
Optimal Transport in Large-Scale 
Machine Learning Applications

 Nhat Ho 

The University of Texas, Austin

1



Talk Outline
• Applications/ Methods of Optimal Transport (OT): Brief Introduction 
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• Kantorovich’s Optimal Transport Formulation 

• Entropic Regularized Optimal Transport 

• Application of Optimal Transport to Deep Generative Model 

• Wasserstein GAN 

• Issues of Wasserstein GAN and Solutions

2



Some Applications/ Methods of Optimal 
Transport (OT): Brief Introduction
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OT’s Method: Deep Generative Model
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CIFAR 10
Speech


Goal: Given a set of data in high dimension (e.g., images, speeches, words, etc.), 
we would like to learn the underlying data distribution



OT’s Method: Deep Generative Model
• OT is used as a loss between push-forward distribution from low-dimensional 

space and the empirical distribution from data


• Popular examples: Wasserstein GAN [1, 2], Wasserstein Autoencoder [3]
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OT’s Method: Transfer Learning
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• Domain Adaptation: An important problem of designing autonomous vehicle is to 
make sure that the model we train in some particular weather/ environment/ time 
(source domains) will still perform well under other weathers/ environments/ time 
(target domains)


• Optimal transport is an efficient loss function capture the difference between these 
domains (e.g., [4] and [5])
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OT’s Method: Transfer Learning
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• Domain Generalization: An important example is that we would like to develop a 
face recognition system in new generation of Iphone (target domain) based on the 
previous Iphones (source domains) without the expensive cost of collecting new 
data for the new Iphone


• Optimal Transport also offers a great solution for this application 



OT’s method: 3D Objects’ Representation
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Above: Input 3D images


Below: Reconstruction of 3D images based on optimal transport [6]

[6] Trung Nguyen, Hieu Pham, Tam Le, Tung Pham, Nhat Ho, Son Hua. Point-set distances for learning representations of 3D point clouds. ICCV, 2021



OT’s Method: (Multilevel) Clustering
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• Each image contains several annotated regions, such as, those of animals, 
buildings, trees, etc.


• Goal: Based on the clustering behaviors of annotated regions from the images, 
we would like to learn the themes/ clusters of images



OT’s Method: Multilevel Clustering
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3 clusters of images based on 


using optimal transport (cf. [7], [8])

[7] Nhat Ho, Long Nguyen, Mikhail Yurochkin, Hung Bui, Viet Huynh, and Dinh Phung. Multilevel clustering via Wasserstein means. ICML, 2017


[8] Viet Huynh, Nhat Ho, Nhan Dam, Long Nguyen, Mikhail Yurochkin, Hung Bui, Dinh Phung. On efficient multilevel clustering via Wasserstein distances. Journal of Machine 
Learning Research (JMLR), 2021



OT’s Method: Other Applications
• Optimal Transport is also a powerful tool for other important applications:


• Forecasting Time Series (e.g., forecasting sales (Walmart), forecasting 
expenses (Amazon), etc.) [9]


• Machine Translation [10]


• Robust/ Reliable Machine Learning [11]


• Fairness/ Responsible AI
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OT is also useful as foundational theory tool
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• Optimal transport can be used to understand the behaviors of latent variables  
associated with Relu, Maxpooling from Convolutional Neural Networks (CNNs)  
(cf. [12])

[12] Tan Nguyen, Nhat Ho, Ankit Patel, Anima Anandkumar, Michael I. Jordan, Richard Baraniuk. A Bayesian Perspective of Convolutional Neural Networks through a 
Deconvolutional Generative Model. Under Revision, Journal of Machine Learning Research (JMLR), 2022



OT is also useful as foundational theory tool
• A few other popular applications of OT for understanding machine learning methods and 

models include:


• Mixture models and hierarchical models: Characterizing the convergence rates 
of estimating parameters, performing model selection, etc. (cf. [13], [14], [15])


• Distributional robust optimization: Optimal Transport can be used to define a 
perturbed neighborhood of the true distribution (cf. [16], [17]) 

• Some potential new research directions: Optimal Transport can be useful to 
understand 

• (i) Self-training procedure in semi-supervised learning


• (ii) Self-attention in Transformer 


• (iii) Contrastive Learning, Self-supervised Learning, etc.
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Foundations of Optimal Transport
• Monge’s Optimal Transport Formulation 

• Kantorovich’s Optimal Transport Formulation 

• Entropic Regularized Optimal Transport 



Monge’s OT Formulation: Motivation
• Optimal Transport was created by mathematician Gaspard Monge to find 

optimal ways to transport commodities and products under certain constraints
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Monge’s OT Formulation: Motivation
• We start with a simple practical example 

of moving products from Bakeries 
(denoted by B) to Restaurants (denoted by 
R)


• Two bakeries will not transport the 
products to the same restaurant


• We denote by  the distance between 
bakery  to restaurant 


• Goal: Find the shortest distance to move 
products from the bakeries to restaurants

Cij
Bi Rj
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Monge’s OT Formulation
• Monge’s Optimal Transport is:


                       ,                (1) 

where : number of restaurants or bakeries


          : the set of all permutations of 





• Monge’s formulation finds the optimal 
matching between the bakeries and 
restaurants

1
n

min
σ∈Pern

n

∑
i=1

Ci,σ(i)

n

Pern

{1,2,…, n}
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Monge’s OT Formulation
• If we search for all the possible permutations in the optimization problem, the 

complexity of solving Monge’s Optimal Transport is  (The total number 
of permutations of  is )


• By using Hungarian’s algorithm for graph matching, we can obtain an 
improved complexity of 


• When we have  , i.e., one dimensional setting, we can use 
quick sort algorithm to compute Monge’s Optimal Transport in equation (1) 
with a complexity of 

𝒪(n!)
{1,2,…, n} n!

𝒪(n3)

Cij = |Bi − Rj |
2

𝒪(n log n)
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Monge’s OT Formulation: Equivalent Form

• We define  =  and  as corresponding 

empirical measures of bakeries and restaurants


• We denote  as the distance between  and 
 


• The Monge’s formulation in equation (1) can be rewritten as


                                         ,


where the mapping  in the infimum is such that 



• Here,  denotes the push-forward measure of  via 
mapping 

Pn
1
n

n

∑
i=1

δBi
Qn =

1
n

n

∑
i=1

δRi

Cij = ∥Bi − Rj∥2 Bi
Rj

inf
T ∫ ∥x − T(x)∥2dPn(x)

T : ℝd → ℝd

T♯Pn = Qn

T♯Pn Pn
T 19
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Push-forward measure
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ℝd ℝd

Pn
T♯Pn

• Recall that,  =  and 


• Then, 


• The equation  implies that


 

Pn
1
n

n

∑
i=1

δBi
T : ℝd → ℝd

T♯Pn =
1
n

n

∑
i=1

δT(Bi)

T♯Pn = Qn

{T(B1), T(B2), …, T(Bn)} ≡ {R1, R2, …, Rn}



General Monge’s OT Formulation
• In general, we can define the Monge’s optimal transport 

beyond discrete probability distributions, such as 
Gaussian distributions


• For any two probability distributions  and , the Monge’s 
Optimal Transport between  and  can be defined as


                            ,                  (2)                    

where the mapping  in the infimum is such that 



• Note that, for continuous distributions,  means 
that  for any measurable set  of 

P Q
P Q

inf
T ∫ ∥x − T(x)∥2dP(x)

T : ℝd → ℝd

T♯P = Q

T♯P = Q
P(T−1(A)) = Q(A) A ℝd

21
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General Monge’s OT Formulation: Challenges
• Good settings: When (i)  and  admit density functions or (ii)  and 

 are discrete with uniform weights, there exist optimal maps  that 
solve the Monge’s OT in equation (2)


• Pathological settings: 


• In certain settings when  and  are discrete, the existence of 
mapping  such that  may not always be possible


• Assume that  and , the equation  
means that


                                   


• However, it is not possible as  depending 
on whether  

P Q P
Q T

P Q
T T♯P = Q

P = δx Q =
1
2

δy1
+

1
2

δy2
T♯P = Q

P(T−1({y1})) = Q({y1}) =
1
2

P(T−1({y1})) ∈ {0,1}
x ∈ T−1(y1) 22
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General Monge’s OT Formulation: Challenges
• The non-existence of transport map  under pathological settings makes it 

challenging to use Monge’s OT formulation when the probability distributions 
 and  are discrete 


• Furthermore, due to the non-linearity of the constraint , it is non-
trivial to solve for or approximate the optimal mapping  in equation (2)


• A relaxation and optimization friendly form of Monge’s OT formulation is 
needed

T

P Q

T♯P = Q
T
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Kantorovich’s Optimal Transport Formulation

24



Kantorovich’s OT Formulation
• Given two probability distributions  and , the Kantorovich’s Optimal Transport 

between  and  can be defined as


                              ,      (3)


where  is the set of all joint distributions  
           between  and ;


            is a given cost metric


•  is called transportation plan 

• Under certain assumptions (see Section 4 in [18]), the Kantorovich’s OT and Monge’s  
OT are equivalent 

P Q
P Q

OT(P, Q) := inf
π∈Π(P,Q) ∫ c(x, y)dπ(x, y)

Π(P, Q)
P Q

c( . , . )

π

25

Image from Internet




Kantorovich’s OT for Discrete Measures
• When  and , then 


                                   


• When  and , then 


                                 ,                   (4) 

                          s.t.  for all ;   for all 




• These simple examples show that there always exists optimal transportation 
plan when  and  are discrete, which is in contrast to the Monge’s OT 
formulation

P = δη Q =
m

∑
i=1

qiδθi

OT(P, Q) =
m

∑
i=1

qi ⋅ c(η, θi)

P =
n

∑
i=1

piδηi
Q =

m

∑
j=1

qjδθj

OT(P, Q) = min
π≥0

n

∑
i=1

m

∑
j=1

πij ⋅ c(ηi, θj)

n

∑
i=1

πij = qj 1 ≤ j ≤ m
m

∑
j=1

πij = pi

1 ≤ i ≤ n

P Q
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Kantorovich’s OT for Discrete Measures
• We can rewrite the problem (4) as follows


                                                                               (5) 

                                              s.t. 


where 


• The problem (3) is a linear programming problem


• The set  is called a 
transportation polytope, which is a convex set

OT(P, Q) = min
π∈ℝn×m

⟨C, π⟩

π ≥ 0; π1m = p; π⊤1n = q,

p = (p1, p2, …, pn); q = (q1, q2, …, qm)

𝒫 = {π ∈ ℝn×m : π ≥ 0, π1m = p, π⊤1n = q}

27



Computational Complexity of Kantorovich’s Formulation
• The below theorem yields the best computational complexity of the network 

simplex algorithm for solving the linear programming (5)


• When , the complexity becomes , which is practically very 
expensive when  is very large


• Therefore, the network simplex algorithm is not sufficiently scalable to use for 
large-scale machine learning and deep learning applications

n = m 𝒪(n3 log n)
n

28

Theorem 1: The best computational complexity of the network simplex 
algorithm for solving the linear programming (5) is of the order of [19]


                          𝒪((n + m)nm log(n + m)log((n + m)∥C∥∞))
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Entropic (Regularized) Optimal Transport 



Entropic (Regularized) Optimal Transport
• We now discuss an useful approach to obtain scalable approximation of optimal 

transport


• The idea is that we regularize the optimal transport (5) by the entropy of the 
transportation plan [20], named entropic (regularized) optimal transport:


                                                (6)


where  is the regularized parameter; 


           ;  


          ;


Here, we use a convention that  when  

EOTη(P, Q) = min
π∈𝒫(p,q)

⟨C, π⟩ − ηH(π),

η > 0

H(π) = −
n

∑
i=1

m

∑
j=1

πij log(πij)

𝒫(p, q) = {π ∈ ℝn×m : π1m = p, π⊤1n = q}

log(x) = − ∞ x ≤ 0
30



Properties of Entropic Optimal Transport
• For each regularized parameter , the objective function of the entropic 

regularized optimal transport is strongly convex function 

• It is because the function  is 1-strongly convex function as long 
as  for all 


• As the constrained set  is convex, it indicates that there exists unique 
optimal transportation plan, denoted by , for solving the entropic regularized 
optimal transport

η > 0
η−

−H( . )
πij ≤ 1 (i, j)

𝒫(p, q)
π*η

31



Properties of Entropic Optimal Transport

• The results of part (b) indicate that when the regularized parameter  is 
sufficiently large, we can treat the distributions  and  as independent 
distributions

η
P Q

32

Theorem 2: (a) When , we have  
 
                                         , 
                                         , 

 
                    (b) When , we have


                                        , 
                                          
                                                

η → 0

EOTη(P, Q) → OT(P, Q)
π*η → arg min

π∈𝒫:⟨C,π⟩=OT(P,Q)
{−H(π)}

η → ∞

EOTη(P, Q) → ⟨C, p ⊗ q⟩
π*η → p ⊗ q = pq⊤



Sinkhorn Algorithm
• We now discuss a popular algorithm, named Sinkhorn algorithm, for solving 

the entropic regularized optimal transport (6)


• Optimization challenges of primal form: The primal form (6) is an 
constrained optimization problem with several constraints; therefore, it may be 
non-trivial to solve the primal form directly


• Dual form of entropic optimal transport (6): We will demonstrate that solving 
the dual form of (9), which is an unconstrained optimization problem, is easier 


• Solving the dual form is equivalent to solve


                 (7)  min
u∈ℝn,v∈ℝm

n

∑
i=1

m

∑
j=1

exp (ui + vj −
Cij

η ) − u⊤p − v⊤q

33



Sinkhorn Algorithm: Detailed Description
• Step 1: Initialize  and 


• Step 2: For any , we perform


• If  is an even number, then for all 


                   ,       


•  If  is an odd number, then for all 


                   ,       


• Increase 

u0 = 0 ∈ ℝn v0 = 0 ∈ ℝm

t ≥ 0

t (i, j)

ut+1
i = log(pi) − log

m

∑
j′ =1

exp (vt
j′ 

−
Cij′ 

η ) vt+1
j = vt

j

t (i, j)

vt+1
j = log(qj) − log

m

∑
i′ =1

exp (ut
i′ 

−
Ci′ j

η ) ut+1
i = ut

i

t ← t + 1
34



Approximation of Optimal Transport via Sinkhorn algorithm

• Now, we discuss briefly the complexity of approximating the value of optimal 
transport via the Sinkhorn algorithm


• Goal: We would like to find a transportation plan  (see definition of  
in Slide 28) such that


                                   


• We call  the -approximation plan


π̄ ∈ 𝒫 𝒫

⟨C, π̄⟩ ≤ min
π∈𝒫

⟨C, π⟩ + ϵ

π̄ ϵ

35



Approximation of Optimal Transport via Sinkhorn algorithm

• Denote  as the updates of step  from the Sinkhorn algorithm (See 
Slide 35)


•  The corresponding transportation plan is


                             ,


where  denotes the diagonal matrix with  in 
its diagonal


• Unfortunately, , namely, we do not have either  or 



(ut, vt) t

πt := diag(exp(ut)) ⋅ K ⋅ diag(exp(vt))

diag(exp(ut)) exp(ut
1), …, exp(ut

n)

πt ∉ 𝒫 πt1m = p
(πt)⊤1n = q

36



Approximation of Optimal Transport via Sinkhorn algorithm
• Therefore, we need to do an extra rounding step to transform  to  such 

that  and 


• Details of that rounding step are in Algorithm 2 in [21] (We skip this step in the 
lecture for the simplicity)

πt π̄t

π̄t1m = p (π̄t)⊤1n = q

37

Theorem 3: Assume that . Denote by  updates from the 

Sinkhorn algorithm for the entropic optimal transport with regularized parameter  and 
denote by   the rounding transportation plan we obtain from these updates. Then, we 
have 
                                                        


as long as .             

η =
ϵ

4 log(max{n, m})
(ut, vt)

η
π̄t

⟨C, π̄t⟩ ≤ min
π∈𝒫

⟨C, π⟩ + ϵ

t = 𝒪(
∥C∥2

∞ log(max{n, m})
ϵ2

)



Approximation of Optimal Transport via Sinkhorn algorithm
• The proof of Theorem 3 can be found in Theorem 2 of [22]


• Each iteration of the Sinkhorn algorithm requires  arithmetic 
operations


• The result of Theorem 6 indicates that the total computational complexity of 
approximating the optimal transport via the Sinkhorn algorithm is


                      


• It is much cheaper than the complexity of the network simplex algorithm in 
Theorem 2, which is of the order 

max{n, m}2

𝒪(max{n, m}2 ∥C∥2
∞ log(max{n, m})

ϵ2
)

𝒪(max{n, m}3)

38



Other Approximations of Optimal Transport 
• There are other optimization algorithms that outperform Sinkhorn:


• Greedy version of Sinkhorn (Greenkhorn) [23]


• Accelerated Sinkhorn [24]


• The scalable approximations of optimal transport via these optimization 
algorithms have lead to several interesting methodological developments in 
machine learning

39

[23] Tianyi Lin, Nhat Ho, Michael I. Jordan.On efficient optimal transport: an analysis of greedy and accelerated mirror descent algorithms. ICML, 2019


[24] Tianyi Lin, Nhat Ho, Michael I. Jordan. On the efficiency of entropic regularized algorithms for optimal transport. Journal of Machine Learning Research (JMLR), 2022




Deep Generative Model via Optimal Transport

40

• Wasserstein GAN 

• Issues of Wasserstein GAN: 

• Misspecified Matchings of Minibatch Schemes 

• Curse of Dimensionality 



Generative Model
• We now discuss an important application of optimal transport in generative 

modeling task


41

CIFAR 10 Imagenet

• Goal: Given a collection of very high dimensional data, we would like to learn 
the underlying data distribution  effectivelyP



Generative Model
• There are several approaches:


• Nonparametric approaches:


• Frequentist density estimator 


• Bayesian nonparametric models


• Parametric approaches via latent variable assumption: 


• Bayesian hierarchical models


• Deep learning models, i.e., Variational Auto-Encoder (VAE) 
[25], Generative Adversarial Networks (GANs) [26], etc.
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Generative Adversarial Networks (GANs)
• Generative Adversarial Networks is an instance of implicit methods, i.e., we 

do not need explicit density estimation 


• May allow a smooth interpolation across images


• May be able to capture the underlying variation of the data (images 
with unseen patterns, etc.)


• It is different from Variational Auto-Encoder, which is an instance of explicit 
methods

43



Generative Adversarial Networks (GANs)
General recipe of implicit methods: 


• We generate  from some distribution  (e.g., Gaussian distribution)


• We consider a “fake” data generating distribution  where  is some 
vector-value function parametrized by 


• We need to make sure that  is as close as possible to the true 
distribution  of the data  (Here, we do not make any parametric 
assumption on the true distribution)


                     Some divergences between  and  are needed

z pZ( . )

Tϕ(z) Tϕ
ϕ

Tϕ( . )
P

Tϕ( . ) P
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Generative Adversarial Networks (GANs)
• For GANs [26], the choice of that divergence is the Jensen-Shannon divergence (JS):


                                                 ,                (8) 

where 


• If we denote , it is equivalent to the following minimax game:


                       ,        


where  generator,  discriminator 

• This is an instance of non-convex non-concave minimax optimization problem

min
ϕ

JS(Tϕ(z), P)

JS(Tϕ(z), P) := KL (Tϕ(z),
P + Tϕ(z)

2 ) + KL (P,
P + Tϕ(z)

2 )
G = Tϕ

min
G

max
D

𝔼x∼P[log(D(x))] + 𝔼z∼pZ
[log(1 − D(G(z)))]

G : D :
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Continuity Issue of GANs
• The JS divergence being used in GANs is problematic [27] when  and  fall 

into the following cases:


• Disjoint supports


• One is continuous distribution and another one is discrete distribution


• Example: To see that, we will consider the following simple example: 
 where  and 


• Direct calculation shows that


                               if  and 0 otherwise


• Therefore, the  divergence is discontinuous at the true parameter  and 
takes constant value when  (Gradient descent method cannot be used!)

Tϕ(z) P

Tϕ(z) = (ϕ, z) z ∼ U(0,1) P = (0,U(0,1))

JS(Tϕ(z), P) = log(2) ϕ ≠ 0

JS ϕ = 0
ϕ ≠ 0

46



Wasserstein GANs
• One solution to the continuity issue of JS divergence is by using weaker 

metric, such as optimal transport


•  The paper [27] suggests that we can use the first order Wasserstein metric  

• For any two distributions  and , the first order Wasserstein metric between 
 and  is defined as follows:


                                      ,


where  denotes the set of joint probability measures between  and 

P Q
P Q

W1(P, Q) = inf
π∈Π(P,Q) ∫ ∥x − y∥dπ(x, y)

Π(P, Q) P Q

47



Wasserstein GANs
• The objective of Wasserstein GANs is then given by: 


                                                                         (9)


• The first order Wasserstein metric is meaningful even when the two 
distributions


• Have disjoint supports


• One distribution is discrete and another distribution is continuous 


• To see that, we reconsider the example in Slide 46

min
ϕ

W1(Tϕ(z), P)

48



Wasserstein GANs
• Under this case, we can verify that  for all 


• It is clear that this function is continuous for all  and we can use optimization 
method to solve 


• In general, if  is continuous in , the first order Wasserstein metric 
 is also continuous in     


• If  is locally Lipschitz and satisfies some regularity conditions, then 
 is differentiable almost everywhere (See Theorem 1 in [27])

W1(Tϕ(z), P) = |ϕ | ϕ ∈ ℝ

ϕ
min

ϕ
|ϕ |

Tϕ( . ) ϕ
W1(Tϕ(z), P) ϕ

Tϕ( . )
W1(Tϕ(z), P)

49



Wasserstein GANs
• These observations indicate that the first order Wasserstein metric is a valid 

choice for GANs


• From the definition of first order Wasserstein metric, we can rewrite equation 
(16) as follows: 


                            (10) 

• Directly optimizing the objective function in equation (10) is not feasible in 
general


• We will discuss a dual function approach for dealing with that optimization 
problem

min
ϕ

W1(Tϕ(z), P) = min
ϕ

min
π∈Π(Tϕ(z),P) ∫ ∥x − y∥dπ(x, y)

50



Wasserstein GANs: Dual Function Approach
• Dual Function Approach: For any two probability distributions  and , the 

dual form of the first order Wasserstein metric between  and  has the 
following form:


                               ,            (11)


where  is the set of 1-Lipschitz function  , i.e.,  for 
all    

• Please refer to Section 5 in [27] about how to derive the dual form (11)

P Q
P Q

W1(P, Q) = sup
f∈ℒ1

𝔼x∼P[ f(x)] − 𝔼x∼Q[ f(x)]

ℒ1 f | f(x) − f(y) | ≤ ∥x − y∥
x, y ∈ ℝd

51



Wasserstein GANs: Dual Function Approach
• Given the dual form of the first order Wasserstein metric in equation (18), we 

can rewrite Wasserstein GANs as follows:


                   


                                                               (12) 

• To update the function  in Wasserstein GANs, it is non-trivial as it is a 
maximization problem over the functional space  


• We consider approximating the  space using deep neural networks where 
we parametrize it as  and  are the weights of neural networks

min
ϕ

W1(Tϕ(z), P) = min
ϕ

max
f∈ℒ1

𝔼x∼Tϕ(z)[ f(x)] − 𝔼x∼P[ f(x)]

= min
ϕ

max
f∈ℒ1

𝒯(ϕ, f )

f

ℒ1
{fω} ω

52



Wasserstein GANs: Dual Function Approach
• Therefore, we approximate the Wasserstein GANs (19) as


                                                (13) 

• We can solve both  and  via (stochastic) gradient descent methods


• The detailed optimization algorithm for solving the approximated Wasserstein 
GANs (20) is in Algorithm 1 in [27]

min
ϕ

max
ω

𝔼z∼pZ
[ fω(Tϕ(z))] − 𝔼x∼P[ fω(x)]

ϕ ω

53



Limitations of Dual Function Approach
• Limitations of dual function approach:


• It relies on the choice of first order Wasserstein metric and Euclidean 
distance to have a nice dual form


• The Euclidean distance assumption can be very strong in practice as it is 
not good to capture the difference of high dimensional data


• In general, we would like to have a more general form of Wasserstein GANs, 
named optimal transport GANs (OT-GANs):


                                                 ,                             (14) 

where  and  is some metric

min
ϕ

OT(Tϕ(z), P)

OT(Tϕ(z), P) = inf
π∈Π(Tϕ(z),P) ∫ c(x, y)dπ(x, y) c( . , . )
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Optimal Transport GANs (OT-GANs)
• For general cost matrix , the dual form of OT-GANs (21) can be non-

trivial to use


• Therefore, people also advocate the direct optimization of OT-GANs


• Challenge: Since both  and  are continuous, we generally cannot 
compute directly 


• Solution: We can use the sample versions of  and  to approximate 

c( . , . )

Tϕ(z) P
OT(Tϕ(z), P)

Tϕ(z) P
OT(Tϕ(z), P)
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Optimal Transport GANs (OT-GANs)

• For the distribution , we can use  where  are the 

data


• For , we can use  where  are i.i.d. samples from 




• It suggests the following approximation of OT-GANs (14)


                                                      (15)

P Pn =
1
n

n

∑
i=1

δXi
X1, X2, …, Xn

Tϕ(z)
1
M

M

∑
i=1

δTϕ(zi) z1, z2, …, zM

pZ( . )

inf
ϕ

OT(
1
M

M

∑
i=1

δTϕ(zi),
1
n

n

∑
i=1

δXi
)
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Computational Challenge of OT-GANs
• Computational Challenge:  

• The computational complexity of approximating the optimal transport between 

 and  is 


• In practice,  can be very large (as large as a few millions) and  need to be 
chosen to be quite large (scale with the dimension) to guarantee good 

approximation of  via the empirical distribution 


• Unfortunately, it is unavoidable memory issue of optimal transport


• Practical Solution: A popular approach for doing that is to consider minibatches 
of the entire data, which we refer to as minibatch optimal transport GANs 

1
M

M

∑
i=1

δTϕ(zi)
1
n

n

∑
i=1

δXi
𝒪(max{M, n}2)

n M

Tϕ(z)
1
M

M

∑
i=1

δTϕ(zi)
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Minibatch Optimal Transport



Minibatch Optimal Transport GANs (mOT-GANs)
• To set up the stage, we need the following notations:


• We denote by  the minibatch size where 


• We denote  and  the sets of all  elements of  

and  respectively


• For any  and , we respectively denote by 

 and  the empirical measures of  and 

m m ≤ min{M, n}

(Xn

m ) (zM

m ) m {X1, …, Xn}

{z1, …, zM}

Xm ∈ (Xn

m ) zm ∈ (zM

m )
PXm =

1
m ∑

x∈Xm

δx Pzm =
1
m ∑

z′ ∈zm

δz′ 
Xm

zm
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Minibatch Optimal Transport GANs (mOT-GANs)

• The common choice that people use in practice is  and  is chosen 
based on the memory of GPU


• Note that, the choice that  can lead to sub-optimal result in practice

k = 1 m

k = 1
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Minibatch Optimal Transport GANs (mOT-GANs): For any batch size 
 and number of minibatches , we draw  and  

uniformly from  and . The minibatch optimal transport GANs is given by:


                                                              (16)

1 ≤ m ≤ min{M, n} k Xm
1 , …, Xm

k zm
1 , …, zm

k

(Xn

m ) (zM

m )
min

ϕ

1
k

k

∑
i=1

OT(Tϕ(Pzm
i
), PXm

i
)



Minibatch Optimal Transport GANs (mOT-GANs)
• Computational Complexity of mOT-GANs:


• When  is given, the complexity of computing  exactly 
is at the order of  if we use exact-solver to solve the linear 
programming 


• We can improve the complexity to  via using entropic regularized 
optimal transport to approximate  


• Therefore, the best complexity of approximating  is 

ϕ OT(Tϕ(Pzm
i
), PXm

i
)

𝒪(m3)

𝒪(m2)
OT(Tϕ(Pzm

i
), PXm

i
)
k

∑
i=1

OT(Tϕ(Pzm
i
), PXm

i
)

𝒪(km2)
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OT GANs: Minibatch Approach
• For the approximation of OT-GANs in equation (15), the complexity is 

 

• As long as , the complexity of mOT-GANs is much 
cheaper than that of OT-GANs for each parameter 


• The mOT-GANs is convenient for large-scale settings of deep generative 
model


• Similar to OT-GANs, we can solve optimal parameter  of mOT-GANs (16) via 
(stochastic) gradient descent methods

𝒪(max{M, n}2)

km2 ⋘ max{M, n}2

ϕ

ϕ
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Wasserstein GANs: Minibatch Approach
• Examples of CIFAR 10 generated images via mOT-GANs:
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Data
Generated data

Minibatch size: m= 200 
Number of minibatches: k = 2

Minibatch size: m= 200 
Number of minibatches: k = 4

Minibatch size: m= 200 
Number of minibatches: k = 8



Issues of mOT-GANs
• mOT-GANs suffer from misspecified matching issue, i.e., the optimal transport 

plan from the mOT-GANs contains wrong matchings that do not appear in the 
original optimal transport plan of OT-GANs


• The misspecified matchings lead to a decline in the performance of mOT-
GANs


• There are a few recent proposals to solve the misspecified matching issue, 
includes using partial optimal transport [28], hierarchical optimal transport 
[29], unbalanced optimal transport [30]
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Minibatch Partial Optimal Transport [28]

[28] Khai Nguyen, Dang Nguyen, Tung Pham, Nhat Ho. Improving minibatch optimal transport via partial transportation. ICML, 2022




Misspecified Matching Issue of MOT
• We consider a simple example where  are two empirical distributions 

with 5 supports on 2D: , 



 
 

Pn, Qn
{(0,1), (0,2), (0,3), (0,4), (0,5)}

{(1,1), (1,2), (1,3), (1,4), (1,5)}

LHS: Optimal matching (black color) between 
; 


RHS: Wrong matchings (red color) 
induced by minibatches

Pn, Qn



Alleviating Misspecified Matching of M-OT via 
Partial Transportation
• We now demonstrate that we can alleviate the misspecified matching issue 

via partial optimal transport


• The Partial Optimal Transport (POT) between  and  is defined as follow: 
 
 
 
 
where  is the distance matrix;  transportation fraction; 
            is the uniform measures over  supports; and 
 
            
 

Pn Qn

C s :
un n

Πs(un, un) := {π ∈ ℝn×n
+ : π1n ≤ un, π⊤1n ≤ un,1⊤π1 = s}

POTs(Pn, Qn) = min
π∈Πs(un,un)

⟨C, π⟩,



Minibatch Partial Optimal Transport
• The Minibatch Partial Optimal Transport (m-POT) [21] between  and  with 

transportation fraction  is defined as


                               ,


where ; ;


           are empirical measures associated with  and 


         

Pn Qn
s

m-POTs(Pn, Qn) =
1
k
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∑
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k ∈ (Yn

m )
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Computational Complexity of Minibatch Partial Optimal Transport
• We have an equivalent way to write m-POT in terms of m-OT as follows:


                              ,


where ; 

           is a cost matrix formed by the differences of elements of  and ; 
           for all ;


          for all 


• By using entropic regularized approach, we can compute the m-POT with 
computational complexity , which is comparable to that of m-OT

m-POTs(Pn, Qn) =
1
k

k

∑
i=1

min
π∈Π(ᾱi,ᾱi)

⟨C̄i, π⟩

Ci = (Ci 0
0 Ai) ∈ ℝ(m+1)×(m+1)

+

Ci Xm
i Ym

i
Ai > 0 i = 1,2,…, k

ᾱi = [um,1 − s] i = 1,2,…, k

𝒪(k(m + 1)2)



• The corresponding transportation plan of minibatch partial optimal transport 
with transportation fraction  is given by:


where     is a transportation matrix from solving ;


              is expanded to a  matrix that has padded zero entries to 

indices which are different from those of  and 


s

πPOTs
PXm

i
,PYm

i
POTs(PXm

i
, PYm

i
)

πPOTs
PXm

i
,PYm

i
n × n

Xm
i Ym

i

Minibatch Partial Optimal Transport

πm-POTs
k =

1
k
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∑
i=1

πPOTs
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i
,PYm

i
,



• The m-POT can alleviate misspecified matchings


 
 
 
 
 
 
 
 

 are two empirical distributions with 5 supports on 2D: 
,  

 

Pn, Qn
{(0,1), (0,2), (0,3), (0,4), (0,5)} {(1,1), (1,2), (1,3), (1,4), (1,5)}

Minibatch Partial Optimal Transport



• The m-POT can alleviate misspecified matchings


 
 
 
 
 
 
 
 
 
 
The transportation between two empirical measures of 10 supports that are 
drawn from two mixture of Gaussians of two components.

Minibatch Partial Optimal Transport



 
 
 

Experiments: Deep Generative Model

 CelebA is a large-scale face attributes dataset with  
more than 200000 celebrity images.
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Batch of Minibatches Optimal Transport [29]

[29] Khai Nguyen, Dang Nguyen, Quoc Nguyen, Tung Pham, Dinh Phung, Hung Bui, Trung Le, Nhat Ho. On transportation of mini-batches: A 
hierarchical approach. ICML, 2022




Alleviating Misspecified Matching of m-OT via Hierarchical Approach
• The m-POT requires to choose good transportation fraction , which can be non-trivial in 

practice


• We now describe another approach that can be used to alleviate the misspecified 
matching of m-OT without any tuning parameter 


• The Batch of Minibatches Optimal Transport (BoMb-OT) between  and  is defined as


                    ,


where ; ;


            and ;


          are empirical measures associated with  and 

s

Pn Qn
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Batch of Minibatches Optimal Transport



• The corresponding transportation plan of Batch of minibatches optimal 
transport (BoMb-OT) between  and  is defined as


 
 
where  is a transportation matrix that is returned by solving ;


          is expanded to a  matrix that has padded zero entries to 

indices which are different from those of  and ;


             is the transportation matrix between  and 

Pn Qn
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k

Batch of Minibatches Optimal Transport
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Batch of Minibatches Optimal Transport

The transportation between two empirical measures of 10 supports  
that are drawn from two Gaussians.



Experiments: Deep Generative Model
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Curse of Dimensionality of OT-GANs



Curse of Dimensionality of OT-GANs
• Another important issue of OT-GANs is curse of dimensionality


• The required number of samples for OT-GANs to obtain good 
estimation of the underlying distribution of the data is exponential in 
the number of the dimension


• Therefore, using OT-GANs for large-scale deep generative model can 
be expensive in terms of the sample size


• Solutions: We utilize sliced OT-GANs and their variants [31], [32], [33], [34]
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[31] Khai Nguyen, Nhat Ho, Tung Pham, Hung Bui. Distributional sliced-Wasserstein and applications to deep generative modeling. ICLR, 2021


[32] Khai Nguyen, Nhat Ho, Tung Pham, Hung Bui. Improving relational regularized autoencoders with spherical sliced fused Gromov Wasserstein. ICLR, 2021


[33] Khai Nguyen, Nhat Ho. Revisiting projected Wasserstein metric on images: from vectorization to convolution. Arxiv Preprint, 2022


[34] Khai Nguyen, Nhat Ho. Amortized projection optimization for sliced Wasserstein generative models. Arxiv Preprint, 2022

https://arxiv.org/pdf/2002.07367.pdf
https://arxiv.org/pdf/2010.01787.pdf
https://nhatptnk8912.github.io/Revisiting_Sliced_Wasserstein_Arxiv.pdf
https://nhatptnk8912.github.io/Amortized_Projection_Optimization_for_Mini_batch_Projected_Wasserstein.pdf


Sliced Optimal Transport
• We first define sliced optimal transport, which is key to define sliced OT-GANs


• The sliced optimal transport (OT) between two probability distributions  and  is defined 
as follows:


                            ,


where  is the push-forward  probability measure of  through the function  
with ;


           is the order of sliced optimal transport;


          is the -th order Wasserstein metric


           

μ ν

SWp(μ, ν) := (∫𝕊d−1

Wp
p(θ♯μ, θ♯ν)dθ)

1/p

θ♯μ μ Tθ : ℝd → ℝ
Tθ(x) = θ⊤x

p ≥ 1

Wp p
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Properties of Sliced OT
There are three key properties of sliced optimal transport that make them 
appealing for large-scale applications:


• The sliced OT is a proper metric in the space of probability measures, 
namely, it satisfies the identity, symmetric, and triangle inequality 
properties


• The computational complexity of sliced OT between probability 
measures with at most  supports is , which is (much) faster 
than that of OT, which is  (via entropic regularized approach)


• The sliced OT does not suffer from curse of dimensionality, namely, the 
required sample for the sliced OT to obtain good estimation of the 
underlying probability distribution does not scale exponentially with the 
dimension

n 𝒪(n log n)
𝒪(n2)
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Sliced-OT GANs
• Given the definition of sliced-OT, the sliced optimal transport GANs (Sliced-OT GANs) is:


                                                 ,


where   is some vector-value function parametrized by ;


             is the true distribution of the data


• However, for generative models with images, that form of sliced-OT GANs means that 
we first vectorize images and then project them to one-dimensional space


• The spatial structure of images is not captured efficiently by the vectorization 
step


• Memory inefficiency since each slicing direction is a vector that has the same 
dimension as the images


min
ϕ

SWp(Tϕ(z), P)

Tϕ ϕ

P
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Sliced-OT GANs
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Convolution Sliced-OT GANs [33]

[33] Khai Nguyen, Nhat Ho. Revisiting projected Wasserstein metric on images: from vectorization to convolution. Arxiv Preprint, 2022


https://nhatptnk8912.github.io/Revisiting_Sliced_Wasserstein_Arxiv.pdf


Convolution
• To efficiently capture the spatial structures and improve the memory efficiency 

of sliced OT, we utilize the convolution operators to the slicing process of 
sliced optimal transport


• The convolution operators had been demonstrated to be very efficient for 
images in Convolutional Neural Networks (CNNs)
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Convolution Slicer

89

• There are three useful types of convolution slicers for images:


• Convolution-base slicer: reduce the width and the height of the image 
by half after each convolution operator


• Convolution-stride slicer: the size of its kernels does not depend on 
the width and the height of images as that of the convolution-base 
slicer


• Convolution-dilation slicer: has bigger receptive field in each 
convolution operator than convolution-stride slicer



Convolution Sliced Optimal Transport
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Convolution Sliced Optimal Transport
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Experiments: Deep Generative Models
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L: the number of slices to approximate the integral (or equivalent expectation) in 
sliced and convolution sliced optimal transport;  
b: base; s:slide; d: dilation.



Experiments: Deep Generative Models
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Experiments: Deep Generative Models
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Experiments: Deep Generative Models
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Experiments: Deep Generative Models
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Conclusion
• We have studied both the computational complexities of optimal transport as 

well as its applications to deep generative models


• There are several interesting open directions:


• First direction: Improving further minibatch optimal transport in GANs and 
other deep learning applications


• Second direction: Developing more efficient sliced optimal transport for 
other applications, such as language-models, etc.


• Third direction: Exploring more computationally efficient ways to compute 
optimal transport


• Fourth direction: Researching more important variants of optimal 
transport, such as unbalanced optimal transport, partial optimal 
transport, etc.
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                          Thank You!
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