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Abstract

We study the statistical and computational complexities of the Polyak step size gra-
dient descent algorithm under generalized smoothness and  Lojasiewicz conditions of the
population loss function, namely, the limit of the empirical loss function when the sample
size goes to infinity, and the stability between the gradients of the empirical and popula-
tion loss functions, namely, the polynomial growth on the concentration bound between
the gradients of sample and population loss functions. We demonstrate that the Polyak
step size gradient descent iterates reach a final statistical radius of convergence around
the true parameter after logarithmic number of iterations in terms of the sample size. It
is computationally cheaper than the polynomial number of iterations on the sample size
of the fixed-step size gradient descent algorithm to reach the same final statistical radius
when the population loss function is not locally strongly convex. Finally, we illustrate our
general theory under three statistical examples: generalized linear model, mixture model,
and mixed linear regression model.

1 Introduction

From its origin in mathematics, gradient descent algorithm [32, 5, 30] has played a central
role in large-scale machine learning and data science applications. In general unconstrained
settings, this algorithm can be used for finding optimal solutions of optimization problems of
the following form:

min
θ∈Rd

fn(θ). (1)

Here, n stands for the sample size of i.i.d. data X1, X2, . . . , Xn coming from an unknown
distribution Pθ∗ where θ∗ is true but unknown parameter and fn is a given empirical loss
function whose optimal solutions, denoted by θ̂n, can be used to approximate the true param-
eter θ∗. While the difference between θ̂n and θ∗ had been studied extensively in the literature
via several tools from the empirical process theory, the convergence rates of θtn, updates from
the gradient descent algorithm, to optimal neighborhood around the true parameter θ∗, has
still remained a nascent topic.

A natural approach to analyze the difference between the updates θtn and the true pa-
rameter θ∗ is to study the convergence rate of θtn to θ̂n, stationary points of optimization
problem (1), and the gap between θ̂n and θ∗, namely, we use the following triangle inequality:

‖θtn − θ∗‖ ≤ ‖θtn − θ̂n‖+ ‖θ̂n − θ∗‖. (2)
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This approach is often referred to as direct approach and has been used in several earlier
works (e.g., [1, 39, 26, 8]). However, to ensure that the radius of convergence for ‖θtn − θ∗‖ is
at the order of final statistical rate, we need to obtain a tight optimization convergence rate
of the term ‖θtn − θ̂n‖ based on the sample size n and the number of iterations t. It requires
a precise understanding of the noise-structure in the gradient of the empirical loss function,
which is generally non-trivial to study in practice.

To circumvent the challenges of the direct analysis (2), a popular approach to analyze
the difference between the updates θtn and the true parameter θ∗ is the population to sample
analysis [38, 14, 2, 23, 37, 7, 12, 11, 16, 24]. In particular, we define the corresponding
population version of optimization problem (3) as follows:

min
θ∈Rd

f(θ), (3)

where f(·) := EXn [fn(·)] is the population loss function and Xn = (X1, . . . , Xn). When
the step size η of the gradient descent algorithm is fixed, which we refer to as fixed-step size
gradient descent algorithm, the idea of the population to sample analysis is to analyze the
radius of convergence of θtn via the following triangle inequality:

‖θt+1
n − θ∗‖ ≤ ‖FGD(θtn)− θ∗‖+ η‖∇fn(θtn)−∇f(θtn)‖ := A+B, (4)

where FGD(θ) := θ − η∇f(θ) is the corresponding population operator of the fixed-step size
gradient descent algorithm. The bound (4) suggests that we can relate the behaviors of the
sample fixed-step size gradient descent iterate θt+1

n to two terms: (i) Term A: the convergence
rate of gradient descent iterates for solving population loss function (3); (ii) Term B: the
uniform concentration of ∇fn(θ) around ∇f(θ) when θ lies in a certain neighborhood around
θ∗.

Complexity of fixed-step size gradient descent: When the population loss function is
locally strongly convex and smooth around θ∗, under the local initialization the convergence
rate of gradient descent iterates for solving the population loss function is linear, i.e., the
term A in equation (4) behaves like κ‖θtn − θ∗‖ where κ < 1 is some constant. When the
deviation bound between ∇fn(θ) and ∇f(θ) is at the order ε(n, δ) with probability 1 − δ as
long as ‖θ − θ∗‖ ≤ r where ε(n, δ) is the noise function, the statistical radius of the sample
fixed-step size gradient descent updates is at the order of O(ε(n, δ)) as long as the number
of iterations is at least O(log(1/ε(n, δ))). For practical high dimensional statistical models,
the noise function ε(n, δ) is at the order of

√
d/n (here we skip δ for simplicity); therefore,

we have parametric statistical radius of the sample gradient descent iterates after log(n/d)
number of iterations.

When the population loss function is no longer locally strongly convex around the true
parameter θ∗, analyzing the convergence rate of θtn is non-trivial as simply applying triangle
inequality in equation (4) can get to sub-optimal rate. To get a sharp statistical radius of
θtn, Ho et al. [16] recently utilize a localization argument from the empirical process theory to
progressively balance the two terms A and B when the sample fixed-step size gradient descent
updates θtn move closer to the true parameter θ∗. They show that when the convergence
rate of the population fixed-step size gradient descent iterates is at the order of O(1/t1/α)
for some α > 0 and the deviation bound between ∇fn(θ) and ∇f(θ) is slow and at the
order of O(rγε(n, δ)) with probability 1 − δ as long as ‖θ − θ∗‖ ≤ r where γ ≥ 0, the final
statistical radius of the fixed-step size gradient descent iterates ‖θtn − θ∗‖ is upper bounded

by O(ε(n, δ)
1

1+α−γ ) as long as t ≥ O(ε(n, δ)
− α
α+1−γ ) and α ≥ γ. In practical high dimensional
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statistical models, the noise function ε(n, δ) is proportional to
√
d/n; therefore, the required

number of iterations for the fixed-step size gradient descent updates to reach the final radius
is proportional to (n/d)

α
α+1−γ . Since each iteration of the gradient descent requires O(nd)

arithmetic operations, the total computational complexity for the fixed-step size gradient
descent algorithm to reach the final statistical radius is of the order of O(n

α
α+1−γ+1

) for fixed
dimension d. It is much more computationally expensive than the optimal computational
complexity O(n) when the sample size is sufficiently large in practice.

Contribution. In this paper, we show that by using Polyak step size gradient descent
method [32], an adaptive gradient descent algorithm, we can overcome the high computational
complexity of the fixed-step size gradient descent algorithm for reaching the final statistical
radius when the population loss function is not locally strongly convex. Our contribution is
two-fold and can be summarized as follows:

1. Complexity of Polyak step size gradient descent algorithm: We study the com-
putational and statistical complexities of the Polyak step size gradient descent iterates
under the generalized smoothness and  Lojasiewicz properties of the population loss
function, which are characterized by parameter α ≥ 0. Under these assumptions, we
demonstrate that the population Polyak step size gradient descent iterates have a linear
convergence rate to the true parameter θ∗. When the deviation bound between the gra-
dients of sample and population loss functions is growing at the order of O(rγε(n, δ))
with probability 1−δ, we further prove that the sample Polyak step size gradient descent

updates reach the final statistical radius O(ε(n, δ)
1

1+α−γ ) around the true parameter θ∗

as long as t ≥ O(log(1/ε(n, δ))). It indicates that the sample Polyak step size gradient
descent iterates reach the same final statistical radius as that of the fixed-step size gra-
dient descent iterates and they only require a logarithmic number of iterations, which
is much smaller than those from the fixed-step size gradient descent updates. Since
each iteration of the Polyak step size gradient descent algorithm only requires O(nd)
arithmetic operations, the total computational complexity for the Polyak step size algo-
rithm to reach the final statistical radius is at the order of O(n log(1/ε(n, δ))) for fixed

dimension d, which is much cheaper than O(n · ε(n, δ)−
α

α+1−γ ) from the fixed-step size
gradient descent algorithm. See Table 1 for a more detailed comparison between the
Polyak step size and fixed-step size methods.

2. Illustrative examples: We illustrate the general theory under three statistical models:
generalized linear model, symmetric two-component mixture model, and mixed linear
regression model. For the generalized linear model with link function g(x) = xp where
p ∈ N and p ≥ 2, we demonstrate that when we have no signal, i.e., θ∗ = 0, the Polyak
step size gradient descent iterates converge to a radius of convergence O((d/n)1/2p)
around the true parameter after O(log(n/d)) number of iterations. It is much faster than

the required number of iterations O((n/d)
p−1
p ) of the fixed-step size gradient descent

algorithm. For both the symmetric two-component mixture model and mixed linear
regression, under the low signal-to-noise regime, e.g., θ∗ = 0, we prove that the final
optimal statistical radius of the Polyak step size iterates are at the order of O((d/n)1/4)
as long as we run the algorithm for O(log(n/d)) iterations, which is faster than O(

√
n/d)

number of iterations required for the EM algorithm, which in these settings is equivalent
to gradient descent with step size 1, in order to reach the same final statistical radii.

Organization. The paper is organized as follows. In Section 2, we first introduce our as-
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sumptions on generalized smoothness and  Lojasiewicz property of the population loss function
and the growth condition on the concentration of the gradient of sample loss function around
the gradient of the population loss function. Then, we establish convergence rates of the
Polyak step size gradient descent iterates under these assumptions. In Section 3, we illustrate
these convergence rates under specific settings of generalized linear model, mixture model,
and mixed linear regression. We carry out experiments in Section 4 to verify the convergence
rates studied in Section 3 while concluding the paper with a few discussions in Section 6.
Proofs of main results are in Section 5 while proofs of the remaining results are deferred to
the Appendices.

Notation. For any matrix A ∈ Rd×d, we denote by λmax(A) the maximum eigenvalue
of the matrix A. For any x ∈ Rd, ‖x‖ denotes the `2 norm of x. For any two sequences
{an}n≥1, {bn}n≥1, we denote an = O(bn) to mean that an ≤ Cbn for all n ≥ 1 where C is some
universal constant. Furthermore, we denote an = Θ(bn) to indicate that C1bn ≤ an ≤ C2bn
for any n ≥ 1 where C1, C2 are some universal constants.

2 Polyak Step Size Gradient Descent

In this section, we first provide a set of assumptions used in our analysis of the Polyak step
size gradient descent algorithm in Section 2.1. We then study the convergence rate of that
algorithm under these assumptions in Section 2.2.

2.1 Assumptions

We first start with the following assumption about the local generalized smoothness of the
population loss function in equation (3).

(W.1) (Generalized Smoothness) There exists a constant α ≥ 0 such that for all θ ∈ B(θ∗, ρ)
for some radius ρ > 0, we have

λmax(∇2f(θ)) ≤c1‖θ − θ∗‖α,

where c1 > 0 is some universal constant.

When α = 0, Assumption (W.1) corresponds to the standard local smoothness condition.
When α > 0, Assumption (W.1) provides a polynomial growth condition on the Lipschitz
constant when the parameter lies in some neighborhood around the true parameter θ∗. An
example of the function f that satisfies Assumption (W.1) is f(θ) =

∑d
i=1 θ

2αi
i for all θ =

(θ1, θ2, . . . , θd) ∈ Rd where α1, α2, . . . , αd ≥ 1 are some given positive integers. In this simple
example, the true parameter θ∗ = 0 and the constant α in Assumption (W.1) takes the value
α = min1≤i≤d{2αi − 2}.

Now, to obtain a convergence rate for the Polyak step size gradient descent algorithm for
solving the minima of the population loss function, we need another assumption, which we
refer to as generalized  Lojasiewicz property, on the growth of the gradient of the population
loss function f .

(W.2) (Generalized  Lojasiewicz Property) For all θ ∈ B(θ∗, ρ) for some radius ρ > 0, there
exists a constant α ≥ 0 such that we have

‖∇f(θ)‖ ≥ c2(f(θ)− f(θ∗))1− 1
α+2

where c2 > 0 is some universal constant.
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Method
 Lojasiewicz (W.2)

Smoothness (W.1),
Bound (W.3)
Concentration

Iterations
Number of

Radius
Statistical

(Proposition 1)
gradient descent
Fixed-step size

α = 0
α > 0

γ = 0
γ ≥ 0

log(1/ε(n, δ))
ε(n, δ)

− α
1+α−γ

ε(n, δ)
ε(n, δ)

1
α+1−γ

(Theorem 1)
gradient descent
Polyak step size

α ≥ 0 γ ≥ 0 log(1/ε(n, δ)) ε(n, δ)
1

α+1−γ

Table 1. An overview of the convergence rates of fixed-step size and Polyak step size gradient
descent iterates under the assumptions on generalized smoothness of the population loss func-
tion (Assumptions (W.1)), generalized  Lojasiewicz property of the population loss function
(Assumption (W.2)), and uniform concentration bound between the gradients of the popu-
lation and sample loss functions (Assumption (W.3)). The results in the table show that
when α > 0, the Polyak step size gradient descent iterates reach to the same statistical radius

ε(n, δ)
1

α+1−γ as that of fixed-step size gradient descent iterates after much fewer number of

iterations (log(1/ε(n, δ)) iterations of Polyak step size method versus ε(n, δ)
1

α+1−γ of fixed-step
size method). As the complexity per iteration of the Polyak step size method and the fixed-step
size method is similar, the Polyak method is more computationally efficient than the fixed-step
size method for reaching the same final statistical radius. When α = 0 and γ = 0, e.g., locally
strongly convex setting, both the Polyak and fixed-step size methods reach the statistical radius
ε(n, δ) after a logarithmic number of iterations.

When α = 0, the generalized  Lojasiewicz property is simply the well-known local Polyak-
 Lojasiewicz inequality [5]. This inequality has been used to guarantee the linear conver-
gence of the fixed-step size gradient descent algorithm. When α > 0, the inequality in
Assumption (W.2) indicates that the gradient locally grows faster than a high order poly-
nomial function as we move around the global minima θ∗ where the maximum degree of
the polynomial function is determine by the constant α. Similar to Assumption (W.1), a
simple example of the function f that satisfies Assumption (W.2) is f(θ) =

∑d
i=1 θ

2αi
i for

all θ = (θ1, θ2, . . . , θd) ∈ Rd where α1, α2, . . . , αd ≥ 1 are some given positive integers. The
constant α in Assumption (W.2) takes the value α = max1≤i≤d{2αi − 2}. If we would like
the function f in this example to satisfy both Assumptions (W.1) and (W.2) with the same
constant α, we need to have α1 = α2 = . . . = αd = α, namely, homogeneous polynomial
function. This behavior turns out to be popular in several statistical models, such as gener-
alized linear model, mixture model, and mixed linear regression that we study in Section 3.
In Appendix C, we also briefly discuss the behavior of the Polyak step size gradient descent
algorithm when the simple polynomial function f does not have homogeneous order, i.e., the
constants in Assumptions (W.1) and (W.2) are different.

Finally, to analyze the iterates from the Polyak step size gradient descent algorithm for
minimizing the sample loss function in equation (1), we need a growth condition on the
uniform deviation bound between the gradients of the sample and population loss functions.

(W.3) (Stability Property) For a given parameter γ ≥ 0, there exist a noise function ε :
N × (0, 1] → R+, universal constant c3 > 0, and some positive parameter ρ > 0 such
that

sup
θ∈B(θ∗,r)

‖∇fn(θ)−∇f(θ)‖ ≤ c3r
γε(n, δ),

for all r ∈ (0, ρ) with probability 1− δ.
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A simple interpretation of the Assumption (W.3) is that we would like to control the growth
of the noise function, resulting from the difference between the sample and population loss
functions, when the radius of the ball around θ∗ goes to 0. That assumption also suggests
that θ∗ is some stationary point of the sample loss function fn when γ > 0. A simple example

for Assumption (W.3) is that fn(θ) = ‖θ‖2p
2p −

ω‖θ‖2q
2q

√
d
n where ω ∼ N (0, 1) and p, q are

positive integers such that p > q. Under this simple case, f(θ) = ‖θ‖2p
2p and the constant γ in

Assumption (W.3) takes the value γ = 2q − 1 while the noise function ε(n, δ) =

√
d log(1/δ)

n .
For more practical examples, we refer readers to Section 3.

2.2 Convergence rate of the Polyak step size gradient descent

The Polyak step size gradient descent iterates {θtn}t≥0 for solving the sample loss function fn
in equation (1) take the following form:

Fn(θtn) := θt+1
n = θtn −

fn(θtn)− fn(θ̂n)

‖∇fn(θtn)‖2
· ∇fn(θtn), (5)

where θ̂n is some optimal solution of the optimization problem (1) (See our discussion after
Theorem 1 about an adaptive version of Polyak step size gradient descent algorithm to deal
with the unknown value of fn(θ̂n)). The operator Fn in equation (5) is referred to as sample
Polyak operator. To analyze the convergence rate of the sample iterates θtn, we will use the
population to sample analysis discussed in equation (4). In particular, we define the following
population Polyak operator for solving the population loss function f in equation (3):

F (θ) := θ − f(θ)− f(θ∗)

‖∇f(θ)‖2
· ∇f(θ), (6)

As being indicated in the population to sample analysis for analyzing the fixed-step size
gradient descent algorithm, to analyze the sample iterates {θtn}t≥0 of the Polyak step size
gradient descent algorithm we use the following triangle inequality:

‖θt+1
n − θ∗‖ ≤ ‖Fn(θtn)− F (θtn)‖+ ‖F (θtn)− θ∗‖. (7)

Therefore, to obtain an upper bound for the gap between θt+1
n and θ∗, we need to understand

the contraction of the population operator F to θ∗ as well as the deviation between the sample
operator Fn and population operator F . The following lemma shows the linear contraction
of the population operator F towards θ∗.

Lemma 1. Assume that Assumptions (W.1) and (W.2) hold. Then, given the definition of
Polyak population operator in equation (6) we have

‖F (θ)− θ∗‖ ≤ κ‖θ − θ∗‖,

where κ :=
(

1− cα+2
2

2c1(α+2)α+2

)1/2

and c1, c2 are universal constants in Assumptions (W.1)

and (W.2).

The proof of Lemma 1 is in Section 5.1. The result of Lemma 1 indicates that if {θt}t≥0 is a
sequence of population Polyak step size gradient descent iterates, i.e., θt+1 = F (θt), then we
have

‖θt − θ∗‖ ≤ κt‖θ0 − θ∗‖.
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The linear convergence of population Polyak step size gradient descent iterates is in stark
different from the sub-linear convergence Θ(t−1/α) of the fixed-step size gradient descent
iterates under Assumptions (W.1) and (W.2) (See Lemma 4 in Appendix B).

Our next result establishes an uniform concentration bound between the sample Polyak
operator Fn and the population Polyak operator F .

Lemma 2. Assume that Assumptions (W.1), (W.2), and (W.3) hold with α ≥ γ. Assume
that ‖θ̂n − θ∗‖ ≤ rn where θ̂n is the optimal solution of the sample loss function fn and

rn := C̄ε(n, δ)
1

α+1−γ where C̄ =
(
C·c3(α+2)α+1

cα+2
2

) 1
1+α−γ

, c2, c3 are the universal constant in

Assumption (W.2) and (W.3) and C is some universal constant. Then for any rn ≤ r < ρ
and for some universal constants c4 ≥ 1, we have

sup
θ∈B(θ∗,r)\B(θ∗,rn)

‖Fn(θ)− F (θ)‖ ≤ c4r
γ−αε(n, δ).

The proof of Lemma 2 is in Section 5.2. A few comments with that lemma are in order. First,
the condition α ≥ γ is to guarantee that the signal is stronger than the noise in statistical
model in which we can derive the meaningful statistical rate for our estimator. Second,
the assumption that ‖θ̂n − θ∗‖ ≤ rn is natural as from Proposition 1, we demonstrate that

that statistical radius is at the order of O(ε(n, δ)
1

α+1−γ ). Third, as indicated in Lemma 2,
the uniform concentration bound between the sample Polyak operator Fn and the population
Polyak operator F only holds when rn ≤ ‖θ−θ∗‖ ≤ r. The condition ‖θ−θ∗‖ ≥ rn is important
to ensure that the concentration bound is stable. When ‖θ − θ∗‖ < rn, it happens that
‖Fn(θ)−F (θ)‖ goes to infinity. This instability behavior of the concentration bound between
Fn and F when the parameter approaches θ∗ is different from the stable concentration bound
of the sample fixed-step size gradient descent operator around the population fixed-step size
gradient descent operator, which is proportional to rγ ·ε(n, δ) according to Assumption (W.3)
and holds for all θ ∈ B(θ∗, r).

Equipped with the linear convergence of the population Polyak operator in Lemma 1 and
the uniform deviation bound between the sample Polyak operator Fn and the population
Polyak operator F , we are ready to state our main result about the statistical and computa-
tional complexity of the sample Polyak step size gradient descent iterates.

Theorem 1. Assume that Assumptions (W.1), (W.2) and (W.3) and assumptions in Lemma 2

hold with α ≥ γ. Assume that the sample size n is large enough such that ε(n, δ)
1

α+1−γ ≤
(1−κ)ρ
c4C̄γ−α

where κ is defined in Lemma 1, c4 and C̄ are the universal constants in Lemma 2,
and ρ is the local radius. Then, there exist universal constants C1, C2 such that for t ≥
C1 log(1/ε(n, δ)), the following holds:

min
k∈{0,1,··· ,t}

‖θkn − θ∗‖ ≤ C2 · ε(n, δ)
1

α+1−γ ,

The proof of Theorem 1 is in Section 5.3. Below, we have the following discussions with the
result of Theorem 1:

Comparing to fixed-step size gradient descent: Since the convergence rate of the fixed-
step size gradient descent iterates is at the order of t−1/α when α > 0 under Assumptions (W.1)
and (W.2) (See Lemma 4 in Appendix B) and the concentration bound between the sample
gradient descent and population gradient descent operators are of the order rγ · ε(n, δ) under
Assumption (W.3), the result of Theorem 1 in [16] indicates the following convergence rate
of the fixed-step size gradient descent updates when α > 0 and α ≥ γ.
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Proposition 1. Assume that Assumptions (W.1), (W.2) and (W.3) hold with α ≥ γ and
α > 0. As long as the sample size n is large enough such that ε(n, δ) ≤ C for some universal
constant C, there exist universal constants C ′1 and C ′2 such that for any fixed τ ∈ (0, 1

1+α−γ )

as long as t ≥ C ′1ε(n, δ)
− α

1+α−γ log(1/τ), we have

‖θtn,GD − θ∗‖ ≤ C ′2ε(n, δ)
1

α+1−γ−τ ,

where {θtn,GD}t≥0 is a sequence of sample fixed-step size gradient descent iterates.

When α ≥ γ and α > 0, the result of Proposition 1 indicates that the fixed-step size gra-
dient descent algorithm requires O(ε(n, δ)

− α
1+α−γ ) number of iterations such that its updates

can reach to the final statistical radius O(ε(n, δ)
1

α+1−γ ). Since each step of the gradient descent
algorithm takes O(nd) arithmetic operations, it demonstrates that the total computational
complexity for the fixed-step size gradient descent algorithm to reach the final statistical ra-
dius is O(n·ε(n, δ)−

α
1+α−γ ) for fixed dimension d. On the other hand, with a similar argument,

Theorem 1 indicates that the total computational complexity for the Polyak step size gradient
descent iterates to reach the final statistical radius is at the order of O(n · log(1/ε(n, δ)), which
is much cheaper than that of the fixed-step size gradient descent algorithm when α ≥ γ.

Cross-validation with the minimum number of iterates: Note that, in Theorem 1 we

only guarantee for the existence of some k < t in the iterate that ‖θkn−θ∗‖ = O(ε(n, δ)
1

α+1−γ ),
instead of the generally desired last iterate t. As Ho et al. [16] pointed out, such minimum is
unavoidable without further regularity conditions. Fortunately, we can still obtain the desired
estimator in the iterate by cross-validation [35], which only accounts for an additional O(nd)
computation and keeps the computational efficiency of the Polyak step-size gradient descent
algorithm.

Practical consideration of the Polyak step size gradient descent: A practical issue
of the original Polyak step size gradient descent algorithm is that it requires the knowledge
of the optimal value of the sample loss function fn(θ̂n) (see equation (5)). Even though it
may look restrictive at the first sight, it appears that we can utilize an adaptive version of
that algorithm, named adaptive Polyak step size gradient descent, from [15] to deal with the
unknown value of fn(θ̂n). The detailed description of that algorithm is in Algorithm 1.

As indicated in Algorithm 1, we first choose some lower bound f̃0 of fn(θ̂n) and using it
as a surrogate for fn(θ̂n). Then, we run the Polyak step size algorithm for T times, which
is the time horizon, with that surrogate choice. We then perform binary search to update
that surrogate value to f̃1 based on the current Polyak step size gradient descent iterates. We
repeat that procedure K times where K is some given number of epochs to obtain a surrogate
value f̃K of fn(θ̂n). As indicated in Theorem 2 of [15], to have f̃K−fn(θ̂n) < ε, we can choose

K = O(log(fn(θ̂n)−f̃0
ε )) and T = O(log(1

ε )). Therefore, if we choose ε = O(ε(n, δ)
α+2

α+1−γ )
(note that here ε is the gap for value of the objective function), then based on the proof of
Theorem 1, the adaptive Polyak step size gradient descent iterates converge to a final radius of

convergence O(ε(n, δ)
1

α+1−γ ) after O(log(1/ε(n, δ))2) number of iterations. It indicates that
the adaptive Polyak step size gradient descent is still cheaper than the fixed-step gradient
descent algorithm for reaching the same final statistical radius when α ≥ γ and α > 0, i.e.,
when the population loss function is not locally strongly convex.
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Algorithm 1: Adaptive Polyak Step Size Gradient Descent

Input: Sample loss function fn, initialization θ0
n, lower bound function f̃0 such that

f̃0 < fn(θ̂n) where θ̂n is some optimal solution of fn, time horizon T , number
of epochs K

1 θ̄ = θ0
n

2 for k = 0, 1, 2, . . . ,K − 1 do
3 θTkn = θ̄
4 for i = 0, 1, 2, . . . , T − 1 do

5 θTk+i+1
n = θTk+i

n − fn(θTk+in )−f̃k
‖∇fn(θTk+in )‖2

∇fn(θTk+i
n )

6 end

7 θ̄ = arg min0≤i≤T fn(θTk+i
n )

8 f̃k+1 = fn(θ̄)−f̃k
2

9 end
Output: θ̄

3 Examples

In this section, we consider an application of our theories in Section 2 to three specific ex-
amples: generalized linear model, over-specified Gaussian mixture model, and mixed linear
regression model.

3.1 Generalized Linear Model

Generalized linear model is a generalization of linear regression model that allows the re-
sponse variable to relate to the covariates via a link function. In particular, assume that
(Y1, X1), . . . , (Yn, Xn) ∈ R× Rd satisfy

Yi = g(X>i θ
∗) + εi, ∀i ∈ [n] (8)

where g : R→ R is a given link function, θ∗ is a true but unknown parameter, and ε1, . . . , εn
are i.i.d. noises from N (0, σ2) where σ > 0 is a given variance parameter. Note that, the
Gaussian assumption on the noise is just for the simplicity of the proof argument; the result
in this section still holds for sub-Gaussian i.i.d. noise. Furthermore, we assume the random
design setting of the generalized linear model, namely, X1, X2, . . . , Xn are i.i.d. from N (0, Id).

For our study, we specifically consider g(r) := rp for any p ∈ N and p ≥ 2. Note that,
our choice of g is motivated by phase retrieval problem [13, 34, 6, 31] where g(r) = r2. To
estimate θ∗, we consider minimizing the least-square loss function, which is given by:

min
θ∈Rd
Ln(θ) :=

1

2n

n∑
i=1

(Yi − (X>i θ)
p)2. (9)

We then also have the corresponding population least-square loss function, which admits the
following form:

min
θ∈Rd
L(θ) := E(X,Y )[(Y − (X>θ)p)2],

9



where the outer expectation is taken with respect to X ∼ N (0, Id) and Y = g(X>θ∗) + ε
where ε ∼ N (0, σ2). Note that E[Y 2|X] = E[g(X>θ∗)2] + σ2. Thus, by taking conditional
expectation, the population loss function has the following form:

L(θ) = E
[

1

2
(Y − (X>θ)p)2

]
=

1

2

(
E
[(

(X>θ∗)p − (X>θ)p
)2
]

+ σ2

)
. (10)

Strong signal-to-noise regime: When θ∗ is bounded away from 0, i.e., ‖θ∗‖ ≥ C for some
universal constant C, the population least-square loss function L is locally strongly convex
around θ∗ and locally smooth, namely, the Assumptions (W.1) and (W.2) become

λmax(∇2L(θ)) ≤ c1, ‖∇L(θ)‖ ≥ c2(f(θ)− f(θ∗))1/2 (11)

for all θ ∈ B(θ∗, ρ) where ρ is some universal constant depending on p, as we demonstrate
in Appendix A.1. Furthermore, for Assumption (W.3), for any r > 0 we can demonstrate
that there exist universal constants C1 and C2 such that as long as n ≥ C1(d log(d/δ))2p with
probability 1− δ

sup
θ∈B(θ∗,r)

‖∇Ln(θ)−∇L(θ)‖ ≤ C2

√
d+ log(1/δ)

n
. (12)

The proof for this uniform concentration bound is also in Appendix A.1. These results indicate
that α = γ = 0 in Assumptions (W.1)-(W.3). Therefore, a direct application of Theorem 1
shows that we have the iterates of Polyak step size gradient descent algorithm converge to a
radius of convergence O(

√
d/n) around θ∗ within O(log(n/d)) number of iterations.

Low signal-to-noise regime: On the other hand, when ‖θ∗‖ is sufficiently small, the popu-
lation loss function is no longer locally strongly convex and the precise understandings of the
sample updates from the Polyak step size gradient descent algorithm for solving the sample
loss function Ln have remained poorly understood. To illustrate the behaviors of the Polyak
step size gradient descent algorithm, we only focus on the no signal-to-noise setting θ∗ = 0 in
this section. Under this setting, the population least-square loss function can be written as

min
θ∈Rd
L(θ) =

σ2 + (2p− 1)!!‖θ − θ∗‖2p

2
. (13)

Different from the setting when θ∗ is bounded away from 0, the population loss function in
equation (13) is not locally strongly convex around θ∗ when θ∗ = 0. Indeed, we demonstrate
in Appendix A.1 that for all θ ∈ B(θ∗, ρ) for some radius ρ, we have

λmax(∇2L(θ)) ≤ c1‖θ − θ∗‖2p−2, (14)

‖∇L(θ)‖ ≥ c2(L(θ)− L(θ∗))
1− 1

2p , (15)

where c1, c2 are some universal constants depending on r. Furthermore, for Assumption (W.3),
from Appendix A.2 in [29], there exist universal constants C1 and C2 such that for any r > 0
and n ≥ C1(d log(d/δ))2p we have

sup
θ∈B(θ∗,r)

‖∇Ln(θ)−∇L(θ)‖ ≤ C2(rp−1 + r2p−1)

√
d+ log(1/δ)

n
(16)
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with probability at least 1− δ. These results suggest that as long as r ∈ (0, ρ) for some given
ρ, the values of constants α and γ in Assumptions (W.1)-(W.3) are α = 2p− 2 and γ = p− 1.

Given the above studies, a direct application of Theorem 1 leads to the following bounds
on the statistical radius of the sample Polyak step size gradient descent iterates.

Corollary 1. For the generalized linear model (8) with the link function g(r) = rp for some
natural number p ≥ 2, as long as n ≥ c(d log(d/δ))2p for some positive universal constant c
and θ0

n ∈ B(θ∗, ρ) for some ρ > 0, with probability 1 − δ the sequence of sample Polyak step
size gradient descent iterates {θtn}t≥0 satisfies the following bounds

(i) Strong signal-to-noise regime: When ‖θ∗‖ ≥ C for some constant C, we have

min
1≤k≤t

‖θkn − θ∗‖ ≤ c1

√
d+ log(1/δ)

n
, for t ≥ c2 log

(
n

d+ log(1/δ)

)
,

(ii) Low signal-to-noise regime: When θ∗ = 0, we find that

min
1≤k≤t

‖θkn − θ∗‖ ≤ c′1
(
d+ log(1/δ)

n

)1/(2p)

, for t ≥ c′2 log

(
n

d+ log(1/δ)

)

Here, c1, c2, c
′
1, c
′
2 are some universal constants.

In light of Proposition 1, when θ∗ = 0 the iterates from the fixed-step size gradient
descent algorithm have similar statistical radius (d/n)1/(2p) as that of the Polyak step size
gradient descent updates. However, the fixed-step size gradient descent algorithm need at

least O((n/d)
p−1
p ) number of iterations to reach that radius of convergence. It demonstrates

that the Polyak step size gradient descent algorithm is much cheaper than the fixed-step size
gradient descent algorithm in terms of the sample size n.

3.2 Mixture model

Gaussian mixture models are one of the most popular tools in machine learning and statistics
for modeling heterogeneous data [25, 27]. In these models, learning location and scale pa-
rameters associated with each sub-population is important to understand the heterogeneity of
the data. A popular approach to estimate these parameters is to maximize the log-likelihood
function. Since the log-likelihood function of Gaussian mixture models is non-concave and
complicated to study, a full picture about the convergence rates of optimization algorithms
for solving the log-likelihood function of the over-specified Gaussian mixture models has still
remained elusive.

In this section, we aim to shed light on the convergence rates of the Polyak step size gradi-
ent descent algorithm for solving the parameters of Gaussian mixture models. We specifically
consider the symmetric two-component Gaussian mixture and provide comprehensive analysis
of that algorithm. In particular, we assume that the data X1, X2, . . . , Xn are i.i.d. samples
from 1

2N (−θ∗, σ2Id) + 1
2N (θ∗, σ2Id) where σ > 0 is given and θ∗ is true but unknown param-

eter. To estimate θ∗, we fit the data by the symmetric two-component Gaussian mixture

1

2
N (−θ, σ2Id) +

1

2
N (θ, σ2Id). (17)

11



The maximum likelihood estimation is then given by:

min
θ∈Rd
L̄n(θ) := − 1

n

n∑
i=1

log

(
1

2
φ(Xi|θ, σ2Id) +

1

2
φ(Xi| − θ, σ2Id)

)
, (18)

where φ(·|θ, σ2Id) is the density function of multivariate Gaussian distribution with mean θ
and covariance matrix σ2Id. The corresponding population version of the maximum likelihood
estimation (18) takes the following form:

min
θ∈Rd
L̄(θ) := −EX

[
log

(
1

2
φ(X|θ, σ2Id) +

1

2
φ(X| − θ, σ2Id)

)]
, (19)

where the outer expectation is taken with respect to X ∼ 1
2N (−θ∗, σ2Id) + 1

2N (θ∗, σ2Id).

Strong signal-to-noise regime: When ‖θ∗‖ ≥ Cσ for some universal constant C, the
Corollary 1 in [2] demonstrates that the population loss function L̄ is locally strongly convex

and locally smooth as long as θ ∈ B(θ∗, ‖θ
∗‖
4 ). It indicates that we have

λmax(∇2L̄(θ)) ≤ c1, ‖∇L̄(θ)‖ ≥ c2(f(θ)− f(θ∗))1/2, (20)

i.e., the Assumptions (W.1) and (W.2) are satisfied with the constant α = 0. Furthermore,

for any r ≤ ‖θ
∗‖
4 and n ≥ C1d log(1/δ) for some universal constant C1 we have

sup
θ∈B(θ∗,r)

‖∇L̄n(θ)−∇L̄(θ)‖ ≤ C2

√
d log(1/δ)

n
(21)

with probability at least 1− δ where C2 is some universal constant. See Corollary 4 in [2] for
the proof of this concentration result.

Low signal-to-noise regime: We specifically consider the setting θ∗ = 0. This setting
corresponds to the popular over-specified Gaussian mixture models [33, 17], namely, when we
choose some given number of components that can be (much) larger than the true number of
components and estimating the parameters from the mixture models with that chosen number
of components. We prove in Appendix A.2 that for all θ ∈ B(θ∗, σ2 ):

λmax(∇2L̄(θ)) ≤ c1‖θ − θ∗‖2, (22)

‖∇L̄(θ)‖ ≥ c2(L̄(θ)− L̄(θ∗))3/4. (23)

Furthermore, from Lemma 1 in [12], there exist universal constants C1 and C2 such that for
any r > 0 and n ≥ C1d log(1/δ) we have:

sup
θ∈B(θ∗,r)

‖∇L̄n(θ)−∇L̄(θ)‖ ≤ C2r

√
d log(1/δ)

n
(24)

with probability at least 1− δ.
Combining the above results to Theorem 1, we have the following results on the final

statistical radius of the Polyak step size iterates under different regimes of the two-component
Gaussian mixture model.

Corollary 2. For the symmetric two-component mixture model (17), there exist positive
universal constants c1, c2, c

′
1, c
′
2 such that when n ≥ cd log(1/δ) for some universal constant c,

with probability 1−δ the sequence of sample Polyak step size gradient descent iterates {θtn}t≥0

satisfies the following bounds:
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(i) Strong signal-to-noise regime: When ‖θ∗‖ ≥ C for some constant C and θ0
n ∈ B(θ∗, ‖θ‖

∗

4 ),
we have

min
1≤k≤t

‖θkn − θ∗‖ ≤ c1

√
d log(1/δ)

n
, for t ≥ c2 log

(
n

d log(1/δ)

)
,

(ii) Low signal-to-noise regime: When θ∗ = 0 and θ0
n ∈ B(θ∗, σ2 ) we find that

min
1≤k≤t

‖θkn − θ∗‖ ≤ c′1
(
d log(1/δ)

n

)1/4

, for t ≥ c′2 log

(
n

d log(1/δ)

)
.

A few comments with the results of Corollary 2 are in order. First, the Expectation-
Maximization (EM) algorithm [9] is a popular algorithm for solving the parameters of Gaus-
sian mixture models. In the symmetric two-component Gaussian mixture (17), the EM al-
gorithm is simply the gradient descent with step size being 1. In light of the results of
Proposition 1 and the results in [12], the EM iterates reach to the final statistical radius
O((d/n)1/4) after O(

√
n) number of iterations. The results in Corollary 2 indicate that the

Polyak step size gradient descent iterates reach to the final statistical radius with a much fewer
number of iterations, namely, O(log(n)), while each iteration of the Polyak step size gradient
descent has similar computational complexity as that of the EM algorithm. Therefore, the
Polyak step size gradient descent algorithm is more efficient than the EM algorithm for the
low-signal-to noise regime of symmetric two-component Gaussian mixture model. Second, the
statistical radius (d/n)1/4 that the Polyak iterates reach to in the low signal-to-noise regime
is optimal according to the work [18].

3.3 Mixed linear regression

Mixed linear regression is a generalization of vanilla linear regression model when we have
multiple mean parameters and each data can associate with one of these parameters. In
statistics, mixed linear regression is often referred to as mixture of regression [21], which is
also a special case of mixture of experts [19, 20] where the mixing weights are assumed to be
independent of the covariates.

Similar to mixture model in Section 3.2, we also aim to shed light on the convergence rate
of the Polyak step size gradient descent algorithm under the simple symmetric two-component
mixed linear regression setting. In particular, we assume that (X1, Y1), (X2, Y2), . . . , (Xn, Yn)
are i.i.d. samples from symmetric two components(

1

2
N (Y | − (θ∗)>X,σ2) +

1

2
N (Y |(θ∗)>X,σ2)

)
· N (X|0, Id), (25)

where σ > 0 is known variance and θ∗ is true but unknown parameter. To estimate θ∗, we fit
the data with the following symmetric two-component mixed linear regression:(

1

2
N (Y | − θ>X,σ2) +

1

2
N (Y |θ>X,σ2)

)
· N (X|0, Id). (26)

A common approach to obtain an estimator of θ∗ is maximum likelihood estimator, which is
given by:

min
θ∈Rd
L̃n(θ) := − 1

n

n∑
i=1

log

(
1

2
φ(Yi|θ>Xi, σ

2) +
1

2
φ(Yi| − θ>Xi, σ

2)

)
. (27)
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The corresponding population version of the optimization problem (27) is

min
θ∈Rd
L̃(θ) := −EX,Y

[
log

(
1

2
φ(Y |θ>X,σ2) +

1

2
φ(Y | − θ>X,σ2)

)]
, (28)

where the outer expectation is taken with respect to X ∼ N (0, Id) and Y |X ∼ 1
2N (Y | −

(θ∗)>X,σ2) + 1
2N (Y |(θ∗)>X,σ2).

Strong signal-to-noise regime: We first consider the setting when ‖θ∗‖ ≥ C where C is
some universal constant. Corollary 2 in [2] proves that for that strong signal-to-noise regime,
the population negative log-likelihood function L̃ is locally strongly convex and smooth when
θ ∈ B(θ∗, ‖θ

∗‖
32 ). Therefore, the Assumptions (W.1) and (W.2) are satisfied with the constant

α = 0. Furthermore, according to the result of Corollary 5 in [2], Assumption (W.3) is satisfied
with γ = 0 and for any radius r ≤ ‖θ∗‖/32.

Low signal-to-noise regime: We consider specifically the setting that θ∗ = 0. We prove in
Appendix A.3 that for all θ ∈ B(θ∗, σ√

20
), there exist universal constants c1 and c2 such that:

λmax(∇2L̃(θ)) ≤ c1‖θ − θ∗‖2, (29)

‖∇L̃(θ)‖ ≥ c2(L̃(θ)− L̃(θ∗))3/4. (30)

These results indicate that the Assumptions (W.1) and (W.2) are satisfied with the constant
α = 2. Furthermore, from the concentration result from Lemma 2 of [24], there exist universal
constants C1 and C2 such that as long as n ≥ C1d log(1/δ), we have for any r > 0

P

(
sup

θ∈B(θ∗,r)
‖∇L̃n(θ)−∇L̃(θ)‖ ≤ C2r

√
d log(1/δ)

n

)
≥ 1− δ.

It indicates that Assumption (W.3) is satisfied when γ = 1. Collecting all of the above results
under both the strong and low signal-to-noise regimes, we have the following bounds on the
statistical radii of the Polyak step size gradient descent iterates.

Corollary 3. For the symmetric two-component mixed linear regression (25), when n ≥
c ·d log(1/δ) for some universal constant c, there exist positive universal constants c1, c2, c

′
1, c
′
2

such that with probability 1−δ the sequence of sample Polyak step size gradient descent iterates
{θtn}t≥0 satisfies the following bounds:

(i) Strong signal-to-noise regime: When ‖θ∗‖ ≥ C for some constant C and θ0
n ∈ B(θ∗, ‖θ

∗‖
32 ),

we have

min
1≤k≤t

‖θkn − θ∗‖ ≤ c1

√
d log(1/δ)

n
, for t ≥ c2 log

(
n

d log(1/δ)

)
,

(ii) Low signal-to-noise regime: When θ∗ = 0 and θ0
n ∈ B(θ∗, σ√

20
) we find that

min
1≤k≤t

‖θkn − θ∗‖ ≤ c′1
(
d log(1/δ)

n

)1/4

, for t ≥ c′2 log

(
n

d log(1/δ)

)
.

Similar to the symmetric two-component Gaussian mixture, the EM algorithm for solving
the symmetric two-component mixed linear regression is simply the gradient descent with
step size one. The results of Corollary 3 and Proposition 1 indicate that the Polyak iterates
take much fewer number of iterations, i.e., O(log(n)) than that of the EM algorithm, which is
O(
√
n). It indicates that the Polyak step size gradient descent algorithm is computationally

more efficient than the EM algorithm for reaching to the optimal statistical radius O((d/n)1/4)
in the low signal-to-noise regime.
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Figure 1. The convergence rates of Polyak step size and fixed-step size gradient descent
iterates for solving the population losses of generalized linear model, Gaussian mixture model,
and mixed linear regression model in Section 3. The first row corresponds to the low signal-to-
noise regime θ∗ = (0, 0) while the second row is for the strong signal-to-noise regime θ∗ = (2, 1).

4 Experiments

In this section, we illustrate the behaviors of Polyak step size gradient descent iterates for
three statistical examples in Section 3. In Section 4.1, we compare the behaviors of population
Polyak step size gradient descent iterates and population fixed-step size gradient descent
iterates for solving the population loss functions of the given statistical models. In Section 4.2,
we compare the sample iterates from both (adaptive) Polyak step size and fixed-step size
gradient descent methods.

4.1 Population loss function

We first use Polyak step size and fixed-step size gradient descent algorithms to find the minima
of the population losses of three examples in Section 3. We consider these examples in d = 2
dimensions. For the strong signal-to-noise regime, we choose θ∗ = (2, 1). We compare the
convergence rates of Polyak step size and fixed-step size iterates to the optimal solution θ∗

of the population losses in Figure 1. In this figure, GLM, GMM, MLR respectively stand
for generalized linear model, Gaussian mixture model, and mixed linear regression. All the
plots in this figure are log-log scale plots. From this figure, the Polyak step size GD iterates
converge linearly to θ∗ while the fixed-step size gradient descent iterates converge sub-linearly
to θ∗. These experiment results are consistent with our theories in Section 3.

4.2 Sample loss function

Now, we carry out the experiments to compare the behaviors of Polyak step size and fixed-
step size gradient descent iterates for solving the sample loss functions in three examples in
Section 3. In these examples, since we only observe the data, we do not have access to the
optimal value of the sample loss functions. Therefore, we instead use the adaptive Polyak step
size gradient descent in Algorithm 1 for these examples. The strategy for choosing the lower
bound of the optimal value of the sample loss functions in that algorithm will be described
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Figure 2. The convergence rates of adaptive Polyak step size gradient descent and fixed-step
size gradient descent iterates for solving the sample loss function of the generalized linear model
when the link function g(r) = r2. The first row corresponds to the low signal-to-noise regime
θ∗ = (0, 0) while the second row is for the strong signal-to-noise regime θ∗ = (0.5, 1). For
the left images, we use log-log plots to illustrate the iteration complexities of these algorithms
to reach the final estimate. For the right images, log-log plots for the final statistical radius
versus the sample size are presented. For the low signal-to-noise regime, both the adaptive
Polyak step size and fixed-step size gradient descent iterates reach the statistical radius n−1/4.
The adaptive Polyak step size method takes much fewer number of iterations to reach the final
statistical radius than the fixed-step size method, namely, from log(n) number of iterations of
adaptive Polyak step size method to to

√
n number of iterations of fixed-step size method. For

the strong signal-to-noise regime, both adaptive Polyak and fixed-step size methods only take
logarithmic number of iterations to reach the statistical radius n−1/2.

in details in each example. In our experiments, the sample size n is chosen to be in the set
{1000, 2000, · · · , 100000}.

Generalized linear model: We first consider the generalized linear model in Section 3.1.
We specifically choose the link functions g(r) = r2 , i.e., p = 2. The data (Y1, X1), . . . , (Yn, Xn)
satisfy

Yi = (X>i θ
∗)2 + εi,

where X1, . . . , Xn
i.i.d.∼ N (0, I2) and ε1, . . . , εn

i.i.d.∼ N (0, 0.01). We choose θ∗ = (0, 0) for
the low signal-to-noise regime and θ∗ = (0.5, 1) for the strong signal-to-noise regime in our
experiments.

Since we do not have access to Ln(θ̂n) where θ̂n is the optimal solution of the sample loss
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Figure 3. Illustrations for the convergence rates of adaptive Polyak step size and the EM
algorithm (equivalently gradient descent algorithm with step size 1) for solving the sample
log-likelihood function of the symmetric two-component Gaussian mixtures. The first row
corresponds to the low signal-to-noise regime θ∗ = (0, 0) while the second row is for the strong
signal-to-noise regime θ∗ = (6, 6). The structures of the images are similar to those in Figure 2.
The images in the first row for low signal-to-noise regime show that the adaptive Polyak step
size iterates only need roughly log(n) number of iterations in comparison to

√
n number of

iterations of the EM algorithm to reach the final statistical radius n−1/4. The images in the
second row for strong signal-to-noise regime show that these optimization methods have similar
sample and iteration complexities.

function Ln in equation (9), we will consider its approximated value according to the adaptive
Polyak step size gradient descent algorithm in Algorithm 1. By concentration inequality with
the chi-squared random variables, the concentration of Ln(θ̂n) is at the order of O( 1√

n
) with

high probability. Therefore, we use c√
n

to approximate Ln(θ̂n), where c here is a parameter

to choose in the our experiment.

The updates from the adaptive Polyak step size gradient descent based on that approxi-
mation are given by:

θt+1
n = θtn −

Ln(θtn)− c√
n

‖∇Ln(θtn)‖2
∇Ln(θtn).

When implementing the adaptive Polyak step size gradient descent algorithm, we use binary
search to update the value of c periodically. In particular, when the algorithm is stuck at
some point, we decrease c; when it become very unstable, we increase c. For the fixed-step
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(a) (b)

(c) (d)

Figure 4. Plots characterizing the convergence rates of adaptive Polyak step size and EM
algorithm (equivalently gradient descent algorithm with step size 1) for solving the sample
log-likelihood function of the symmetric two-component mixed linear regression model. The
first row corresponds to the low signal-to-noise regime θ∗ = (0, 0) while the second row is for
the strong signal-to-noise regime θ∗ = (4, 3). From the images in the first row for low signal-
to-noise regime, the iteration complexity of the adaptive Polyak step size method is roughly
log(n) while that of the EM algorithm scales like

√
n to reach the final statistical radius n−1/4.

From the images in the second row for strong signal-to-noise regime, both these optimization
algorithms have sample complexity n−1/2 and iteration complexity log(n).

size gradient descent algorithm, we choose the step size to be 0.01.
The experiment results are shown in Figure 2. For the left images in that figure, we

use log-log plot to illustrate the iteration complexity of the adaptive Polyak step size and
fixed-step size gradient descent algorithms versus the sample size under the low signal-to-
noise setting θ∗ = (0, 0) (first row) and the strong signal-to-noise setting θ∗ = (0.5, 1) (second
row). When θ∗ = (0, 0), we observe that the number of iterations for the fixed-step size
gradient descent algorithm to reach the final statistical radius is at the order close to

√
n

while the iteration complexity for the adaptive Polyak step size gradient descent algorithm
is roughly log(n). On the other hand, when θ∗ = (0.5, 1), both the iteration complexities of
these algorithms scale like log(n). For the right images in Figure 2, we plot the final statistical
radii of the adaptive Polyak and fixed-step size gradient descent iterates versus the sample size
under different settings of θ∗. As being indicated in these images, the radius scales like n−1/4
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when θ∗ = (0, 0) while it is roughly n−1/2 when θ∗ = (0.5, 1). These results, along with our
comments about the adaptive Polyak step size gradient descent algorithm after Theorem 1,
confirm our theories in Section 3.1.

Mixture model: We now move to the symmetric two-component Gaussian mixture model
considered in Section 3.2. We set dimension d = 2, the variance σ = 1, θ∗ = (0, 0) for the
low signal-to-noise regime and θ∗ = (6, 6) for the strong signal-to-noise regime. To obtain an
estimation of θ∗, we maximize the log-likelihood in equation (18). We use c

n to approximate
the optimal value of sample log-likelihood function L̄n where c is some universal constant.
We also use binary search to adaptively update the value of the constant c when we run
the adaptive Polyak step size algorithm. We compare the performance of that algorithm
to the EM algorithm (equivalently gradient descent algorithm with step size 1) in Figure 3.
When θ∗ = (0, 0), the images in the first row of Figure 3 show that the adaptive Polyak step
size iterates only need roughly log(n) number of iterations in comparison to

√
n number of

iterations of the EM algorithm to reach the final statistical radius n−1/4. When θ∗ = (6, 6),
the images in the second row for strong signal-to-noise regime show that these optimization
methods have similar sample complexities n−1/2 and iteration complexities log(n). These
experiment results prove that the adaptive Polyak step size gradient descent algorithm is
computationally more efficient than the EM algorithm to reach the final estimate for the low
signal-to-noise regime, which confirms out theories in Section 3.2.

Mixed linear regression: Finally, we consider the two-component mixed linear regres-
sion example in Section 3.3. We consider θ∗ = (0, 0) for the low signal-to-noise regime and
θ∗ = (4, 3) for the strong signal-to-noise regime. We choose the variance σ = 1 in model (25).
Our goal is to maximize the log-likelihood in equation (27). Similar to the two-component
Gaussian mixture model, we use use c

n to approximate the optimal value of L̃n in the adaptive
Polyak step size gradient descent method where c is adaptively updated via the binary search.
We compare the adaptive Polyak step size algorithm to the EM algorithm (equivalently gra-
dient descent algorithm with step size 1) in Figure 4. When θ∗ = (4, 3), both optimization
algorithms reach the final statistical radius n−1/2 around θ∗ after log(n) number of iterations.
When θ∗ = (0, 0), the adaptive Polyak step size iterates reach the statistical radius n−1/4 after
log(n) number of iterations while the EM algorithm needs roughly

√
n number of iterations

to reach the same radius. These observations are consistent with our theories in Section 3.3.

5 Proofs

In this section, we provide the proofs for main results in Section 2.2.

5.1 Proof of Lemma 1

First, we notice that

‖θt+1 − θ∗‖2 − ‖θt − θ∗‖2 =
(f(θt)− f(θ∗))2

‖∇f(θt)‖2
− 2(f(θt)− f(θ∗))

‖∇f(θt)‖2
〈∇f(θt), θt − θ∗〉

=
f(θt)− f(θ∗)

‖∇f(θt)‖2
(
f(θt)− f(θ∗)− 2〈∇f(θt), θt − θ∗〉

)
≤ −(f(θt)− f(θ∗))2

‖∇f(θt)‖2
≤ 0
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where the inequality is due to the convexity of the population loss function f . This result
indicates that the sequence {‖θt − θ∗‖}t≥0 is monotonically decreasing and thus θt ∈ B(θ∗, ρ)
for all t ≥ 0 as long as θ1 ∈ B(θ∗, ρ). Furthermore, we find that

‖θt+1 − θ∗‖2 − ‖θt − θ∗‖2 ≤ −(f(θt)− f(θ∗))2

‖∇f(θt)‖2
≤− f(θt)− f(θ∗)

2c1‖θt − θ∗‖α

≤− cα+2
2

2c1(α+ 2)α+2
‖θt − θ∗‖2,

where the second inequality is based on the fact that f(θt) − f(θ∗) ≥ ‖∇f(θt)‖2
2c1‖θt−θ∗‖α which can

be recovered from Lemma 3.5 in [5] (also stated in Lemma 5) and Assumption (W.1), and
the third inequality is from Lemma 3. The above inequality is equivalent to

‖θt+1 − θ∗‖2 ≤
(

1− cα+2
2

2c1(α+ 2)α+2

)
‖θt − θ∗‖2. (31)

We can further see that for any θ ∈ B(θ∗, ρ)

‖θ − θ∗‖ ≤ α+ 2

c2
(f(θ)− f(θ∗))

1
α+2 ≤ α+ 2

c2
·
(c1

2

) 1
α+2 ‖θ − θ∗‖,

which means
(

c2
α+2

)α+2
≤ c1

2 and
cα+2
2

2c1(α+2)α+2 ≤ 1
4 . Thus, the contraction coefficient 3

4 ≤

1− cα+2
2

2c1(α+2)α+2 < 1, which means that it is positive and strictly less than 1. By repeating the

inequality (31), we eventually have the following inequality:

‖θt+1 − θ∗‖2 ≤
(

1− cα+2
2

2c1(α+ 2)α+2

)t
‖θ0 − θ∗‖2.

As a consequence, we reach the conclusion of Lemma 1.

5.2 Proof of Lemma 2

Recall that, from Assumptions (W.1), (W.2) and Lemma 3, as long as θ ∈ B(θ∗, ρ) we have
the following relations:

f(θ)− f(θ)∗ ≤c1

2
‖θ − θ∗‖α+2, (32)

c2

(
c2

α+ 2
‖θ − θ∗‖

)α+1

≤‖∇f(θ)‖ ≤ c1‖θ − θ∗‖α+1. (33)

From the definitions of the population and sample Polyak operators Fn and F in equations (5)
and (6), we make the following decomposition on ‖Fn(θ)− F (θ)‖:

‖Fn(θ)− F (θ)‖ =

∥∥∥∥∥fn(θ)− fn(θ̂n)

‖∇fn(θ)‖2
∇fn(θ)− f(θ)− f(θ∗)

‖∇f(θ)‖2
∇f(θ)

∥∥∥∥∥
≤

∥∥∥∥∥
(
fn(θ)− fn(θ̂n)

‖∇fn(θ)‖2
− f(θ)− f(θ∗)

‖∇f(θ)‖2

)
∇fn(θ)

∥∥∥∥∥
+

∥∥∥∥f(θ)− f(θ∗)

‖∇f(θ)‖2
(∇f(θ)−∇fn(θ))

∥∥∥∥
:=T1 + T2. (34)
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Upper bound on T2: We first deal with the second term T2. With Assumption (W.3),
with probability 1− δ we have that∥∥∥∥f(θ)− f(θ∗)

‖∇f(θ)‖2
(∇f(θ)−∇fn(θ))

∥∥∥∥ =
f(θ)− f(θ∗)

‖∇f(θ)‖2
‖∇f(θ)−∇fn(θ)‖

≤c3r
γε(n, δ)

c2
2

(f(θ)− f(θ∗))
2

α+2
−1

for all θ ∈ B(θ∗, r)\B(θ∗, rn) where r < ρ. Combining the above inequality with the inequal-
ity (32), we obtain∥∥∥∥f(θ)− f(θ∗)

‖∇f(θ)‖2
(∇f(θ)−∇fn(θ))

∥∥∥∥ ≤ c3

c2
2

·
(c1

2

) 2
α+2
−1
rγ−αε(n, δ) (35)

for all θ ∈ B(θ∗, r)\B(θ∗, rn) where r < ρ.

Upper bound on T1: For the first term T1, we have that∥∥∥∥∥
(
fn(θ)− fn(θ̂n)

‖∇fn(θ)‖2
− f(θ)− f(θ∗)

‖∇f(θ)‖2

)
∇fn(θ)

∥∥∥∥∥
≤

∣∣∣(fn(θ)− fn(θ̂n))‖∇f(θ)‖2 − (f(θ)− f(θ∗))‖∇fn(θ)‖2
∣∣∣

‖∇fn(θ)‖‖∇f(θ)‖2

≤

∣∣∣(fn(θ)− fn(θ̂n)− f(θ) + f(θ∗))‖∇f(θ)‖2
∣∣∣+ (f(θ)− f(θ∗))

∣∣‖∇fn(θ)‖2 − ‖∇f(θ)‖2
∣∣

(‖∇f(θ)‖ − c3rγε(n, δ))‖∇f(θ)‖2

≤ |fn(θ)− fn(θ̂n)− f(θ) + f(θ∗)|‖∇f(θ)‖2 + 2(f(θ)− f(θ∗))‖∇f(θ)‖c3r
γε(n, δ)

(‖∇f(θ)‖ − c3rγε(n, δ))‖∇f(θ)‖2

+
(f(θ)− f(θ∗))c2

3r
2γε2(n, δ)

(‖∇f(θ)‖ − c3rγε(n, δ))‖∇f(θ)‖2
. (36)

To bound the RHS of equation (36), we need to upper bound

fn(θ)− f(θ)− (fn(θ̂n)− f(θ∗))

= fn(θ)− fn(θ∗)− (f(θ)− f(θ∗))− (fn(θ̂n)− fn(θ∗))

Indeed, from Assumption (W.3), with probability 1− δ we have that

fn(θ)− fn(θ∗)− (f(θ)− f(θ∗))

≤
∫ 1

0
‖∇fn(θ∗ + t(θ − θ∗))−∇f(θ∗ + t(θ − θ∗))‖dt

≤ c3r
γ+1ε(n, δ)

γ + 1
(37)

for any θ ∈ B(θ∗, r). Furthermore, we find that

|fn(θ̂n)− fn(θ∗)| ≤ |fn(θ̂n)− f(θ̂n)− fn(θ∗) + f(θ∗)|+ |f(θ̂n)− f(θ∗)|
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≤ c3r
γ+1ε(n, δ)

γ + 1
+
c1‖θ̂n − θ∗‖α+2

2
, (38)

where the final inequality is due to inequalities (37) and (32). Plugging the bounds (37)
and (38) into (36), we find that∥∥∥∥(fn(θ)− fn(θ∗n)

‖∇fn(θ)‖2
− f(θ)− f(θ∗)

‖∇f(θ)‖2

)
∇fn(θ)

∥∥∥∥
≤

(
2c3rγ+1ε(n,δ)

γ+1 + c1‖θ̂n−θ∗‖α+2

2

)
c2

1r
2α+2 + c2

1c3r
2α+3+γε(n, δ) +

c1c23
2 r2γ+α+2ε2(n, δ)

c2
2

(
c2r

(α+2)

)2α+2
(
c2

(
c2r

(α+2)

)α+1
− c3rγε(n, δ)

) .

As r ≥ C̄ε(n, δ)
1

α+1−γ where C̄ =
(
C·c3(α+2)α+1

cα+2
2

) 1
α+1−γ

, we know c3r
γε(n, δ) ≤ c2

C

(
c2r
α+2

)α+1
,

and we can simplify this term to∥∥∥∥(fn(θ)− fn(θ∗n)

‖∇fn(θ)‖2
− f(θ)− f(θ∗)

‖∇f(θ)‖2

)
∇fn(θ)

∥∥∥∥
≤ C

C − 1

(
2c2

1c3(α+ 2)3α+3

(γ + 1)c3α+6
2

rγ−αε(n, δ) +
c3

1(α+ 2)3α+3

2(γ + 1)c3α+6
2

(
Cc3(α+ 2)3α+3

cα+2
2

ε(n, δ)

) α+2
α+1−γ

r−α−1

+
c2

1c3(α+ 2)3α+3

c3α+6
2

rγ−αε(n, δ) +
c1c

2
3(α+ 2)3α+3

2c3α+6
2

r2γ−2α−1ε2(n, δ)

)
≤ C

C − 1

(
2c2

1c3(α+ 2)3α+3

(γ + 1)c3α+6
2

rγ−αε(n, δ) +
Cc3

1c3(α+ 2)4α+4

2(γ + 1)c4α+8
2

rγ−αε(n, δ)

+
c2

1c3(α+ 2)3α+3

c3α+6
2

rγ−αε(n, δ) + +
c1c3(α+ 2)2α+2

2c2α+4
2 C

rγ−αε(n, δ)

)
, (39)

for any θ ∈ B(θ∗, r)\B(θ∗, rn). Combining inequalities (35) and (39) and taking the constant
c4 accordingly, we can obtain the desired result.

5.3 Proof of Theorem 1

Recall that for the radius of rn in Lemma 2, we denote rn = C̄ · ε(n, δ)
1

α+1−γ . Without loss

of generality, we assume ‖θkn − θ∗‖ >
(
c4C̄γ−α

1−κ + 1
)
rn holds for all k < T where c4 is the

universal constant in Lemma 2, T := C log(1/ε(n, δ) and C is some constant that will be
chosen later; otherwise the conclusion of the theorem already holds.

We first show that, θkn ∈ B(θ∗, ρ)\B(θ∗, rn) for all k < T . The inequality ‖θkn− θ∗‖ > rn is
direct from the hypothesis. Therefore, we only need to prove that ‖θkn − θ∗‖ ≤ ρ. Indeed, we
have

‖θk+1
n − θ∗‖ =‖Fn(θkn)− θ∗‖

≤‖Fn(θkn)− F (θkn)‖+ ‖F (θkn)− θ∗‖
≤ sup
θ∈B(θ∗,ρ)\B(θ∗,rn)

‖Fn(θ)− F (θ)‖+ ‖F (θkn)− θ∗‖

(i)

≤c4ρ
γ−αε(n, δ) + κ‖θkn − θ∗‖
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(ii)

≤ c4C̄
γ−αε(n, δ)

1
α+1−γ + κρ

(iii)

≤ ρ

with probability 1 − δ where the inequality (i) is due to Lemma 2 and c4 is the univer-

sal constant in that lemma; the inequality (ii) is due to ρ > rn = C̄ε(n, δ)
1

α+1−γ and
γ ≤ α; the inequality (iii) is due to the assumption that n is sufficiently large such that

c4C̄
γ−αε(n, δ)

1
α+1−γ ≤ (1−κ)ρ. As a consequence, we can guarantee that θkn ∈ B(θ∗, ρ)\B(θ∗, rn)

for all k < T .
Now, we would like to show that ‖θTn−θ∗‖ ≤ 2−κ

1−κrn. Indeed, following the earlier argument,
we find that

‖θTn − θ∗‖ ≤‖Fn(θT−1
n )− F (θT−1

n )‖+ ‖F (θT−1
n )− θ∗‖

≤ sup
θ∈B(θ∗,ρ)\B(θ∗,rn)

‖Fn(θ)− F (θ)‖+ κ‖θT−1
n − θ∗‖

≤c4 · rγ−αn ε(n, δ) + κ‖θT−1
n − θ∗‖

=c4C̄
γ−α · ε(n, δ)

1
α+1−γ + κ‖θT−1

n − θ∗‖.

By repeating the above argument T times, we finally obtain that

‖θTn − θ∗‖ ≤c4C̄
γ−α · ε(n, δ)

1
α+1−γ

(
T−1∑
t=0

κt

)
+ κT ‖θ0

n − θ∗‖

≤c4C̄
γ−α

1− κ
ε(n, δ)

1
α+1−γ + κTρ.

By choosing T such that κTρ ≤ ε(n, δ)
1

α+1−γ , which is equivalent to T ≥
log(ρ)+ 1

α+1−γ log(1/ε(n,δ))

log(1/κ) ,
we can guarantee that

‖θTn − θ∗‖ ≤
(
c4C̄

γ−α

1− κ
+ 1

)
ε(n, δ)

1
α+1−γ .

As a consequence, we obtain the conclusion of the theorem.

6 Discussion

In this paper, we have provided statistical and computational complexities of the Polyak step
size gradient descent iterates under the generalized smoothness and  Lojasiewicz property of
the population loss function as well as the uniform concentration bound between the gradients
of the population and sample loss functions. Our results indicate that the Polyak step size
iterates only take a logarithmic number of iterations to reach a final statistical radius, which
is much fewer than the polynomial number of iterations of the fixed-step size gradient descent
iterates to reach the same final statistical radius, when the population loss function is not
locally strongly convex. Given that the complexity per iteration of the Polyak step size and
fixed-step size gradient descent methods are similar, these results indicate that the Polyak
step size gradient descent method is computationally more efficient than the fixed-step size
gradient descent method in terms of the number of sample size when the dimension is fixed.
Finally, we illustrate our findings under three statistical models: generalized linear model,
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mixture model, and mixed linear regression model. A few natural future questions arising
from our work.

First, our general theory for the convergence rate of the Polyak step size gradient descent
iterates relies on the assumptions that the constants of the generalized smoothness and the
generalized  Lojasiewicz condition are similar. While this assumption is natural in several
statistical models, there are also certain instances of statistical models that this requirement
does not hold, such as general over-specified low rank matrix factorization problem, and factor
analysis. Therefore, extending our theory of the Polyak step size gradient descent algorithm
to the settings when the constants in these assumptions are not similar is of interest.

Second, our results are restricted to the settings of i.i.d. data in which we can define the
corresponding population loss function of the sample loss function. In dependent settings,
such as time series data, since the notion of population loss function is not well-defined, it is
of interest to develop a new framework beyond the population to sample framework in the
current paper to analyze the behavior of Polyak step size gradient descent method for solving
the optimal solution of the sample loss function.

Finally, our results shed light on the favorable performance of adaptive gradient methods
for dealing with the singular settings of the statistical models, namely, those settings when the
Fisher information matrix around the true parameter is degenerate or close to be degenerate,
which leads to the slow convergence rates of estimating the true parameters. For the future
work, it is of practical interest to extend our general theoretical studies under these settings
to other popular adaptive gradient descent methods, such as Adagrad [10] and Adam [22],
that have been observed to have favorable performance in several machine learning and deep
learning models.

7 Acknowledgements

This work was partially supported by the NSF IFML 2019844 award and research gifts by
UT Austin ML grant to NH, and by NSF awards 1564000 and 1934932 to SS.

A Proofs of remaining key results

In this appendix, we provide proofs for the generalized smoothness and PL conditions of
the generalized linear model, over-specified mixture model, and over-specified mixed linear
regression model in the main text.

A.1 Generalized linear model

We first prove the local strong convexity (11) and uniform concentration bound (12) under
the strong signal-to-noise regime in Section A.1.1. Then, we prove the generalized  Lojasiewicz
property (16) of the population loss L for the low signal-to-noise regime in Section A.1.2.

A.1.1 Strong signal-to-noise regime

Local strong convexity: We first prove the local strong convexity in equation (11). Recall
that, we have

L(θ) =
1

2

(
E
[(

(X>θ∗)p − (X>θ)p
)2
]

+ σ2

)
,
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where the outer expectation is taken with respect to X ∼ N (0, Id). Hence, L is a polynomial
function with degree at most 2p and coefficients bounded (as for Gaussian we have any finite
order moment bounded). So L should be smooth around the optima. Furthermore, when
‖θ − θ∗‖ is small enough we have that(

(X>θ)p − (X>θ∗)p
)2

= p(X>θ∗)p−1X>(θ − θ∗) + o(‖θ − θ∗‖).

Thus, we have that

L(θ) =
1

2

(
E
[(

(X>θ∗)p − (X>θ)p
)2
]

+ σ2

)
=
p2

2
(θ − θ∗)>E

[
X>(X>θ∗)2p−2X

]
(θ − θ∗) +

σ2

2
+ o(‖θ − θ∗‖2).

As 2p − 2 is even, it is clear that we have E
[
X>(X>θ∗)2p−2X

]
is positive definite matrix,

which shows L is locally strongly convex function (by manipulating ‖θ−θ∗‖ and the constant).

Uniform concentration bound: For the uniform concentration of the gradient in equa-
tion (12), direct calculations show that

∇Ln(θ) =− p

n

n∑
i=1

(
Yi − (X>i θ)

p
)

(X>i θ)
p−1Xi,

∇L(θ) =− p · E
[(

(X>θ∗)p − (X>θ)p
)

(X>θ)p−1X
]
.

Hence, with triangle inequality, we have that

‖∇Ln(θ)−∇L(θ)‖ ≤

∥∥∥∥∥
(

1

n

n∑
i=1

(Yi − (X>i θ
∗)p)(X>i θ)

p−1Xi

)∥∥∥∥∥
+

∥∥∥∥∥
(

1

n

n∑
i=1

(X>i θ
∗)p(X>i θ)

p−1Xi − E[(X>θ∗)p(X>θ)p−1X]

)∥∥∥∥∥
+

∥∥∥∥∥
(

1

n

n∑
i=1

(X>i θ)
2p−1Xi − E[(X>θ)2p−1X]

)∥∥∥∥∥
:= T1 + T2 + T3.

The first and the third terms T1 and T3 can be upper bounded via the identical method
introduced in Section A.2 in [29] and we only need to change the radius from r to r + ‖θ∗‖
when θ ∈ B(θ∗, r), namely, we have the following bounds:

T1 ≤ c1(r + ‖θ∗‖)p−1

(√
d+ log(1/δ)

n
+

1

n

(
d+ log

(n
δ

))p+1
)
, (40)

T3 ≤ c2(r + ‖θ∗‖)2p−1

(√
d+ log(1/δ)

n
+

1

n

(
d+ log

(n
δ

))2p+1
)

(41)

with probability 1− δ where c1 and c2 are some universal constants. Therefore, it is sufficient
to focus on the second term T2. Without the loss of generality, we assume ‖θ‖ = 1, and the
results can be generalized to other norm of θ by rescaling. First, we know that∥∥∥∥∥
(

1

n

n∑
i=1

(X>i θ
∗)p(X>i θ)

p−1Xi − E[(X>θ∗)p(X>θ)p−1X]

)∥∥∥∥∥
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= sup
u∈Sd−1

∣∣∣∣∣
(

1

n

n∑
i=1

(X>i θ
∗)p(X>i θ)

p−1X>i u− E[(X>θ∗)p(X>θ)p−1X>u]

)∣∣∣∣∣ ,
where Sd−1 is the unit norm Euclidean sphere in Rd. With standard discretization arguments
(e.g., Chapter 6 in [36]), let U be a 1/8-cover of Sd−1 under ‖ · ‖2 whose cardinality can be
upper bounded by 17d, we know

sup
u∈Sd−1

∣∣∣∣∣
(

1

n

n∑
i=1

(X>i θ
∗)p(X>i θ)

p−1X>i u− E[(X>θ∗)p(X>θ)p−1X>u]

)∣∣∣∣∣
≤ 2 sup

u∈U

∣∣∣∣∣
(

1

n

n∑
i=1

(X>i θ
∗)p(X>i θ)

p−1X>i u− E[(X>θ∗)p(X>θ)p−1X>u]

)∣∣∣∣∣ .
Hence we can focus on the upper bound with a fixed u where ‖u‖ = 1. We then apply a
symmetrization argument (e.g., Theorem 4.10 in [36]), we have that, for any even integer q,

E

[∣∣∣∣∣
(

1

n

n∑
i=1

(X>i θ
∗)p(X>i θ)

p−1X>i u− E[(X>θ∗)p(X>θ)p−1X>u]

)∣∣∣∣∣
q]

≤ E

[∣∣∣∣∣
(

2

n

n∑
i=1

εi(X
>
i θ
∗)p(X>i θ)

p−1X>i u

)∣∣∣∣∣
q]
,

where {εi}i∈[n] is a set of i.i.d. Rademacher random variables. We then follow the proof
strategy used in Section A.2 in [29]. For a compact set Ω, define

R(Ω) := sup
θ∈Ω,p′∈[1,p]

∣∣∣∣∣ 2n
n∑
i=1

εi(X
>
i θ
∗)p(X>i θ)

p′−1X>i u

∣∣∣∣∣ ,
and N (t) is a t-cover of Sd−1 under ‖ · ‖2. Then,

R(Sd−1) = sup
θ∈Sd−1,p′∈[1,p]

∣∣∣∣∣ 2n
n∑
i=1

εi(X
>
i θ
∗)p(X>i θ)

p′−1X>i u

∣∣∣∣∣
≤ sup
θt∈N (t),‖η‖≤t,p′∈[1,p]

∣∣∣∣∣ 2n
n∑
i=1

εi(X
>
i θ
∗)p(X>i (θt + η))p

′−1X>i u

∣∣∣∣∣
≤ sup
θt∈N (t),p′∈[1,p]

∣∣∣∣∣ 4n
n∑
i=1

εi(X
>
i θ
∗)p(X>i θt)

p′−1X>i u

∣∣∣∣∣
+ max
p′∈[1,p]

3p
′−1

∣∣∣∣∣ 2n
n∑
i=1

εi(X
>
i θ
∗)p(X>i η)p

′−1X>i u

∣∣∣∣∣
≤2R(N (t)) + 3p

′−1tR(Sd−1).

Take t = 3−p, we have that R(Sd−1) ≤ 3R(N (3−p)). We then move to the upper bound of
R(N (3−p)). With the union bound, for any q ≥ 1 we have that

sup
θ∈Sd−1,p′∈[1,p]

E

[∣∣∣∣∣ 2n
n∑
i=1

εi(X
>
i θ
∗)p(X>i θ)

p′−1X>i u

∣∣∣∣∣
q]
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= sup
θ∈Sd−1,p′∈[1,p]

∫ ∞
0

P

(∣∣∣∣∣ 2n
n∑
i=1

εi(X
>
i θ
∗)p(X>i θ)

p′−1X>i u

∣∣∣∣∣
q

≥ ε

)
dε

≥ sup
θ∈N (3−p),p′∈[1,p]

∫ ∞
0

P

(∣∣∣∣∣ 2n
n∑
i=1

εi(X
>
i θ
∗)p(X>i θ)

p′−1X>i u

∣∣∣∣∣
q

≥ ε

)
dε

≥
supp′∈[1,p]

∑
θ∈N (3−p)

∫∞
0 P

(∣∣∣ 2
n

∑n
i=1 εi(X

>
i θ
∗)p(X>i θ)

p′−1X>i u
∣∣∣q ≥ ε) dε

|N (3−p)|

≥
supp′∈[1,p]

∫∞
0 P

(
supθ∈N (3−p)

∣∣∣ 2
n

∑n
i=1 εi(X

>
i θ
∗)p(X>i θ)

p′−1X>i u
∣∣∣q ≥ ε) dε

|N (3−p)|

≥

∫∞
0 P

(
supθ∈N (3−p),p′∈[1,p]

∣∣∣ 2
n

∑n
i=1 εi(X

>
i θ
∗)p(X>i θ)

p′−1X>i u
∣∣∣q ≥ ε) dε

p|N (3−p)|

=
E[Rq(N (3−p))]

p|N (3−p)|
.

Hence, it’s sufficient to consider E
[∣∣∣ 2
n

∑n
i=1 εi(X

>
i θ
∗)p(X>i θ)

p′−1X>i u
∣∣∣q]. We apply Khint-

chine’s inequality [4], which guarantees that there is an universal constant C, such that for
all p′ ∈ [1, p], we have

E

[∣∣∣∣∣ 2n
n∑
i=1

εi(X
>
i θ
∗)p(X>i θ)

p′−1X>i u

∣∣∣∣∣
q]
≤ E

(Cq
n2

n∑
i=1

(X>i θ
∗)2p(X>i θ)

2(p′−1)(X>i u)2

)q/2
To further upper bound the right hand side of the above equation, we consider the large
deviation property of random variable (X>i θ

∗)2p(X>i θ)
2(p′−1)(X>i u)2. It’s straightforward to

show that

E
[
(X>i θ

∗)2p(X>i θ)
2(p′−1)(X>i u)2

]
≤(2(p+ p′))(p+p′),

E
[(

(X>i θ
∗)2p(X>i θ)

2(p′−1)(X>i u)2
)q/2]

≤(2(p+ p′)q)(p+p′)q.

With Lemma 2 in [29], with probability at least 1− δ, we have∣∣∣∣∣ 1n
n∑
i=1

(
(X>i θ

∗)2p(X>i θ)
2(p′−1)(X>i u)2

)q/2
− E

[
(X>i θ

∗)2p(X>i θ)
2(p′−1)(X>i u)2

]∣∣∣∣∣
≤ (8(p+ p′))(p+p′)

√
log 4/δ

n
+ (2(p+ p′) log(n/δ))(p+p′) log 4/δ

n
.

Hence, we have that

E

( 1

n

n∑
i=1

(X>i θ
∗)2p(X>i θ)

2(p′−1)(X>i u)2

)q/2
≤2q/2

(
E
[
(X>i θ

∗)2p(X>i θ)
2(p′−1)(X>i u)2

])q/2
+ 2q/2E

∣∣∣∣∣
n∑
i=1

(
(X>i θ

∗)2p(X>i θ)
2(p′−1)(X>i u)2

)q/2
− E

[
(X>i θ

∗)2p(X>i θ)
2(p′−1)(X>i u)2

]∣∣∣∣∣
q/2

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≤(4(p+ p′))(p+p′)q

+ 2q/2
∫ ∞

0
P

[∣∣∣∣∣
n∑
i=1

(
(X>i θ

∗)2p(X>i θ)
2(p′−1)(X>i u)2

)q/2
− E

[
(X>i θ

∗)2p(X>i θ)
2(p′−1)(X>i u)2

]∣∣∣∣∣ ≥ λ
]
dλq/2

≤(4(p+ p′))(p+p′)q + 2q/2q(p+ p′ + 1)

·
∫ 1

0
δ

(
(8(p+ p′))(p+p′)

√
log 4/δ

n
+

(2(p+ p′) log(n/δ))(p+p′+1)

n

)q/2
d log(n/δ)

≤(4(p+ p′))(p+p′)q + C ′(p+ p′)q
(

(32(p+ p′))(p+p′)q/2n−q/4)Γ(q/4)

+(8(p+ p′))(p+p′+1)q/2n−q/2
(

(log n)(p′+p+1)q/2 + Γ((p+ p′ + 1)q/2)
))

,

where C ′ is a universal constant and Γ(·) is the Gamma function. Notice that

E

[∣∣∣∣∣
(

1

n

n∑
i=1

(X>i θ
∗)p(X>i θ)

pX>i u− E[(X>θ∗)p(X>θ)X>u]

)∣∣∣∣∣
q]

≤ E[Rq(Sd−1)]

≤ 3qE[R(N (3−p))]

≤ 3qp|N (3−p)| sup
θ∈Sd−1p′∈[1,p]

E

[∣∣∣∣∣ 2n
n∑
i=1

εi(X
>
i θ
∗)p(X>i θ)

p′−1X>i u

∣∣∣∣∣
q]

≤ 3qp(3p+1)d
(
Cq

n

)q/2 (
(16p)2pq + 2C ′pq (64p)pq n−q/4Γ(q/4)

+(16p)(2p+1)q/2n−q/2
(

(log n)(2p+1)q/2 + Γ((2p+ 1)q/2)
))

,

for any u ∈ U . Eventually, with union bound, we obtain(
E

[∥∥∥∥∥
(

1

n

n∑
i=1

(X>i θ
∗)p(X>i θ)

pXi − E[(X>θ∗)p(X>θ)X]

)∥∥∥∥∥
q])1/q

≤ 2

(
E

[
sup
u∈U

∣∣∣∣∣
(

1

n

n∑
i=1

(X>i θ
∗)p(X>i θ)

pX>i u− E[(X>θ∗)p(X>θ)X>u]

)∣∣∣∣∣
q])1/q

≤ 2

E

∑
u∈[U ]

∣∣∣∣∣
(

1

n

n∑
i=1

(X>i θ
∗)p(X>i θ)

pX>i u− E[(X>θ∗)p(X>θ)X>u]

)∣∣∣∣∣
q
1/q

≤ 2 · 17d/q sup
u∈[U ]

E

[∣∣∣∣∣
(

1

n

n∑
i=1

(X>i θ
∗)p(X>i θ)

pX>i u− E[(X>θ∗)p(X>θ)X>u]

)∣∣∣∣∣
q]1/q

≤ 6 · (17 · 3p+1)d/q

[√
Cpq

n
+

(
Cpq

n

)3/4

+
Cp
n

(log n+ q)(2p+1)/2

]
,

where Cp is a universal constant that only depends on p. Take q = d(p + 3) + log(1/δ) and
use the Markov inequality, we get the following bound on the second term T2 with probability
1− δ:

T2 ≤ c3(r + ‖θ∗‖)p−1

(√
d+ log(1/δ)

n
+

1

n

(
d+ log

(n
δ

)) 2p+1
2

)
. (42)
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Combining the bounds from equations (40), (42), and (41), as long as n ≥ C1(d log(d/δ))2p

we have

sup
θ∈B(θ∗,r)

‖∇Ln(θ)−∇L(θ)‖ ≤ C2(r + ‖θ∗‖)2p−1

√
d+ log(1/δ)

n

where C1, C2 are some universal constants. Since ‖θ∗‖ is bounded away from 0, the above
bound concludes our claim in equation (12).

A.1.2 Low signal-to-noise regime

Now, we prove the generalized  Lojasiewicz property (16) of the population loss L for the low
signal-to-noise regime. Recall that, we assume θ∗ = 0. Now, we will demonstrate that for all
θ ∈ B(θ∗, ρ) for some ρ > 0, we have

‖∇L(θ)‖ ≥ c2(L(θ)− L(θ∗))
1− 1

2p .

For the form of L(θ), we have that

∇L(θ) = 2p(2p− 1)!!(θ − θ∗)‖θ − θ∗‖2p−2,

‖∇L(θ)‖ = 2p(2p− 1)!!‖θ − θ∗‖2p−1.

Also, due to equation (13) we obtain that

(L(θ)− L(θ∗))
1− 1

2p =

(
(2p− 1)!!‖θ − θ∗‖2p

2

)1− 1
2p

=

(
(2p− 1)!!

2

)1− 1
2p

‖θ − θ∗‖2p−1.

Thus, the Assumption (W.2) follows by selecting the constant c2 ≤ 2p(2p−1)!!(
(2p−1)!!

2

)1− 1
2p

.

Next, with direct computation, we have

∇2L(θ) = (2p(2p− 1)!!)‖θ − θ∗‖2p−4
(
‖θ − θ∗‖2I + (2p− 4)(θ − θ∗)(θ − θ∗)>

)
.

Notice that, (θ−θ∗)(θ−θ∗)> is a rank-1 matrix, so the maximum eigenvalue of ‖θ−θ∗‖2I+(2p−
4)(θ−θ∗)(θ−θ∗)> is (2p−3)‖θ−θ∗‖2, hence λmax(∇2L(θ)) = 2p(2p−3)(2p−1)!!‖θ−θ∗‖2p−2,
which confirms our claim of Assumption (W.1).

A.2 Over-specified mixture model

We first present a proof of claim (23) about the generalized PL property of the population
log-likelihood function L̄ of low-signal-to-noise symmetric two-component Gaussian mixture
model in Appendix A.2.1. Then, in Appendix A.2.2, we present a proof of claim (22) about
the local smoothness of L̄.
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A.2.1 Proof of claim (23)

Recall that θ∗ = 0 and the population log-likelihood function is given by:

L̄(θ) = −EX
[
log

(
1

2
φ(X|θ, σ2Id) +

1

2
φ(X| − θ, σ2Id)

)]
,

where the outer expectation is taken with respect to X ∼ N (θ∗, Id). Using Z to absorb the
constant that is independent of θ, we have

L̄(θ) =
‖θ‖2

2σ2
− EX

[
log

(
exp

(
−X

>θ

σ2

)
+ exp

(
X>θ

σ2

))]
+ Z.

It indicates that

L̄(θ)− L̄(θ∗) =
‖θ‖2

2σ2
− EX

[
log

(
exp

(
−X

>θ

σ2

)
+ exp

(
X>θ

σ2

))]
+ Z.

To simplify the calculation, we perform a change of coordinates via an orthogonal matrix R
such that Rθ = ‖θ‖e1 where e1 denotes the first canonical basis in dimension d. By denoting
V = RX/σ, we have V = (V1, . . . , Vd) ∼ N (0, Id). Therefore, we can rewrite the above
equation as follows:

L̄(θ)− L̄(θ∗) =
‖θ‖2

2σ2
− EV1

[
log

(
exp

(
−V1‖θ‖

σ

)
+ exp

(
V1‖θ‖
σ

))]
+ Z,

where the outer expectation is taken with respect to V1 ∼ N (0, 1). By using the basic
inequality exp(−x) + exp(x) ≥ 2 + x2 for all x ∈ R, we find that

L̄(θ)− L̄(θ∗) ≤ ‖θ‖
2

2σ2
− EV1

[
log

(
1 +

V 2
1 ‖θ‖2

2σ2

)]
,

Applying further the inequality log(1 + x) ≥ x− x2

2 for all x ≥ 0, we have

L̄(θ)− L̄(θ∗) ≤ 3‖θ‖4

8σ4
. (43)

Now, we proceed to lower bound ‖∇L̄(θ)‖. Direct calculation leads to

∇L̄(θ) =
1

σ2

(
θ − EX

(
X tanh(

X>θ

σ2
)

))
.

Direct application of the triangle inequality with ‖.‖ norm indicates that

‖∇L̄(θ)‖ ≥ 1

σ2

(
‖θ‖ −

∥∥∥∥EX (X tanh(
X>θ

σ2
)

)∥∥∥∥) .
Using the similar change of coordinates as we did earlier, we obtain that∥∥∥∥EX (X tanh(

X>θ

σ2

)∥∥∥∥ = σEV1
(
V1 tanh(

V1‖θ‖
σ

)

)
,
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where the outer expectation is taken with respect to V1 ∼ N (0, 1). An application of the

inequality x tanh(x) ≤ x2 − x4

3 + 2x6

15 for all x ∈ R leads to

σEV1
(
V1 tanh(

V1‖θ‖
σ

)

)
≤ σ2

‖θ‖
EV1

(
V 2

1 ‖θ‖2

σ2
− V 4

1 ‖θ‖4

3σ4
+

2V 6
1 ‖θ‖6

15σ6

)
= ‖θ‖ − ‖θ‖

3

σ2
+

2‖θ‖5

σ4
.

As long as ‖θ‖ ≤ σ
2 , we have 2‖θ‖5/σ4 ≤ ‖θ‖3/(2σ2). Putting the above inequalities together,

we find that

‖∇L̄(θ)‖ ≥ ‖θ‖
3

2σ4
(44)

when ‖θ‖ ≤ σ
2 . Combining the results of equations (43) and (44), we obtain

‖∇L̄(θ)‖ ≥ c2

(
L̄(θ)− L̄(θ∗)

) 3
4

when ‖θ‖ ≤ σ
2 where c2 is some universal constant. Therefore, we obtain the conclusion of

claim (23).

A.2.2 Proof of claim (22)

Direct calculation shows that

∇2L̄(θ) =
1

σ2

(
Id −

1

σ2
EX
(
XX>sech2

(
X>θ

σ2

)))
,

where sech2(x) = 4
(exp(−x)+exp(x))2

for all x ∈ R. Via an application of the change of coordi-

nates that we used earlier, we can write the above equation as:

∇2L̄(θ) =
1

σ2

(
Id − EV

(
V V >sech2

(
V1‖θ‖
σ

)))
,

where the outer expectation is taken with respect to V = (V1, V2, . . . , Vd) ∼ N (0, Id). The

matrix A = EV
(
V V >sech2

(
V1‖θ‖
σ

))
is a diagonal matrix that A11 = EV1

[
V 2

1 sech2
(
V1‖θ‖
σ

)]
and Vii = EV1

[
sech2

(
V1‖θ‖
σ

)]
for all 2 ≤ i ≤ d.

An application of the inequality sech2(x) ≥ 1− x2 for all x ∈ R leads to

A11 ≥ EV1
[
V 2

1

(
1− V 2

1 ‖θ‖2

σ2

)]
= 1− 3‖θ‖2

σ2
,

Aii ≥ EV1
[
1− V 2

1 ‖θ‖2

σ2

]
= 1− ‖θ‖

2

σ2
,

for all i 6= 1. These results indicate that

λmax(∇2L̄(θ)) ≤ 3‖θ‖2

σ4
.

As a consequence, we obtain the conclusion of claim (22).
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A.3 Mixed linear regression model

We first present a proof of claim (30) about the generalized PL property of the population log-
likelihood function L̃ of low-signal-to-noise symmetric two-component Gaussian mixed linear
regression in Appendix A.3.1. Then, in Appendix A.3.2, we present a proof of claim (29)
about the local smoothness of L̃. The proof ideas of these claims are similar to those in the
mixture model case. Here, we provide the proofs for the completeness.

A.3.1 Proof of claim (30)

When θ∗ = 0, we have that Y ∼ N (0, σ2). Furthermore, the population log-likelihood function
L̃ admits the following form:

L̃(θ) = −EX,Y
[
log

(
1

2
φ(Y |X>θ, σ2) +

1

2
φ(Y | −X>θ, σ2)

)]
.

Using Z to absorb the constant that is independent of θ, when X ∼ N (0, Id) and Y |X ∼
N (Y |0, σ2) we have

L̃(θ) =
‖θ‖2

2σ2
− EX,Y

[
log

(
exp

(
Y θ>X

σ2

)
+ exp

(
−Y θ>X
σ2

))]
+ Z.

Similar to the proof of claim (23), to bound the expectation in the above equation we can
perform a change of coordinates using an orthonormal matrix R such that Rθ = ‖θ‖e1. Let
V = RX, then V = (V1, V2, . . . , Vd) ∼ N (0, Id). Moreover, since L̃(θ∗) does not depend on θ,
we can write:

L̃(θ)− L̃(θ∗) =
‖θ‖2

2σ2
− EX,Y

[
log

(
exp

(
Y θ>X

σ2

)
+ exp

(
−Y θ>X
σ2

))]
+ Z

=
‖θ‖2

2σ2
− EV1,Y

[
log

(
exp

(
Y ‖θ‖V1

σ2

)
+ exp

(
−Y ‖θ‖V1

σ2

))]
+ Z.

Using the standard inequality exp(−x) + exp(x) ≥ 2 + x2 for all x ∈ R we find that

L̃(θ)− L̃(θ∗) ≤ ‖θ‖
2

2σ2
− EV1,Y

[
log

(
1 +

Y 2‖θ‖2V 2
1

2σ4

)]
.

From here, the inequality log(1 + x) ≥ x− x2

2 for all x ≥ 0 leads to

L̃(θ)− L̃(θ∗) ≤ ‖θ‖
2

2σ2
− EV1,Y

[
Y 2‖θ‖2V 2

1

2σ4
− Y 4‖θ‖4V 4

1

8σ8

]
=
‖θ‖2

2σ2
− EY [Y 2]‖θ‖2EV1 [V 2

1 ]

2σ4
+

EY [Y 4]‖θ‖4EV1 [V 4
1 ]

8σ8

=
9

8σ4
‖θ‖4. (45)

Now, we establish an lower bound for ‖∇L̃(θ)‖. Indeed, direct calculation shows that

∇L̃(θ) =
1

σ2

(
θ − EX,Y

[
Y X tanh(

Y θ>X

σ2
)

])
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Therefore, we find that ‖∇L̃(θ)‖ ≥ 1
σ2

(
‖θ‖ −

∥∥∥∥EX,Y [Y X tanh(Y θ
>X
σ2 )

] ∥∥∥∥). Using the earlier

change of coordinates, we have∥∥∥∥EX,Y [Y X tanh(
Y θ>X

σ2
)

] ∥∥∥∥ = EV1,Y
[
Y V1 tanh(

Y V1‖θ‖
σ2

)

]
.

As we have the inequality x tanh(x) ≤ x2 − x4

3 + 2x6

15 for all x ∈ R, we obtain∥∥∥∥EX,Y [Y X tanh(
Y θ>X

σ2
)

] ∥∥∥∥ ≤ σ2

‖θ‖
EV1,Y

[
Y 2V 2

1 ‖θ‖2

σ4
− Y 4V 4

1 ‖θ‖4

3σ8
+

2Y 6V 6
1 ‖θ‖6

15σ12

]
≤ ‖θ‖ − 3

σ2
‖θ‖3 +

30

σ4
‖θ‖5 ≤ ‖θ‖ − 3

2σ2
‖θ‖3,

as long as ‖θ‖ ≤ σ√
20

. Putting the above results together, we find that

‖∇L̃(θ)‖ ≥ 3

2σ4
‖θ‖3. (46)

A combination of the results from equation (45) and (46) indicate that

‖∇L̃(θ)‖ ≥ c2

(
L̃(θ)− L̃(θ∗)

)3/4
,

for all ‖θ‖ ≤ σ√
20

where c2 is some universal constant. As a consequence, we obtain the

conclusion of claim (30).

A.3.2 Proof of claim (29)

Similar to the proof of claim (22), we have

∇2L̃(θ) =
1

σ2

(
Id −

1

σ2
EX,Y

[
Y 2XX>sech2(

Y θ>X

σ2
)

])
=

1

σ2

(
Id −

1

σ2
EY,V

[
Y 2V V >sech2(

Y V1‖θ‖
σ2

)

])
,

where the second equality is from the change of coordinates R = V X and R is an orthogonal
matrix such that Rθ = ‖θ‖e1. Here, the outer expectation is taken with respect to Y ∼
N (0, σ2) and V = (V1, . . . , Vd) ∼ N (0, Id).

The matrix B = 1
σ2EY,V

[
Y 2V V >sech2(Y V1‖θ‖

σ2 )
]

is a diagonal matrix such that B11 =

EY,V1
[
Y 2V 2

1 sech2(Y V1‖θ‖
σ2 )

]
and Bii = EY,V1

[
Y 2sech2(Y V1‖θ‖

σ2 )
]

for all i 6= 1. Using the stan-

dard inequality sech2(x) ≥ 1− x2 for all x ∈ R yields

B11 ≥ EY,V1
[
Y 2V 2

1 −
Y 4V 4

1 ‖θ‖2

σ4

]
= σ2 − 9‖θ‖2,

Bii ≥ EY,V1
[
Y 2 − Y 4V 2

1 ‖θ‖2

σ4

]
= σ2 − 3‖θ‖2,

for all i 6= 1. Collecting the above results, we obtain

λmax(∇2L̃(θ)) ≤ 9

σ2
‖θ‖2.

Hence, we obtain the conclusion of claim (29).
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B Auxiliary results

Lemma 3. If Assumption (W.2) holds, then for all θ ∈ B(θ∗, ρ), we have that

‖θ − θ∗‖ ≤ α+ 2

c2
(f(θ)− f(θ∗))

1
α+2 .

Furthermore, we have

‖∇f(θ)‖ ≥ c2

(
c2

α+ 2
‖θ − θ∗‖

)α+1

.

Proof. The proof idea originates from the proof of Theorem 27 in [3]. We start from the
gradient flow:

dθ(t)

dt
= −∇f(θ(t)).

By the convexity, we have that

d‖θ(t)− θ∗‖22
dt

= 2

〈
θ(t)− θ∗, dθ(t)

dt

〉
= −2〈θ(t)− θ∗,∇f(θ(t))〉 ≤ 0,

which means if θ(0) ∈ B(θ∗, ρ), θ(t) ∈ B(θ∗, ρ), ∀t ≥ 0. Meanwhile, θ(t) → θ∗ when t → ∞.
We then conclude the proof by

(f(θ(0))− f(θ∗))
1

α+2 =

∫ 0

∞
d(f(θ(t))− f(θ∗))

1
α+2

=

∫ ∞
0

f(θ(t))− f(θ∗))
1

α+2
−1

α+ 2
‖∇f(θ(t))‖2dt

≥
∫ ∞

0

c2

α+ 2
‖∇f(θ(t))‖dt

=

∫ ∞
0

c2

α+ 2

∥∥∥∥dθ(t)dt

∥∥∥∥ dt
=

c2

α+ 2
‖θ(0)− θ∗‖.

The second argument can be directly obtained via Assumption (W.2), which concludes our
proof.

Lemma 4. Under Assumptions (W.1) and (W.2), there exists a universal constant c0 > 0
depending on the constants of these assumptions such that

‖θtGD − θ∗‖ ≤
c0

(ηt)1/α
,

where θt+1
GD = θtGD− η∇f(θtGD) are the fixed-step size gradient descent iterates for minimizing

the population loss function f . Furthermore, this bound is tight, means there are population
loss functions f satisfying Assumptions (W.1) and (W.2) and

‖θtGD − θ∗‖ ≥
c0

(ηt)1/α
.
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Proof. Our proof idea originates from [28] and we include it for completeness. We start from
the following lemma.

Lemma 5 (Lemma 3.5 in [5]). If f is β-smooth, then ∀θ1, θ2 ∈ Rd, we have that

f(θ1)− f(θ2) ≤ 〈∇f(θ1), θ1 − θ2〉 −
1

2β
‖∇f(θ1)−∇f(θ2)‖2.

Corollary 4. If f is β-smooth, then ∀θ1, θ2 ∈ Rd, we have that

1

β
‖∇f(θ1)−∇f(θ2)‖2 ≤ 〈∇f(θ1)−∇f(θ2), x− y〉.

Notice that, if θ1, θ2 ∈ B(θ∗, r), then ‖∇f(θ1) − ∇f(θ2)‖ ≤ c1r
α‖θ1 − θ2‖, which means

f is c1r
α-smooth in B(θ∗, r). We assume the step-size satisfies 0 < η < 2

c1rα
, and define the

”effective step-size” 1
β := η(2− c1r

αη) > 0 where β > c1r
α. If θtGD ∈ B(θ∗, r), we have that

‖θt+1 − θ∗‖2 − ‖θt − θ∗‖2 =η2‖∇f(θt)‖2 − 2η〈∇f(θt), θt − θ∗〉

≤ − 1

β
〈∇f(θt), θt − θ∗〉 ≤ 0,

where the last inequality is due to Corollary 4. Hence, θt+1
GD ∈ B(θ∗, r). Furthermore, from

the generalized smoothness property of the function f in Assumption (W.1) we have

f(θt+1)− f(θt) ≤∇f(θt)>(θt+1 − θt) +
c1r

α

2
‖θt+1 − θt‖2

=− 1

2β
‖∇f(θt)‖2

≤− c2
2

2β
(f(θt)− f(θ∗))2− 2

α+2 ≤ 0.

Lemma 6. Given α > 0, ∀x ∈ [0, 1],

1

α
(1− xα) ≥ xα(1− x).

Proof. Consider the mapping g : x 7→ 1
α(xα − 1) − xα(1 − x).. We can see g(0) = 1

α and
g(1) = 0. Moreover,

∇g(x) = −(α+ 1)(xα−1 − xα) ≤ 0,

which concludes the proof.

Define δ(θt) := f(θt)− f(θ∗), we have that

1

δ(θt)
α
α+2

=
1

δ(θ1)
α
α+2

+
t−1∑
s=1

(
1

δ(θs)
α
α+2

− 1

δ(θs+1)
α
α+2

)

=
1

δ(θ1)
α
α+2

+
t−1∑
s=1

α
α+2

δ(θs+1)
α
α+2

· α+ 2

α
·

(
1−

(
δ(θs+1)

δ(θs)

) α
α+2

)

≥ 1

δ(θ1)
α
α+2

+
t−1∑
s=1

α
α+2

δ(θs+1)
α
α+2

·
(
δ(θs+1)

δ(θs)

) α
α+2

(
1− δ(θs+1)

δ(θs)

)
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=
1

δ(θ1)
α
α+2

+

t−1∑
s=1

α
α+2

δ(θs)2− 2
α+2

· (δ(θs)− δ(θs+1))

≥ 1

δ(θ1)
α
α+2

+

t−1∑
s=1

α
α+2

δ(θs)2− 2
α+2

· c
2
2

2β
(δ(θt))2− 2

α+2

=
1

δ(θ1)
α
α+2

+
t−1∑
s=1

c2
2

(
α
α+2

)
2β

=
1

δ(θ1)
α
α+2

+
c2

2

(
α
α+2

)
2β

· (t− 1).

We can conclude that

f(θt)− f(θ∗) ≤

 1

(f(θ1)− f(θ∗))
α
α+2

+
c2

2

(
α
α+2

)
2β

· (t− 1)

−
α+2
α

≤ C(η · t)−
α+2
α ,

where C is some universal constant. Combined Lemma 3 with the upper bound of f(θt)−f(θ∗),
we obtain that ‖θt−θ∗‖ ≤ c0(η ·t)−1/α where c0 is some universal constant. As a consequence,
we reach the upper bound stated in Lemma 4.

For the tightness, consider the function f : R→ R, f(θ) = |θ|α+2

α+2 , which satisfies Assump-
tions (W.1) and (W.2). Consider the continuous limit of the fixed-step size gradient descent
(i.e., the limit η → 0) starting from θ0 = 1, which corresponds to the following ODE:

dθ

dt
= −|θ|α+1, θ(0) = 1.

The solution of the ODE can be written as:

θ(t) = (t+ 1)−1/α.

Notice that the t in the solution of ODE is equivalent to ηt in the gradient descent dynamics,
which concludes the proof.

C Beyond homogeneous assumptions

In this Appendix, we provide a brief discussion on the behaviors of the Polyak step size
gradient descent iterates when the constants in Assumptions (W.1) and (W.2) are different.
In particular, we consider the following two-dimensional population loss function f(θ) = θ2

1+θ4
2

for all θ = (θ1, θ2) ∈ R2. Under this case, the optima is (0, 0), and the updates of the Polyak
step size gradient descent algorithm are given by:

θt+1
1 = θt1 −

(θt1)3 + θt1(θt2)4

2(θt1)2 + 8(θt2)6
=

(θt1)3 + θt1(θt2)4(8(θt2)2 − 1)

2(θt1)2 + 8(θt2)6
,

θt+1
2 = θt2 −

(θt1)2(θt2)3 + (θt2)7

(θt1)2 + 4(θt2)6
=

3(θt2)7 + (θt1)2θt2(1− (θt2)2)

(θt1)2 + 4(θt2)6
.

36



Consider the local convergence in B(0, ρ) for some sufficiently small radius ρ, such that (θt2)2 �
1/8, which corresponds to the approximate update:

θt+1
1 ≈ θt1 ·

(θt1)2 − (θt2)4

2(θt1)2 + 8(θt2)6
,

θt+1
2 ≈ θt2 ·

(θt1)2 + 3(θt2)6

(θt1)2 + 4(θt2)6
.

For θ1, the update is only stable when θt1 ≥ C(θt2)2 where C is some universal constant.
However, in this regime, θ2 can converge slowly, as

(θt1)2 + 3(θt2)6

(θt1)2 + 4(θt2)6
= 1−O((θt2)2)→ 1 (as θt2 → 0).

On the other hand, if we want θ2 to converge linearly, we need θt1 = O((θt2)3). In this regime,
the update of θ1 can be unstable, as

(θt1)2 − (θt2)4

2(θt1)2 + 8(θt2)6
≥ C1(θt2)−2

where C1 is some constant. Hence, it’s pretty hard to characterize the behaviour of Polyak
step-size gradient descent iterates when the constants in Assumption (W.1) and (W.2) are dif-
ferent. We leave the understanding of this case as an interesting future direction.
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