The cost 252

c : Rd
⇥ Rd

7! R is defined as cp(x, y) = kx � yk
p
p

on 253

Rd
⇥ Rd. The entropy term H(⇡) allows us to solve for 254

the correspondence ⇡ via Sinkhorn-Knopp algorithm with 255

O(m2) in time complexity. 256

Sliced Wasserstein distance. The sliced Wasserstein (SW) 257

distance [8] between two probability measures µ 2 Pp(Rd) 258

and ⌫ 2 Pp(Rd) is given by: 259

SWp

p
(µ, ⌫) = E✓⇠U(Sd�1)[Wp

p
(✓]µ, ✓]⌫)], (4) 260

where ✓]⌫ denotes the push-forward measure of µ via func- 261

tion f(x) = ✓
>
x, and the one-dimensional Wasserstein dis- 262

tance appears in a closed form which is Wp

p
(✓]µ, ✓]⌫) = 263

R 1
0 |F

�1
✓]µ

(z) � F
�1
✓]⌫

(z)|pdz. Here, F✓]µ and F✓]⌫ are the 264

cumulative distribution function (CDF) of ✓]µ and ✓]⌫ re- 265

spectively. When µ and ⌫ have at most n supports, the com- 266

putation of the SW is only O(n log n) in time and O(n) in 267

space. The SW often is computed by using L Monte Carlo 268

samples ✓1, . . . , ✓L from the unit sphere: 269

dSW
p

p
(µ, ⌫;L) =

1

L

LX

l=1

Wp

p
(✓l]µ, ✓l]⌫). (5) 270
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Figure 1. Overview of unsupervised shape matching via efficient OT. Our framework takes as input a pair of shapes X and Y and
outputs point-to-point correspondence. Firstly, the features extractor tasks the pair input and extracts vertex-wise features Fx and Fy .
Subsequently, the differentiable functional map solver is used to compute functional map given pre-computed eigenfunctions and the
extracted features. In parallel, our framework estimates a soft feature similarity matrix, derived from the same extracted features. After
that, an OT cost is computed given soft feature similarity and extracted feature Fx and Fy . Finally, a proper loss is optimized together with
regularized functional map loss and OT loss.

Energy-based Sliced Wasserstein distance. Energy-based271

sliced Wasserstein (EBSW) is a more discriminative variant272

of the SW proposed in [37]. The definition of the EBSW is273

given as:274

EBSWp

p
(µ, ⌫; f) = E✓⇠�µ,⌫(✓;f,p)

⇥
Wp

p
(✓]µ, ✓]⌫)

⇤
, (6)275

where f is the energy function e.g., f(x) = e
x, and276

�µ,⌫(✓; f, p) / f(Wp

p
(✓]µ, ✓]⌫)) 2 P(Sd�1) is the energy-277

based slicing distribution. The EBSW can be computed278

based on importance sampling with L samples from pro-279

posal distribution �0(✓), e.g., U(Sd�1). For ✓1, . . . , ✓L
i.i.d
⇠280

�0(✓), we have:281

\IS-EBSW
p

p
(µ, ⌫; f, L)282

=
LX

l=1

Wp

p
(✓l]µ, ✓l]⌫)ŵµ,⌫,�0,f,p(✓l), (7)283

for wµ,⌫,�0,f,p(✓) =
f(Wp

p(✓]µ,✓]⌫))

�0(✓)
is the impor-284

tance weighted function and ŵµ,⌫,�0,f,p(✓l) =285

wµ,⌫,�0,f,p(✓l)PL
l0=1

wµ,⌫,�0,f,p(✓l0 )
is the normalized importance weights.286

4. Learning Shape Correspondence with Effi-287

cient Optimal Transport288

In this section, we provide in-depth details of our proposed289

non-rigid shape matching framework. The whole frame-290

work is described in Fig. 1. Our pipeline starts by extracting291

features from the feature extractor as described in Sec. 4.1. 292

Then we describe functional map in Sec. 4.2. Thirdly, we il- 293

lustrate how efficient OT in Sec. 4.3 is applied to our frame- 294

work and propose two novel loss functions for learning pre- 295

cise shape mapping. Thirdly, we summarize our unsuper- 296

vised losses in Sec. 4.4. Finally, we propose an adaptive 297

refinement process in Sec. 4.5. 298

4.1. Feature extractor 299

Our architecture is designed in the form of a Siamese net- 300

work. Specifically, we utilize the same feature extractor 301

with shared learning parameters to extract features from 302

a pair of input shapes. We employ DiffusionNet [49] as 303

our feature extractor since DiffusionNet is agnostic to dis- 304

cretization and resolution of the meshes, thereby ensur- 305

ing robust shape correspondence. Consequently, from the 306

pair of inputs, we extract two sets of features, denoted by 307

Fx 2 Rnx⇥d and Fy 2 Rny⇥d via DiffusionNet. 308

4.2. Functional map module 309

As discussed in 3.1, we aim to employ deep functional map 310

as a proxy to learn an intrinsic feature shape matching. 311

Specifically, we employ regularized functional map [43], 312

to compute optimal functional map C⇤ as mentioned in 313

Sec. 3.1. During training, the network aims to minimize 314

the structural regularization of functional map: 315

Lfmap = ↵1Lbij + ↵2Lothor, (8) 316
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where Lbij = kCxyCyx � Ik
2 + kCyxCxy � Ik

2 pro-317

motes identity mapping and Lothor = kC
T
xy
Cyx � Ik

2 +318

kC
T
yx
Cxy � Ik

2 imposes locally area-preserving [43].319

4.3. Feature extrinsic alignment via efficient opti-320

mal transport321

We aim to integrate efficient OT into deep functional map to322

promote precise mesh feature alignment. Thanks to the fast323

computation and the closed-form solution of sliced Wasser-324

stein (SW) distance, we derive a novel loss function based325

on SW distance.326

Soft feature similarity. Firstly, from a pair of features327

Fx,Fy extracted from shapes X ,Y , respectively, we esti-328

mate a soft feature similarity matrix ⇧̂xy 2 Rnx⇥ny such329

that:330

⇧̂i,j

xy
=

exp((F i
x
· F

j
y
)/⌧)

Pny

k=1 exp((F i
x
· Fk

y
)/⌧))

, (9)331

where ⌧ is scaling factor, and F
i
x
,F

j
y

2 Rd represent d-332

dimensional features of point i
th in shape X and j

th in333

shape Y , respectively. Similarly, the ⇧̂yx is constructed in334

the same fashion as in Eq. 9.335

Feature alignment via OT. Finding precise point-to-point336

mapping based on feature similarity requires solving lin-337

ear assignment problem in Rd, which is expensive to inte-338

grate into a learning-based framework. Therefore, in this339

work, we relax the constraints to cast the feature-matching340

problem as a probability distribution matching problem. In341

other words, we represent the extracted features Fx,Fy as342

probability distributions defined over Rd. After that, we343

attempt to learn mappings that minimize the “distance” be-344

tween the two distributions, i.e. probability measures. The345

OT cost [58] is a naturally fitted discrepancy between proba-346

bility measures, thereby being employed in our framework.347

SW distance as an efficient OT. Thanks to the fast com-348

putation and its closed-form solution of SW distance, we349

derive a novel loss function that jointly learns the mapping350

and minimizes the discrepancy between two feature proba-351

bility measures as follows:352

LbiSW = (E✓⇠U(Sd�1)[Wp

p
(✓]Fx, ✓]F̂y)

+ Wp

p
(✓]Fy, ✓]F̂x)])

1
p ,

(10)353

where F̂x = ⇧̂yxFx and F̂y = ⇧̂xyFy . The loss LbiSW354

minimizes the discrepancy between the feature probabil-355

ity measures in one shape and the softly permuted feature356

sets of its counterpart in a bidirectional manner. The loss357

converges toward zero when the soft feature similarity ⇧̂358

approaches a (partial) permutation matrix, indicating that359

the point-wise corresponding features are closely aligned.360

Moreover, the loss encourages the cycle consistency of the361

mapping. It is worth noting that our loss diverges from con- 362

trastive losses explored in prior works [11, 27, 60]. Where 363

the contrastive loss only considers whether individual point 364

correspondences are correct or not, our proposed loss intro- 365

duces a more general and flexible matching by conceptu- 366

alizing the point features as probability measures and em- 367

ploying OT cost as a metric of evaluation. 368

Bidirectional EBSW. It is worth noting that the proposed 369

loss LbiSW in Eq. 10 employs the projecting directions 370

sampled from uniform distribution over unit-hypersphere 371

as the shared slicing distributions. Despite being easy to 372

sample, the uniform distribution is not able to differen- 373

tiate between informative and non-informative projecting 374

features. Therefore, inspired by [37], we propose a bidi- 375

rectional energy-based SW loss defined in the importance 376

sampling form as: 377

LbiEBSW =

✓E✓⇠�0(✓)[(W✓,X + W✓,Y)w(✓)]

E✓⇠�0(✓)[w(✓)]

◆ 1
p

, (11) 378

where we denote W✓,X := Wp

p
(✓]Fx, ✓]F̂y),W✓,Y := 379

Wp

p
(✓]Fy, ✓]F̂x), and w(✓) := exp(W✓,X+W✓,Y)

�0(✓)
. The loss 380

LbiEBSW shares the same properties for shape correspon- 381

dence as the vanilla SW loss in Eq. 10. However, it imposes 382

a more expressive mechanism for selecting projection di- 383

rections in the computation of the SW distance. Moreover, 384

the vanilla SW loss can be seen as a summation of two SW 385

distances since the slicing distribution is fixed as uniform. 386

In contrast, the bidirectional EBSW loss has the slicing 387

distribution shared and affected by both one-dimensional 388

Wasserstein distances. Hence, the bidirectional EBSW is 389

considerably different from the original EBSW in [37]. 390

We provide detailed computation and discussion of 391

LbiSW and LbiEBSW at Sup. 9. 392

4.4. Loss functions 393

Proper functional maps. We employ the notion of proper 394

functional map introduced by [44]: The functional map Cxy 395

is deemed “proper” if there exists a (partial) permutation 396

matrix ⇧yx so that Cxy = �†
y
⇧yx�x. Drawing on this 397

concept, we introduce a loss term that not only promotes the 398

“properness” of the functional map but also concurrently 399

regularizes the (OT) cost, namely: 400

Lproper = kCxy � �†
y
⇧̂yx�xk

2 (12) 401

It is worth noting that while our Lproper might bear re- 402

semblance to the coupling loss in [12], the proposed loss 403

diverges by using soft feature similarity ⇧̂yx jointly opti- 404

mized with the feature extrinsic alignment through OT as 405

discussed in Sec. 4.3. Therefore, it serves as a strong regu- 406

larization for imposing structural smoothness of functional 407

map and promoting precise mapping via OT. 408
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Total loss. Our framework is trained end-to-end without an-409

notation by minimizing the following unsupervised losses:410

Ltotal = �1Lfmap + �2LOT + �3Lproper, (13)411

where �i is the weight for each loss, and LOT could be412

either LbiSW or LbiEBSW .413

4.5. Adaptive refinement via entropic optimal trans-414

port415

Adaptive refinement. To provide a more precise corre-416

spondence, we propose an adaptive refinement module de-417

signed to incrementally improve the final match for each418

individual shape pairing. Specifically, we estimate the419

pseudo soft correspondence ⇧̃ via entropic regularized op-420

timal transport [13] as mentioned in Eq. 3 is defined as:421

⇧̃xy = Q
X (QY

· · · (QX (p✏))), (14)422

where Q(·) is the projection operator of a given probabil-423

ity density p : Rd
⇥ Rd

! R defined as: p✏(x, y) /424

exp(� 1
✏
c2(x, y)). Thanks to the differentiable property of425

the Sinkhorn algorithm, we can refine each individual pair426

by minimizing the Ltotal to update the features accordingly.427

In contrast to the axiomatic method [35] that often requires428

alternately updating the functional map and pointwise map,429

our method offers a differentiable process that facilitates si-430

multaneous updates. Furthermore, it is noteworthy that our431

approach is orthogonal to [18] since we only employ en-432

tropic OT for refinement once during the inference, thereby433

reducing the computation and memory cost of the Sinkhorn434

algorithm. We provide detailed algorithms of adaptive re-435

finement at Sup. 9.436

Inference. During inference, our final mapping is obtained437

by nearest neighbor search on features extracted from the438

feature extractor module.439

5. Experimental results440

Datasets. We conduct a series of experiments across di-441

verse shape-matching datasets and their application on a442

downstream task. Specifically, we perform experiment on443

human shape matching with near-isometric dataset such as444

FAUST [7] and SCAPE [3] as well as non-isometric dataset445

SHREC’19 [34]. Furthermore, our study extends to two446

non-isometric animal datasets: SMAL [62] and the more447

recent DeformingThings4D [28, 33]. Finally, we conclude448

our experiments by performing segmentation transfer on 3D449

semantic segmentation dataset introduced in [1].450

Baselines. We conduct extensive comparisons with a451

wide range of non-rigid shape matching methods: (1) Ax-452

iomatic methods including ZoomOut [35], BCICP [42],453

Smooth Shells [17]; (2) Supervised methods including454

FMNet [32], GeomFMaps [15], TransMatch [55]; (3)455

Unsupervised methods including SURFMNet [46], Deep 456

Shells [18], AFMap [27], SSLMSM [11], UDMSM [10], 457

ULRSSM [12]. While there are numerous non-rigid shape- 458

matching methods in the literature, we decided to choose 459

the most recent and relevant to our works for comparison. 460

Metrics. Regarding shape matching metric, similar to all of 461

our competing methods, we employ mean geodesic errors 462

(⇥100) [24]. For segmentation transfer, we use semantic 463

segmentation mIOU as in [23]. 464

5.1. Near-isometric Shape Matching 465

Datasets. We employ a more challenging remeshed version 466

of FAUST [7] and SCAPE [3], as proposed in [15, 42]. The 467

remeshed FAUST dataset includes 100 shapes, represent- 468

ing 10 individuals in 10 different poses, with the evaluation 469

focusing on the final 20 shapes. Similarly, the remeshed 470

SCAPE dataset comprises 71 poses of a single individual, 471

where again, the last 20 shapes are used for evaluation pur- 472

poses. Additionally, the SHREC’19 dataset presents a more 473

complex challenge due to its significant variations in mesh 474

connectivity, encompassing 44 shapes and 430 pairs for 475

evaluation. 476

Results. We conduct experiments on FAUST, SCAPE, and 477

the combination of both datasets. Quantitative results in 478

Tab. 1 show that supervised methods tend to overfit the 479

trained dataset. On the other hand, unsupervised meth- 480

ods typically can achieve a better generalization on new 481

datasets. Compared to Deep Shells, an OT-based method, 482

we outperform in most settings as shown in Tab. 1 and 483

Fig. 2. Compared to state-of-the-art ULRSSM, our method 484

indicates a slightly better mapping demonstrated in Fig. 2. 485

5.2. Non-isometric Shape Matching 486

Datasets. We consider SMAL [62] and DeformingTh- 487

ings4D [28, 33] for evaluating non-isometric shape match- 488

ing. For the SMAL dataset, we adopt the data split in [16] 489

that uses five species for training and three unseen species 490

for testing, resulting in a 29/20 split of the dataset. Regard- 491

ing DeformingThings4D, denoted as DT4D-H, we follow 492

the split also presented in [16] comprising 198 samples for 493

training and 95 for testing. 494

Results. To measure the performance on non-isometric 495

datasets, i.e. SMAL and DT4D-H, we compare our method 496

with previous state-of-the-art baselines as shown in Tab. 2. 497

Regarding the DT4D-H dataset, we only perform compar- 498

isons on the challenging intra-class scenario. Our proposed 499

method outperforms previous methods in both dataset as 500

shown in Tab. 2. Visualization in Fig. 3 shows that AFMap 501

often fails to retrieve a non-isometric mapping. In addition, 502

ULRSSM demonstrates better mapping despite some ambi- 503

guity. On the other hand, our method obtains a precise and 504
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Table 1. Quantitative results on near-isometric shape matching. The color denotes the best and second -best result. Our method
outperforms various methods including axiomatic, supervised and unsupervised methods in most settings.

Method FAUST SCAPE FAUST + SCAPE
FAUST SCAPE SHREC’19 FAUST SCAPE SHREC’19 FAUST SCAPE SHREC’19

Axiomatic
ZoomOut [35] 6.1 \ \ \ 7.5 \ \ \ \

BCICP [42] 6.1 \ \ \ 11.0 \ \ \ \

Smooth Shells [17] 2.5 \ \ \ 4.7 \ \ \ \

Supervised
FMNet [32] 11.0 30.0 \ 33.0 17.0 \ \ \ \

GeomFMaps [15] 2.6 3.3 9.9 3.0 3.0 12.2 2.6 3.0 7.9
TransMatch [55] 1.8 32.8 19.0 18.5 16.0 39.5 1.7 13.5 12.9

Unsupervised
SURFMNet [46] 15.0 32.0 \ 32.0 12.0 \ 33.0 29.0 \

Deep Shells [18] 1.7 5.4 27.4 2.7 2.5 23.4 1.6 2.4 21.1
AFMap [27] 1.9 2.6 6.4 2.2 2.2 9.9 1.9 2.3 5.8
SSLMSM [11] 2.0 7.0 9.1 2.7 3.1 8.4 1.9 4.3 6.2
UDMSM [10] 1.5 7.5 20.1 3.2 2.0 28.3 1.7 7.6 28.7
ULRSSM [12] 1.6 3.6 7.2 1.9 1.9 7.6 1.7 3.2 4.6

Ours 1.5 3.4 5.5 1.6 1.8 7.0 1.6 2.2 4.7

Figure 2. Qualitative results of different methods evaluated on
SHREC’19 datasets. Correspondence is visualized by texture
transfer. The red arrow indicates poor mappings.

smooth mapping, thus visually better than the two state-of-505

the-art methods.506

5.3. Segmentation transfer507

Datasets. We illustrate the performance of our proposed508

method on the task of segmentation transfer on 3D seman-509

tic segmentation dataset proposed in [1]. Specifically, the510

Table 2. Quantitative results for non-isometric matching on
SMAL and DT4D-H. Our method surpass state-of-the-art meth-
ods on challenging non-isometric dataset such as SMAL and
DT4D-H.

Method SMAL DT4D-H

Deep Shells [18] 29.3 31.1
GeoFMaps [15] 7.6 22.6
AFMap [27] 5.4 11.6
ULRSSM [12] 4.2 4.5

Ours 4.0 4.2

Table 3. Quantitative results for 3D shape segmentation trans-
fer. Our method is effectively applied to semantic segmentation
transfer on 3D shapes, establishing a new benchmark for state-of-
the-art performance in this domain.

Method Coarse Fine-grained

AFMaps [27] 81.3 43.2
UDMSM [10] 85.3 45.2
ULRSSM [12] 84.2 58.2

Ours 87.8 60.5

dataset is derived from FAUST [7], which is manually an- 511

notated into two types of label: coarse annotations include 512

4 classes and fine-grained annotations comprise 17 cate- 513

7
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Figure 3. Qualitative results of various methods on challenging
non-isometric SMAL dataset. Our method demonstrates superior
point mapping capabilities compared to previous works. More vi-
sualization is provided in Sup. 12.

Figure 4. Qualitative results of segmentation transfer. Our
method exhibits a high-quality segmentation map via computed
correspondence. More visualization is provided in Sup. 12.

gories. After excluding non-connected meshes, we test our514

method on 79 meshes by computing correspondence among515

the collection and then transferring annotation from one sin-516

gle mesh to the others.517

Results. To further demonstrate the robustness, we apply518

our methods on co-segmentation, also known as segmen-519

tation transfer task. We train all methods on the remeshed520

FAUST r mentioned in Sec. 5.1. It is worth noting while521

the FAUST r is remeshed to around 10K faces, the segmen-522

tation dataset in [1] is remeshed to 20K triangular faces. 523

Therefore, it showcases the generalization of our method 524

that does not depend on the discretization and resolution of 525

mesh. Tab. 3 indicates that our method sets a new state- 526

of-the-art on the segmentation-transfer task on FAUST [1] 527

dataset in both coarse and fine-grained annotation. Fig. 4 528

shows that our method is very closed to ground truth with- 529

out the need for training semantic segmentation models. 530

6. Ablation study 531

Table 4. Ablation study on SHREC’19. In the first setting, we
replace LOT with LMSE in Eq. 13. In the second row, we substi-
tute LOT with LuniSW . The third row indicates the LOT being
LbiSW as in Eq. 10. The fourth row indicates not using adaptive
refinement at the end of the training process.

Ablation Setting SHREC’19
w. LMSE 34.3
w. LuniSW 4.9
w. LbiSW 4.8

w.o. adaptive refinement 7.2

Ours 4.7

Settings. We conduct an ablation study to validate our con- 532

tribution. We train our model on FAUST+SCAPE dataset 533

and evaluate it on SHREC’19 dataset. Firstly, we evaluate 534

the effectiveness of different losses in the feature alignment 535

component. Furthermore, we also investigate the impor- 536

tance of the adaptive refinement module. 537

Results. Our results are summarized in Tab. 4. First of all, 538

by comparing the first row with the last row, we conclude 539

that LMSE can not learn to align features for retrieving 540

point-to-point correspondence. Secondly, we observe that 541

by using bidirectional SW, we can gain a slightly better per- 542

formance. Finally, the last row indicates that by employing 543

importance sampling energy-based SW, we can even gain 544

better performance. 545

7. Conclusion 546

In conclusion, we introduce an innovative framework 547

that integrates functional maps with an efficient optimal 548

transport method, notably the sliced Wasserstein dis- 549

tance, to address computational challenges and enhance 550

feature alignment. Our approach significantly outper- 551

forms existing methods in non-rigid shape matching 552

across various scenarios, including both near-isometric 553

and non-isometric forms. This advancement, con- 554

firmed through successful applications in tasks like 555

segmentation transfer, highlights our method’s effi- 556

cacy and strong generalization potential in shape matching. 557

558
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[45] Emanuele Rodolà, Luca Cosmo, Michael M Bronstein, An-721

drea Torsello, and Daniel Cremers. Partial functional cor-722

respondence. In Computer Graphics Forum. Wiley Online723

Library, 2017. 2724

[46] Jean-Michel Roufosse, Abhishek Sharma, and Maks Ovs-725

janikov. Unsupervised deep learning for structured shape726

matching. In ICCV, 2019. 1, 2, 6, 7727
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for triangle meshes. ACM Transactions on Graphics (ToG), 747

23(3):399–405, 2004. 1 748

[53] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise 749

and provably informative multi-scale signature based on heat 750

diffusion. In Computer graphics forum, pages 1383–1392. 751

Wiley Online Library, 2009. 2 752

[54] Mingze Sun, Shiwei Mao, Puhua Jiang, Maks Ovsjanikov, 753

and Ruqi Huang. Spatially and spectrally consistent deep 754

functional maps. In Proceedings of the IEEE/CVF Interna- 755

tional Conference on Computer Vision, pages 14497–14507, 756

2023. 1 757

[55] Giovanni Trappolini, Luca Cosmo, Luca Moschella, Ric- 758

cardo Marin, Simone Melzi, and Emanuele Rodolà. Shape 759
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Supplementary Material

In this supplementary, we first define some notations that786

are used in our main paper and supplementary in Sec. 8. We787

then discuss some limitations of our work and potential fu-788

ture directions to address them in Sec. 9. In Sec. 10, we789

provide detailed computation and algorithm to compute the790

proposed loss functions. Furthermore, we delineate the im-791

plementation details and hyperparameters used in our train-792

ing process in Sec. 11. Finally, we provide additional qual-793

itative results of our proposed approach in Sec. 12.794

8. Notations795

For any d � 2, we denote Sd�1 := {✓ 2 Rd
| ||✓||

2
2 = 1}796

and U(Sd�1) as the unit hyper-sphere and its corresponding797

uniform distribution. We denote ✓]µ as the push-forward798

measures of µ through the function f : Rd
! R that is799

f(x) = ✓
>
x. Furthermore, we denote P(X ) as the set of800

all probability measures on the set X . For p � 1, Pp(X )801

is the set of all probability measures on the set X that have802

finite p-moments.803

9. Limitations and discussion804

Our work is the first to integrate an efficient optimal trans-805

port to functional map framework for shape correspon-806

dence, yet it is not without limitations, potentially opening807

new research directions. First of all, our algorithm is de-808

signed for use with clean and complete meshes. An intrigu-809

ing avenue for future research would be to extend the ap-810

plicability of our method to more diverse scenarios, such as811

dealing with partial meshes, noisy point clouds, and other812

forms of data representation. This expansion would en-813

hance the versatility of our approach in handling a wider814

range of practical applications. Secondly, our adaptive re-815

finement module, which utilizes an entropic regularized op-816

timal transport for estimating the soft-feature similarity ma-817

trix, shows promise in achieving more precise refinement.818

However, this method is not without its drawbacks, notably819

a quadratic increase in memory complexity and computa-820

tional demand. This presents a challenge that future re-821

search could address by developing more computationally822

efficient approximations, thereby making the process more823

feasible for larger datasets or more resource-constrained824

environments. Overall, these potential research directions825

could significantly contribute to the evolution of shape cor-826

respondence methodologies.827

10. Detailed algorithms and discussion828

Sliced Wasserstein distance. The unidirectional sliced829

Wasserstein distance version of Eq. 10 is given by:830

LuniSW = (E✓⇠U(Sd�1)Wp

p
(✓]Fx, ✓]F̂y))

1
p , (15) 831

where F̂y = ⇧̂xyFy . The unidirectional sliced Wasserstein 832

distance given in Eq. 15 is computed by using L Monte 833

Carlo samples ✓1, ..., ✓L from the unit sphere: 834

\LuniSW =

 
1

L

LX

l=1

Wp

p
(✓l]Fx, ✓l]F̂y)

! 1
p

, (16) 835

where Wp

p
(✓]Fx, ✓]F̂y) =

R 1
0 |F

�1
✓]Fx

(z) � F
�1
✓]F̂y

(z)|pdz 836

denotes the closed form solution one-dimensional Wasser- 837

stein distance of two probability measures Fx and F̂y . 838

Here, F✓]Fx and F
✓]F̂y

are the cumulative distribution func- 839

tion (CDF) of ✓]Fx and ✓]F̂y respectively. 840

Similarly, the bidirectional sliced Wasserstein distance 841

in Eq. 10 is also estimated by using L Monte Carlo samples 842

✓1, ..., ✓L from the unit sphere: 843

\LbiSW = (
1

L

LX

l=1

[Wp

p
(✓l]Fx, ✓l]F̂y)

+ Wp

p
(✓l]Fy, ✓l]F̂x)])

1
p ,

(17) 844

where F̂x = ⇧̂yxFx and F̂y = ⇧̂xyFy . We provide a 845

pseudo-code for computing the unidirectional and bidirec- 846

tional sliced Wasserstein distance in Algorithm 1 and Algo- 847

rithm 2, respectively. 848

Energy-based sliced Wasserstein distance. The unidirec- 849

tional sliced Wasserstein distance version of Eq. 11 is de- 850

fined as: 851

LuniEBSW =

✓E✓⇠�0(✓)[W✓,Xw(✓)]

E✓⇠�0(✓)[w(✓)]

◆ 1
p

, (18) 852

where we denote W✓,X := Wp

p
(✓]Fx, ✓]F̂y), w(✓) := 853

exp(W✓,X )
�0(✓)

, and �0(✓) 2 P(Sd�1) denotes the proposed dis- 854

tribution. The unidirectional energy-based sliced Wasser- 855

stein distance given in Eq. 18 can be computed via impor- 856

tance sampling estimator L Monte Carlo ✓1, ..., ✓L sampled 857

from �0(✓): 858

\LuniEBSW =

 
1

L

LX

l=1

[W✓l,X w̃(✓l)]

! 1
p

, (19) 859
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Algorithm 1 Computational algorithm of the unidirectional SW distance

Input: Features extracted from feature extractor module Fx,Fy; p � 1; soft features similarity ⇧̂ from Eq. 9; and the
number of projections L.

Compute F̂y = ⇧̂xyFy

for l = 1 to L do
Sample ✓l ⇠ U(Sd�1)
Compute vl = Wp

p
(✓l]Fx, ✓l]F̂y)

end for
Compute \LuniSW =

⇣
1
L

P
L

l=1 vl

⌘ 1
p

Return: \LuniSW

Algorithm 2 Computational algorithm of the bidirectional SW distance

Input: Features extracted from feature extractor module Fx,Fy; p � 1; soft features similarity ⇧̂ from Eq. 9; and the
number of projections L.

Compute F̂x = ⇧̂yxFx and F̂y = ⇧̂xyFy

for l = 1 to L do
Sample ✓l ⇠ U(Sd�1)
Compute vl = Wp

p
(✓l]Fx, ✓l]F̂y) + Wp

p
(✓l]Fy, ✓l]F̂x)

end for
Compute \LbiSW =

⇣
1
L

P
L

l=1 vl

⌘ 1
p

Return: \LbiSW

Algorithm 3 Computational algorithm of the unidirectional EBSW distance

Input: Features extracted from feature extractor module Fx,Fy; p � 1; soft features similarity ⇧̂ from Eq. 9; and the
number of projections L.

Compute F̂y = ⇧̂xyFy

for l = 1 to L do
Sample ✓l ⇠ U(Sd�1)
Compute vl = Wp

p
(✓l]Fx, ✓l]F̂y)

Compute wl = f(Wp

p
(✓l]Fx, ✓l]F̂y))

end for
Compute \LuniEBSW =

⇣
1
L

P
L

l=1 vl
wlPL
i=1 wi

⌘ 1
p

Return: \LuniEBSW

where w̃(✓l) := w(✓l)PL
l0=1

w(✓l0 )
. When �0(✓) = U(Sd�1) =

�(d/2)
2⇡d/2 (a constant of ✓) [37], we substitute w(✓l) with
f(W✓l,X ). We can choose the energy function f(x) = e

x,
then the normalized importance weights become the Soft-
max function of W✓,X as follows:

w̃(✓l) = Softmax(W✓l,X ) =
exp(W✓l,X )

P
L

l0=1 exp(W✓l0 ,X )

Based on the computation of unidirectional energy-860

based sliced Wasserstein distance, we can compute the861

bidirectional energy-based sliced Wasserstein distance, i.e. 862

LbiEBSW , in Eq. 11 as follows: 863

\LbiEBSW =

 
1

L

LX

l=1

[(W✓l,X + W✓l,Y)ŵ(✓l)]

! 1
p

, (20) 864

where we denote W✓,Y := Wp

p
(✓]Fy, ✓]F̂x), and ŵ(✓l) := 865

exp(W✓l,X+W✓l,Y)
PL

l0=1
exp(W✓l0 ,X

+W✓l0 ,Y
)
. It is worth noting that the impor- 866

tance weights of \LbiEBSW in Eq. 20 are different from that 867

2
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Algorithm 4 Computational algorithm of the bidirectional EBSW distance

Input: Features extracted from feature extractor module Fx,Fy; p � 1; soft features similarity ⇧̂ from Eq. 9; and the
number of projections L.

Compute F̂x = ⇧̂yxFx and F̂y = ⇧̂xyFy

for l = 1 to L do
Sample ✓l ⇠ U(Sd�1)
Compute vl = Wp

p
(✓l]Fx, ✓l]F̂y) + Wp

p
(✓l]Fy, ✓l]F̂x)

Compute wl = f(Wp

p
(✓l]Fx, ✓l]F̂y) + Wp

p
(✓l]Fy, ✓l]F̂x))

end for
Compute \LbiEBSW =

⇣
1
L

P
L

l=1 vl
wlPL
i=1 wi

⌘ 1
p

Return: \LbiEBSW

Algorithm 5 Algorithm of the adaptive refinement
Input: Pair shapes X ,Y with their Laplace-Beltrami operators �x,�y . Trained model with parameter G⇥. Number of
refinement steps T .

while reach T do
Compute Fx = G⇥(X ,�x) and Fy = G⇥(Y,�y). . Extract features.
Compute Cxy, Cyx = FMSolver(Fx,Fy,�x,�y). . Find functional map via FM solver.
Compute ⇧̃xy, ⇧̃yx = Sinkhorn(Fx,Fy). . Estimate pseudo similarity matrix via Sinkhorn.
Compute unsupervised losses Ltotal(Fx,Fy, Cxy, Cyx, ⇧̃xy, ⇧̃yx).
Update features and soft similarity matrix by minimizing Ltotal.

end while
Compute P = NN(Fx,Fy) . Compute point-to-point correspondence via nearest neighbor search.
Return: P

of \LuniEBSW in Eq. 19, since the slicing distribution here868

is shared and affected by both one-dimensional Wasserstein869

distances, thus providing a more expressive projecting fea-870

tures for computing sliced Wasserstein distance. We pro-871

vide a pseudo-code for computing the unidirectional and872

bidirectional energy-based sliced Wasserstein distance in873

Algorithm 3 and Algorithm 4, respectively.874

Adaptive refinement. As discussed in Sec. 4.5, we re-875

fine our correspondence result by estimating the pseudo-876

soft correspondence via entropic regularized optimal trans-877

port. The pseudo-code for our adaptive refinement is given878

in Algorithm 5.879

11. Implementation details880

All experiments are implemented using Pytorch 2.0, and881

executed on a system equipped with an NVIDIA GeForce882

RTX GPU 2080 Ti and an Intel Xeon(R) Gold 5218 CPU.883

We employ DiffusionNet [49] as the feature extraction884

mechanism, with wave kernel signatures (WKS) [6] serv-885

ing as the input features. The dimension of the WKS is886

set to 128 for all of our experiments. Regarding spectral887

resolution, we opt for the first 200 eigenfunctions derived888

from the Laplacian matrices to form the spectral embed-889

ding. The output features of the feature extractor are set to 890

256. During training, the value of the learning rate is set to 891

1e � 3 with cosine annealing to the minimum learning rate 892

of 1e � 4. The network is optimized with Adam optimizer 893

with batch size 1. About adaptive refinement, the number 894

of refinement iterations is empirically set to 12. 895

Regarding the loss functions, as stated in Eq. 13, we 896

empirically set �1 = �3 = 1.0,�2 = 100.0. About 897

the weight for each component of Lfmap in Eq. 8, we 898

set ↵1 = ↵2 = 1.0. Regarding Sliced Wasserstein dis- 899

tance and energy-based sliced Wasserstein distance, we set 900

p = 2, L = 200 for all of our experiments. 901

12. Additional visualizations 902

In this section, we provide additional visualizations of our 903

proposed approach on multiple datasets. 904

3
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Figure 5. Qualitative results of our method on FAUST dataset.

Figure 6. Qualitative results of our method on SCAPE dataset.

Figure 7. Qualitative results of our method on SHREC dataset.
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Figure 8. Qualitative results of our method on SMAL dataset.

Figure 9. Qualitative results of our method on DT4D-H dataset.

Figure 10. Qualitative results of our method on segmentation transfer coarse FAUST dataset.
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Figure 11. Qualitative results of our method on segmentation transfer fine-grained FAUST dataset.
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