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Abstract

Understanding parameter estimation of softmax gating Gaussian mixture of experts has
remained a long-standing open problem in the literature. It is mainly due to three fundamental
theoretical challenges associated with the softmax gating: (i) the identifiability only up to
the translation of the parameters; (ii) the intrinsic interaction via partial differential equation
between the softmax gating and the expert functions in Gaussian distribution; (iii) the complex
dependence between the numerator and denominator of the conditional density of softmax gating
Gaussian mixture of experts. We resolve these challenges by proposing novel Vononoi loss
functions among parameters and establishing the convergence rates of the maximum likelihood
estimator (MLE) for solving parameter estimation in these models. When the number of experts
is unknown and over-specified, our findings show a connection between the rate of MLE and a
solvability problem of a system of polynomial equations.

1 Introduction

Softmax gating Gaussian mixture of experts [20, 22], a class of statistical machine learning models
that combine multiple simpler models, known as expert functions of the covariates, via softmax
gating network to form more complex and accurate models, have found widespread use in various
applications, including speech recognition [27, 35, 36], natural language processing [11, 8, 29, 12],
computer vision [28], and other applications [15, 25]. In softmax gating Gaussian mixture of experts,
the parameters of each expert function play an important role in capturing the heterogeneity of data.
However, a comprehensive theoretical understanding of parameter estimation in these models has
still remained a long-standing open problem in the literature.

Parameter estimation had been studied quite extensively in standard mixture models. In his seminal
work, Chen [4] established the convergence rate O(n−1/4) of parameter estimation in over-fitted
univariate mixture models, namely, the settings when the number of true components is unknown
and over-specified, when the family of distribution is strongly identifiable in the second order, e.g.,
location Gaussian distribution. That slow and non-standard convergence rate is due to the collapse
of some parameters into single pararameter or the vanishing of weights to 0, which leads to the
singularity of Fisher information matrix around the true parameters. Then, Nguyen [26] and Ho et
al. [18] utilized Wasserstein metric to achieve this rate under the multivariate settings of second-order
strongly identifiable mixture models. Recently, Ho et al. [17] demonstrated that rates of the MLE
can strictly depend on the amount of overspecified components when the mixture models are not
strongly identifiable, such as location-scale Gaussian mixtures. The minimax optimal behaviors of
parameter estimation were studied in [16, 24]. From the computational side, the statistical guarantee
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of the expectation-maximization (EM) and moment methods had also been studied under both
exact-fitted [2, 1, 14] and over-fitted settings [10, 9, 32, 7, 33] of mixture models.

Compared to mixture models, there has been less research on parameter estimation of mixture
of experts. When the gating networks are independent of the covariates, Ho et al. [19] employed
generalized Wasserstein to study the rates of parameter estimation in Gaussian mixture of experts.
They proved that these rates are determined by the algebraic independence of the expert functions
and the partial differential equations associated with the parameters. Later, Do et al. [6] extended
these results to general mixture of experts with covariate-free gating network. Statistical guarantees
of optimization methods for solving parameter estimation in Gaussian mixture of experts with
covariate-free gating were studied in [5, 37, 23, 34]. When the gating networks are softmax functions,
parameter estimation becomes more challenging to understand due to the complex structures of the
softmax gating in the Gaussian mixture of experts. Before describing these phenomena in further
detail, we begin by formally introducing softmax gating Gaussian mixture of experts and related
notions.

Problem setting: Assume that (X1, Y1), . . . , (Xn, Yn) ∈ Rd×R are i.i.d. samples from the softmax
gating Gaussian mixture of experts of order k∗ whose conditional density function gG∗(Y |X) is given
by:

k∗∑
i=1

exp((β∗
1i)

⊤X + β∗
0i)∑k∗

j=1 exp((β
∗
1j)

⊤X + β∗
0j)

f(Y |(a∗i )⊤X + b∗i , σ
∗
i ), (1)

where f(.|µ, σ) is a Gaussian distribution with mean µ and variance σ. Here, we define G∗ :=∑k∗
i=1 exp(β

∗
0i)δ(β∗

1i,a
∗
i ,b

∗
i ,σ

∗
i )

is a true but unknown mixing measure associated with the true parameters
and δ is denoted as Dirac delta measure. Notably, G∗ is not necessarily a probability measure as the
summation of its weights can be different from 1. For the purpose of the theory, we assume that
(β∗

0i, β
∗
1i, a

∗
i , b

∗
i , σ

∗
i ) ∈ Θ ⊂ R× Rd × Rd × R× R+ where Θ is a compact set and X ∈ X ⊂ Rd where

X is a bounded set. Furthermore, (a∗1, b∗1, σ∗
1), . . . , (a

∗
k∗
, b∗k∗ , σ

∗
k∗
) are pairwise different and at least

one of β∗
11, . . . , β

∗
1k∗

is different from 0. Since the value of true order k∗ is unknown in practice, to
estimate the unknown parameters in softmax gating Gaussian mixture of experts (1), we consider
using maximum likelihood estimation (MLE) within a class of at most k Gaussian mixture of experts,
which is defined as follows:

Ĝn ∈ argmax
G∈Ok(Θ)

1

n

n∑
i=1

log(gG(Yi|Xi)), (2)

where Ok(Θ) := {G =
∑k′

i=1 exp(β0i)δ(β1i,ai,bi,σi) : k
′ ≤ k and (β0i, β1i, ai, bi, σi) ∈ Θ}. To guarantee

that the MLE Ĝn is a consistent estimator of G∗, we need k ≥ k∗. When k = k∗, we refer this
setting to exact-specified softmax gating Gaussian mixture of experts. When k > k∗, we call this
setting as over-specified softmax gating Gaussian mixture of experts.

In this paper, we study the convergence rate of the MLE Ĝn to the true mixing measure G∗ under
both the exact-specified and over-specified settings of the softmax gating Gaussian mixture of experts.

Fundamental challenges from the softmax gating: There are three fundamental challenges
arising from the softmax gating that create various obstacles when trying to comprehend the
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behaviors of the MLE: (i) the parameters β∗
1i, β

∗
0i are only identifiable up to translation, namely, the

softmax weights remain identical when we translate β∗
1i to β∗

1i + t1 and β∗
0i to β∗

0i + t2 for some t1, t2;
(ii) the numerators in softmax weights have an intrinsic interaction with the expert functions in
Gaussian distribution via the following partial differential equation (PDE):

∂u(X,Y )

∂β1
· ∂u(X,Y )

∂b
=

∂u(X,Y )

∂β0
· ∂u(X,Y )

∂a
, (3)

where u(X,Y ) = exp(β⊤
1 X + β0) · f(Y |a⊤X + b, σ); (iii) the numerator and denominator of the

conditional density of Gaussian mixture of experts (1) are dependent.

These fundamental challenges from the softmax gating suggest that the previous loss functions, such
as Wasserstein distance [26, 17, 19], being employed to study parameter estimation in standard
mixture models or mixture of experts with covariate-free gating functions are no longer sufficient as
these loss functions heavily rely on the assumptions that the weights of these models are independent
of the covariates.

Main contributions: To tackle these challenges of the softmax gating, we propose novel Voronoi
losses among parameters and establish the lower bounds of the Hellinger distance of the mixing
densities of softmax gating Gaussian mixture of experts in terms of these Voronoi losses to capture
the behaviors of the MLE. Our results can be summarized as follows:

1. Exact-fitted settings: When k = k∗, we demonstrate that h(gG, gG∗) ≥ C · D1(G,G∗) for any
G ∈ Ok(Θ) where C is some universal constant and the Voronoi metric D1(G,G∗) is defined as:

D1(G,G∗) := inf
t1,t2

k∗∑
j=1

∑
i∈Aj

exp(β0i)∥(∆t2β1ij ,∆aij ,∆bij ,∆σij)∥

+ |
∑
i∈Aj

exp(β0i)− exp(β∗
0j + t1)|, (4)

where ∆t2β1ij := β1i − β∗
1j − t2, ∆aij := ai − a∗j , ∆bij := bi − b∗j , ∆σij := σi − σ∗

j . The infimum
over t1, t2 is to account for the identifiability up to the translation of (β∗

0j , β
∗
1j)

k∗
j=1. Furthermore,

Aj := {i ∈ {1, 2, . . . , k} : ∥θi − θ∗j∥ ≤ ∥θi − θ∗ℓ∥ ∀ℓ ≠ j} is Voronoi cell of θ∗j = (a∗j , b
∗
j , σ

∗
j ) for all

1 ≤ j ≤ k∗ where θi = (ai, bi, σi).

As h(g
Ĝn

, gG∗) = O(n−1/2) (up to logarithmic term), that lower bound of Hellinger distance
indicates that D1(Ĝn, G∗) = O(n−1/2). Therefore, the rates of MLE to estimate exp(β∗

0j), β
∗
1j (up to

translations) and a∗j , β
∗
j , σ

∗
j are O(n−1/2), which are optimal.

2. Over-fitted settings: When k > k∗, the lower bound of Hellinger distance in terms of the
Voronoi metric D1 in the exact-fitted settings is no longer enough due to the collapse of softmax of
vector in possibly k dimensions to softmax of vector in k∗ dimensions. Our approach is to define
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more fine-grained Vononoi metric D2(G,G∗) to capture such collapse, which is given by:

D2(G,G∗) := inf
t1,t2

∑
j:|Aj |>1

∑
i∈Aj

exp(β0i)(∥(∆t2β1ij ,∆bij)∥r̄(|Aj |) + ∥(∆aij ,∆σij)∥r̄(|Aj |)/2)

+
∑

j:|Aj |=1

∑
i∈Aj

exp(β0i)∥(∆t2β1ij ,∆aij ,∆bij ,∆σij)∥+
k∗∑
j=1

|
∑
i∈Aj

exp(β0i)− exp(β∗
0j + t1)|, (5)

for any G :=
∑k′

i=1 exp(β0i)δ(β1i,ai,bi,σi) ∈ Ok(Θ). Here, r̄(|Aj |) is the smallest number r such that
the following system of polynomial equations does not have any non-trivial solutions:

|Aj |∑
l=1

∑
(α1,α2,α3,α4)∈Iℓ1,ℓ2

1

α!
p25lp

α1
1l p

α2
2l p

α3
3l p

α4
4l = 0, (6)

where Iℓ1,ℓ2 = {α = (α1, α2, α3, α4) ∈ Nd × Nd × N× N : α1 + α2 = ℓ1, |α2|+ α3 + 2α4 = ℓ2} for
any (ℓ1, ℓ2) ∈ Nd × N such that 0 ≤ |ℓ1| ≤ r, 0 ≤ ℓ2 ≤ r − |ℓ1| and |ℓ1| + ℓ2 ≥ 1. In this system,
{p1l, p2l, p3l, p4l, p5l}

|Aj |
l=1 are unknown variables. A solution is considered to be non-trivial if at least

one among p3l is different from 0 and all of p5l are non-zero. Some specific values of r̄(|Aj) can be
found in Lemma 1.

In high level, the system of polynomial equations (6) arises from the PDE (3) when we establish
the lower bound h(gG, gG∗) ≥ C ′D2(G,G∗) for any G ∈ Ok(Θ) for some universal constant C ′.
Since h(g

Ĝn
, gG∗) = O(n−1/2), we also have D2(Ĝn, G∗) = O(n−1/2) under the over-fitted settings

of the softmax gating Gaussian mixture of experts. As a consequence, the rates for estimating true
parameters whose Voronoi cells have only one component of the MLE are O(n−1/2). On the other
hand, for true parameters exp(β∗

0i), β
∗
1i, a

∗
i , b

∗
i , σ

∗
i whose Voronoi cells have more than one component

of the MLE, the estimation rates are respectively O(n−1/2r̄(|Ai)|) for β∗
1i, b

∗
i , O(n−1/r̄(|Ai)) for a∗i , σ

∗
i ,

and O(n−1/2) for exp(β∗
0i). That rich spectrum of the convergence rates of the parameters is due to

the complex interaction between the softmax gating and the expert functions.

Practical implication: In practice, as the true number of experts k∗ is generally unknown and the
rates of MLE depend on the number of extra components under the over-fitted settings of softmax
gating Gaussian mixture of experts, the value of the number of experts k should not be chosen very
large compared to k∗. Furthermore, the slow convergence rates of the MLE may provide important
thresholds in the merge-truncate-merge procedure, a procedure that was used to estimate the true
number of components in standard mixture models [13], to consistently estimate the true number
of experts k∗. A high-level idea of that procedure is that we can merge the MLE parameters that
are close and within the range of their rates of convergence or truncate the parameters that lead to
small weights of the experts. As the sample size becomes sufficiently large, the reduced number of
experts may converge to the true number of experts. We leave a theoretical investigation of that
procedure in future work.

Organization: The paper is organized as follows. In Section 2, we first provide background on
the identifiability and rate of conditional density estimation in softmax gating Gaussian mixture of
experts. Then, we proceed to establish the convergence rate of the MLE under both the exact-fitted
and over-fitted settings of these models in Section 3. The conclusion of the paper is in Section 4.
Finally, proofs of the results in the paper are in the Appendices.
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Notation: For any positive integer n, we denote [n] = {1, 2, . . . , n}. For any α ∈ Nd, we denote |α|
as the summation of elements of α. For any positive sequences {an}n≥1, {bn}n≥1, we write an = O(bn)
or an ≲ bn if an ≤ Cbn for all n ≥ 1 where C > 0 is some universal constant. Furthermore, we
write an ≍ bn when an ≲ bn ≲ an. Given two probability density functions p, q dominated by
measure µ, we denote h2(p, q) = 1

2

∫
(
√
p − √

q)2dµ as the their squared Hellinger distance and
V (p, q) = 1

2

∫
|p− q|dµ as their Total Variation distance.

2 Background

In this section, we first start with the following result about the identifiability of the softmax gating
Gaussian mixture of experts, which was studied previously in [21].

Proposition 1 (Identifiability of softmax gating Gaussian mixture of experts). For any mixing
measures G =

∑k
i=1 exp(β0i)δ(β1i,ai,bi,σi) and G′ =

∑k′

i=1 exp(β
′
0i)δ(β′

1i,a
′
i,b

′
i,σ

′
i)
, if we have gG(Y |X) =

gG′(Y |X) for almost surely (X,Y ), then it follows that k = k′ and G ≡ G′
t1,t2 where G′

t1,t2 :=∑k′

i=1 exp(β
′
0i + t1)δ(β′

1i+t2,a′i,b
′
i,σ

′
i)

for some t1 ∈ R and t2 ∈ Rd.

Proof of Proposition 1 is in Appendix B.1. The identifiability of the softmax gating Gaussian mixture
of experts guarantees that the MLE Ĝn (2) converges to the true mixing measure G∗ (up to the
translation of the parameters in the softmax gating).

Given the consistency of the MLE, it is natural to ask about its convergence rate to the true
parameters. Our next result establishes the convergence rate of conditional density estimation
g
Ĝn

(Y |X) to the true conditional density estimation gG∗(Y |X), which lays an important foundation
for the study of MLE’s convergence rate.

Proposition 2 (Convergence rate of conditional density estimator). Given the MLE in equation (2),
the conditional density function g

Ĝn
(Y |X) has the following convergence rate:

P(h(g
Ĝn

, gG∗) > C(log(n)/n)1/2) ≲ exp(−c log n),

where c and C are universal constants.

Proof of Proposition 2 is in Appendix B.2. The result of Proposition 2 indicates that under either
the exact-fitted or over-fitted settings of the softmax gating Gaussian mixture of experts, the rate of
the conditional density function g

Ĝn
(Y |X) to the true one gG∗(Y |X) under Hellinger distance is

parametric O(n−1/2) (up to some logarithmic factors).

From density estimation to parameter estimation: The parametric rate of the conditional
density function from the MLE in Proposition 2 suggests that as long as we can establish the
following lower bound h(gG(Y |X), gG∗(Y |X)) ≳ D(G,G∗) for any G ∈ Ok(Θ) for some metric D
among the parameters, then we obtain directly the parametric convergence rate of the MLE under
the metric D. Therefore, the main focus of the next section is to determine such metric D and
establish that lower bound under either exact-fitted or over-fitted settings of the softmax gating
Gaussian mixture of experts.
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3 Convergence Rate of the Maximum Likelihood Estimation

In this section, we first study the convergence rate of the MLE under the exact-fitted settings of
the softmax gating Gaussian mixture of experts in Section 3.1. Then, we move to the over-fitted
settings in Section 3.2. Finally, we provide proof sketch of the theories in Section 3.3.

3.1 Exact-fitted Settings

For the exact-fitted settings, namely, when the chosen number of experts k is equal to the true
number of experts k∗, as we mentioned in the introduction the proper metric between the MLE and
the true mixing measure is the metric D1 defined in equation (4), which is given by:

D1(G,G∗) := inf
t1,t2

k∗∑
j=1

∑
i∈Aj

exp(β0i)∥(∆t2β1ij ,∆aij ,∆bij ,∆σij)∥

+ |
∑
i∈Aj

exp(β0i)− exp(β∗
0j + t1)|,

where ∆t2β1ij := β1i − β∗
1j − t2, ∆aij := ai − a∗j , ∆bij := bi − b∗j , ∆σij := σi − σ∗

j . Here, Aj

is Voronoi cell of (a∗j , b
∗
j , σ

∗
j ) for all 1 ≤ j ≤ k∗. Furthermore, the infimum is taken with respect

to (t1, t2) ∈ R×Rd such that β∗
0j+t1 and β∗

1j+t2 still lie inside the domain of the parameter space Θ.

It is clear that D1(G,G∗) = 0 if and only if G ≡ G∗ (up to translation). When D1(G,G∗) is sufficiently
small, there exist t1, t2 such that all of ∆t2β1ij , ∆aij , ∆bij , ∆σij , and

∑
i∈Aj

exp(β0i)− exp(β∗
0j + t1)

are sufficiently small as well. Therefore, the loss function D1 provides a useful metric to measure the
difference between the MLE and the true mixing measure. For any fixed t1, t2, the computation of
the summations in D1 only has the complexity of the order O(k2∗). To solve the optimization with
respect to t1, t2 in the metric D1, we can utilize the projected subgradient method with fixed step
size [3], which has the complexity of the order O(ε−2) as the functions of t1 and t2 are convex where
ε is a desired tolerance. Therefore, the total computational complexity of approximating the value
of the Voronoi loss function D1 is at the order of O(k2∗/ε

2).
The following result establishes the lower bound of the Hellinger distance between the conditional

densities in terms of the loss function D1 between corresponding mixing measures, which in turn
leads to the convergence rate of the MLE.

Theorem 1. Given the exact-fitted settings of the softmax gating Gaussian mixture of experts (1),
i.e., k = k∗, we find that

h(gG, gG∗) ≥ C · D1(G,G∗), (7)

for any G ∈ Ek∗(Θ) := Ok∗(Θ) \ Ok∗−1(Θ) where C is some universal constant depending only on
G∗ and Θ. As a consequence, there exist universal constants C ′ and c such that the convergence rate
of the MLE Ĝn under the exact-fitted settings satisfies:

P(D1(Ĝn, G∗) > C ′(log(n)/n)1/2) ≲ exp(−c log n). (8)

Proof of Theorem 1 is in Appendix A.1. The parametric convergence rate of the MLE to G∗ under the
metric D1 suggests that the rates of estimating the true parameters exp(β∗

0j), β
∗
1j (up to translation),

a∗j , b
∗
j , σ

∗
j for j ∈ [k∗] are O((log(n)/n)1/2), which are optimal up to logarithmic factors.
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3.2 Over-fitted Settings

We now consider the over-fitted settings of the softmax gating Gaussian mixture of experts. Different
from the exact-fitted settings, the softmax weights associated with the MLE collapse to softmax
weights of the mixture of true experts as long as the MLE approaches the true mixing measure
G∗. More concretely, we can relabel the supports of the MLE Ĝn with kn components (kn ≤ k)
such that we can rewrite it as Ĝn =

∑k∗
i=1

∑sni
j=1 exp(β̂

n
0ij)δ(β̂n

1ij ,â
n
ij ,̂b

n
ij ,σ̂

n
ij)

where
∑k∗

i=1 s
n
i = kn,

(ânij , b̂
n
ij , σ̂

n
ij) → (a∗i , b

∗
i , σ

∗
i ) for all 1 ≤ j ≤ sni , and

sni∑
j=1

exp((β̂n
1ij)

⊤X + β̂n
0ij)∑k∗

i=1

∑sni
j=1 exp((β̂

n
1ij)

⊤X + β̂n
0ij)

→ exp((β∗
1i)

⊤X + β∗
0i)∑k∗

j=1 exp((β
∗
1j)

⊤X + β∗
0j)

as n approaches infinity for all i ∈ [k∗].

The collapse of softmax weights along with the PDE (3) between the softmax gating and the expert
functions in the Gaussian distribution create a complex interaction among the estimated parameters.
To disentangle such interaction, we rely on the solvability of a novel system of polynomial equations
defined in equation (6). In particular, for any m ≥ 2, we define r̄(m) as the smallest number r such
that the following system of polynomial equations

m∑
j=1

∑
(α1,α2,α3,α4)∈Iℓ1,ℓ2

1

α!
p25jp

α1
1j p

α2
2j p

α3
3j p

α4
4j = 0,

for any (ℓ1, ℓ2) ∈ Nd × N such that 0 ≤ |ℓ1| ≤ r, 0 ≤ ℓ2 ≤ r − |ℓ1| and |ℓ1|+ ℓ2 ≥ 1, does not have
any non-trivial solution for the unknown variables {p1j , p2j , p3j , p4j , p5j}mj=1, namely, all of p5j are
non-zeros and at least one among p3j is different from 0. The ranges of α1, α2, α3, α4 in the sum
satisfy Iℓ1,ℓ2 = {α = (α1, α2, α3, α4) ∈ Nd × Nd × N × N : α1 + α2 = ℓ1, |α2| + α3 + 2α4 = ℓ2}.
When d = 1 and r = 2, that system of equations becomes

m∑
j=1

p25jp1j = 0,

m∑
j=1

p25jp
2
1j = 0,

m∑
j=1

p25j(p1jp3j + p2j) = 0,

m∑
j=1

p25jp3j = 0,

m∑
j=1

p25j

(1
2
p23j + p4j

)
= 0.

It is clear from that we have non-trivial solutions p5j = 1, p1j = 0 for all j ∈ [m], |p21| = p31 = 1,
|p22| = p32 = −1, p41 = p42 = −1/2, p2j = p3j = p4j = 0 for j ≥ 3. Therefore, r̄(m) ≥ 3 when d = 1
and m ≥ 2.

In general, when d = 1, the system of equations has (r2 + 3r)/2 equations. Intuitively, when m
is sufficiently larger than (r2 + 3r)/2, the system may not have non-trivial solution. In general,
for general dimension d and parameter m ≥ 2, finding the exact value of r̄(m) is non-trivial and a
central problem in algebraic geometry [30]. When m is small, the following lemma provides specific
values for r̄(m).

Lemma 1. For any d ≥ 1, when m = 2, r̄(m) = 4. When m = 3, r̄(m) = 6.
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Proof of Lemma 1 is in Appendix B.3. When m increases, the value of r̄(m) also increases. Given
the results of Lemma 1, we conjecture that r̄(m) = 2m and leave the proof for that conjecture for
the future work.

The following result demonstrates that the convergence rates of the MLE under the over-fitted
settings of the softmax gating Gaussian mixture of experts are determined by r̄(.).

Theorem 2. Under the over-fitted settings of the softmax gating Gaussian mixture of experts (1),
namely, when k > k∗, we obtain that

h(gG, gG∗) ≥ C · D2(G,G∗), (9)

for any G ∈ Ok(Θ) where the Voronoi loss D2 is defined in equation (5) and C is some universal
constant depending only on G∗ and Θ. Therefore, that lower bound leads to the following convergence
rate of the MLE:

P(D2(Ĝn, G∗) > C ′(log(n)/n)1/2) ≲ exp(−c log n). (10)

Proof of Theorem 2 is in Appendix A.2. A few comments with the result of Theorem 2 are in order.

First, the convergence rate O(n−1/2) (up to some logarithmic term) of the MLE under the loss
function D2 implies that for the true parameters exp(β∗

0i), β
∗
1i, a

∗
i , b

∗
i , σ

∗
i whose Voronoi cells have

only one component of the MLE, the rates for estimating them are O(n−1/2). On the other hand,
for true parameters with greater than one components in their Voronoi cells, the rates for estimating
β∗
1i, b

∗
i are O(n−1/2r̄(|Ai|)) while those for a∗i , σ

∗
i are O(n−1/r̄(|Ai|)). As the maximum value of |Ai| is

k − k∗ + 1, it indicates that these rates can be as worse as O(n−1/r̄(k−k∗+1)) for estimating a∗i , σ
∗
i

and O(n−1/2r̄(k−k∗+1)) for estimating the remaining parameters. Finally,.........

Although the slow rates of the MLE under the over-fitted settings of the softmax gating Gaussian
mixture of experts may seem discouraging, a practical implication of these results is that we should
not choose k to be very large compared to the true number of experts k∗. Furthermore, the slow
rates can also be useful for post-processing procedure, such as merge-truncate-merge procedure [13],
with the MLE to reduce the number of experts so as to consistently estimate k∗ when the number
of data is sufficiently large. We leave an investigation of model selection with Gaussian mixture of
experts via the rates of MLE for the future work.

Second, similar to the Voronoi loss function D1 in the exact-fitted settings, the loss function D2 is
also computationally efficient. In particular, for any fixed t1, t2, the computation of the summations
in the formulation of D2 is at the order O(k×k∗), which is linear on k when k∗ is fixed. Furthermore,
we can solve the convex optimization problem with respect to t1, t2 with computational complexity
at the order of O(ε−2) via the projected gradient descent method with fixed step size where ε is the
error. Therefore, the total computational complexity of approximating the Voronoi loss function D2

is at the order of O(k × k∗/ε
2).

3.3 Proof Sketch

In this section, we provide a proof sketch for Theorems 1 and 2. To simplify the ensuing discussion,
the loss function D in the proof sketch is implicitly understood as either the loss function D1 or D2
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depending on the settings of the softmax gating Gaussian mixture of experts. To obtain the bound
of Hellinger distance between gG and gG∗ in terms of D(G,G∗), it is sufficient to consider the lower
bound of the total variation distance V (gG, gG∗) in terms of D(G,G∗). To establish this bound, we
respectively prove its local and global versions by contradiction as follows:

Local version: limε→0 infG∈Ok(Θ),D(G,G∗)≤ε V (gG, gG∗)/D(G,G∗) > 0. Assume that this claim does
not hold true, that is, there exists a sequence Gn =

∑kn
i=1 exp(β

n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i )

∈ Ok(Θ) such that
both V (gGn , gG∗)/D(Gn, G∗) and D(Gn, G∗) approach zero as n tends to infinity. This implies that
for any j ∈ [k∗], we have

∑
i∈Aj

exp(βn
0i) → exp(β∗

0j) and (βn
1i, a

n
i , b

n
i , σ

n
i ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) and for

all i ∈ Aj . For the sake of presentation, we simplify the loss function D by assuming that it is
minimized when t1 = 0 and t2 = 0d. Now, we decompose the quantity Qn = [

∑k∗
j′=1 exp((β

∗
1j′)

⊤X +
β∗
0j′)] · [gGn(Y |X)− gG∗(Y |X)] as follows:

Qn =

k∗∑
j=1

∑
i∈Aj

exp(βn
0i)

[
u(X,Y |βn

1i, a
n
i , b

n
i , σ

n
i )− u(X,Y |β∗

1j , a
∗
j , b

∗
j , σ

∗
j )− v(X,Y |βn

1i)

+ v(X,Y |β∗
1j)

]
+

k∗∑
j=1

( ∑
i∈Aj

exp(βn
0i)− exp(β∗

0j)
)[

u(X,Y |β∗
0j , a

∗
j , b

∗
j , σ

∗
j )− v(X,Y |β∗

1j)
]
,

where we define u(X,Y |β1, a, b, σ) := exp(β⊤
1 X)f(Y |a⊤X+b, σ) and v(X,Y |β1) := exp(β⊤

1 X)gGn(Y |X).
Next, for each j ∈ [k∗] and i ∈ Aj , we apply the Taylor expansions to the functions u(X,Y |βn

1i, a
n
i , b

n
i , σ

n
i )

and v(X,Y |βn
1i) up to orders r1j and r2j (which we will choose later), respectively, as follows:

u(X,Y |βn
1i, a

n
i , b

n
i , σ

n
i )− u(X,Y |β∗

1j , a
∗
j , b

∗
j , σ

∗
j )

=

2r1j∑
|ℓ1|+ℓ2=1

∑
α∈Iℓ1,ℓ2

tℓ1,ℓ2(j)X
ℓ1 exp((β∗

1j)
⊤X)

∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) +R1ij(X,Y ),

v(X,Y |βn
1i)− v(X,Y |β∗

1j) =

r2j∑
|γ|=1

sγ(j)X
γ exp((β∗

1j)
⊤X)gGn(Y |X) +R2ij(X,Y ),

where R1ij(X,Y ) and R2ij(X,Y ) are Taylor remainders such that Rρij(X,Y )/D(Gn, G∗) vanishes
as n → ∞ for ρ ∈ {1, 2}. As a result, the limit of Qn/D(Gn, G∗) when n goes to infinity can be seen
as a linear combination of elements of the following set:

W : =

{
Xℓ1 exp((β∗

1j)
⊤X)

∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) : j ∈ [k∗], 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2r1j

}
∪
{
Xγ exp((β∗

1j)
⊤X)gG∗(Y |X) : j ∈ [k∗], 0 ≤ |γ| ≤ r2j

}
,

which is shown to be linearly independent. By the Fatou’s lemma, we demonstrate that Qn/D(Gn, G∗)
goes to zero as n → ∞, implying that all the coefficients in the representation of Qn/D(Gn, G∗), de-
noted by Tℓ1,ℓ2(j)/D(Gn, G∗) and Sγ(j)/D(Gn, G∗), vanish when n → ∞. Given that result, we aim
to select the Taylor orders r1j and r2j such that at least one among the limits of Tℓ1,ℓ2(j)/D(Gn, G∗)
and Sγ(j)/D(Gn, G∗) is different from zero, which leads to a contradiction. Hence, we obtain the
local version of the desired inequality. Below are the details of choosing appropriate Taylor orders in
each setting.
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Exact-fitted settings: Under this setting, since k∗ is known, each of the Voronoi cells Aj

for j ∈ [k∗] has only one element. Thus, for any i ∈ Aj , we have exp(βn
0i) → exp(β∗

0j) and
(βn

1i, a
n
i , b

n
i , σ

n
i ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ). Given that result, we can select r1j = r2j = 1 for all j ∈ [k∗] as

it suffices to show that at least one among the limits of Tℓ1,ℓ2(j)/D(Gn, G∗) and Sγ(j)/D(Gn, G∗)
is different from zero. In particular, if all of them vanish, we would take the sum of all the limits
of Tℓ1,ℓ2(j)/D(Gn, G∗) for (ℓ1, ℓ2) such that 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2, which leads to a contradiction that
1 = D(Gn, G∗)/D(Gn, G∗) → 0.

Over-fitted settings: As k∗ becomes unknown in this scenario, we need higher Taylor orders to
obtain the same result as in the exact-fitted setting. We will reuse the proof by contradiction method
to figure out those orders. More specifically, assume that all the limits of Tℓ1,ℓ2(j)/D(Gn, G∗) and
Sγ(j)/D(Gn, G∗) equal zero. After some steps of considering typical limits as in the previous setting
which requires r2j = 2 for all j ∈ [k∗], we encounter the following system of polynomial equations:

|Aj |∑
l=1

∑
(α1,α2,α3,α4)∈Iℓ1,ℓ2

1

α!
p25lp

α1
1l p

α2
2l p

α3
3l p

α4
4l = 0,

for all (ℓ1, ℓ2) such that 1 ≤ |ℓ1|+ ℓ2 ≤ r1j for some j ∈ [k∗]. Due to the construction of this system,
it must have at least one non-trivial solution. Therefore, if we choose r1j = r̄(|Aj |) for all j ∈ [k∗],
then the above system does not admit any non-trivial solutions, which leads to a contradiction.

Global version: The local inequality suggests that there exists a positive constant ε′ > 0 such that
infG∈Ok(Θ),D(G,G∗)≤ε′ V (gG, gG∗)/D(G,G∗) > 0. Thus, it suffices to show the following version of
this inequality infG∈Ok(Θ),D(G,G∗)>ε′ V (gG, gG∗)/D(G,G∗) > 0. Assume that this claim is not true,
then we can find a mixing measure G′ ∈ Ok(Θ) such that gG′(Y |X) = gG∗(Y |X) for almost surely
(X,Y ). According to Proposition 1, we get that D(G′, G∗) = 0, which contradicts the hypothesis
D(G′, G∗) > ε′. These arguments hold for both exact-fitted and over-fitted settings up to some
changes of notations.

4 Conclusion

In the paper, we study the convergence rates of parameter estimation under both the exact-fitted
and over-fitted settings of the softmax gating Gaussian mixture of experts. We introduce novel
Voronoi loss functions among parameters to resolve fundamental theoretical challenges posed by
softmax gating, including identifiability up to the translation of parameters, the interaction between
softmax weight and expert functions, and dependence between the numerator and denominator of
the conditional density function. When the number of experts is known, we demonstrate that the
rates of estimating true parameters are parametric. On the other hand, when the number of experts
is unknown and overspecified, these rates are determined by a solvability of a system of polynomial
equations.

A Proofs of Main Results

In this appendix, we provide proofs for Theorems 1 and 2.
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A.1 Proof of Theorem 1

General Picture: It is worth noting that given the bound in equation (7), we can directly deduce
the result in equation (8) from Proposition 2. Moreover, since the Hellinger distance h is lower
bounded by the total variation distance V , we only need to show that

V (gG, gG∗) ≥ C · D1(G,G∗). (11)

to obtain the bound in equation (7).

Local version: Firstly, we prove the local version of the above inequality, i.e., we will verify that

lim
ε→0

inf
G∈Ek∗ (Θ),
D1(G,G∗)≤ε

V (gG, gG∗)/D1(G,G∗) > 0. (12)

Suppose that the inequality in equation (12) does not hold, then we can find a sequence Gn :=∑k∗
i=1 exp(β

n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i )

∈ Ek∗(Θ) such that V (gGn , gG∗)/D1(Gn, G∗) → 0 and D1(Gn, G∗) → 0
as n → ∞. Next, for each j ∈ [k∗], let us define the Voronoi cells corresponding to the mixing
measure Gn as follows:

An
j = Aj(Gn) = {i ∈ [k∗] : ∥θni − θ∗j∥ ≤ ∥θni − θ∗ℓ∥, ∀ℓ ̸= j∥},

where θni := (ani , b
n
i , σ

n
i ) and θ∗j := (a∗j , b

∗
j , σ

∗
j ). As the number of distinct sets An

1 × . . .×An
k∗

is finite,
there exist a subsequence of Gn such that Aj = An

j , i.e., the Voronoi cells are independent of n, for
all j ∈ [k∗]. Since the argument in this proof is asymptotic, without loss of generality we assume
that these Voronoi cells are independent of n for all n. Additionally, since k∗ is known under the
exact-fitted setting and D1(Gn, G∗) → 0, the Voronoi cells Aj has only one element for any j ∈ [k∗].
Without loss of generality, we assume that Aj = {j} for all j ∈ [k∗], i.e., (anj , b

n
j , σ

n
j ) → (a∗j , b

∗
j , σ

∗
j )

as n → ∞. Furthermore, there exist t1 and t2 independent of n and a subsequence of Gn, which we
again assume without loss of generality to hold for all n, such that exp(βn

0j) → exp(β∗
0j + t1) and

βn
1j → β∗

1j + t2 as n approaches infinity for all j ∈ [k∗]. It indicates that we can upper bound the
Voronoi loss function D1(Gn, G∗) as follows:

D1(Gn, G∗) ≤
k∗∑
j=1

∑
i∈Aj

exp(βn
0i)∥(∆t2β

n
1ij ,∆anij ,∆bnij ,∆σn

ij)∥+ |
∑
i∈Aj

exp(βn
0i)− exp(β∗

0j + t1)|

:= D′
1(Gn, G∗).

As V (gGn , gG∗)/D1(Gn, G∗) → 0, we obtain that V (gGn , gG∗)/D′
1(Gn, G∗) → 0.

Step 1: Decomposition

Subsequently, we consider Qn := [
∑k∗

j=1 exp((β
∗
1j + t2)

⊤X + β∗
0j + t1)] · [gGn(Y |X) − gG∗(Y |X)],
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which is decomposed as

Qn =

k∗∑
j=1

∑
i∈Aj

exp(βn
0i)

[
u(X,Y |βn

1i, a
n
i , b

n
i , σ

n
i )− u(X,Y |β∗

1j + t2, a
∗
j , b

∗
j , σ

∗
j )
]

−
k∗∑
j=1

∑
i∈Aj

exp(βn
0i)

[
v(X,Y |βn

1i)− v(X,Y |β∗
1j + t2)

]

+

k∗∑
j=1

( ∑
i∈Aj

exp(βn
0i)− exp(β∗

0j + t1)
)[

u(X,Y |β∗
1j + t2, a

∗
j , b

∗
j , σ

∗
j )− v(X,Y |β∗

1j + t2)
]
,

:= An +Bn + En, (13)

where we denote u(X,Y |β1, a, b, σ) := exp(β⊤
1 X)f(Y |a⊤X+b, σ) and v(X,Y |β1) := exp(β⊤

1 X)gGn(Y |X).
Next, by means of the first-order Taylor expansion, we rewrite An as

An =

k∗∑
j=1

∑
i∈Aj

∑
|α|=1

exp(βn
0i)

2α4α!
(∆t2β

n
1ij)

α1(∆anij)
α2(∆bnij)

α3(∆σn
ij)

α4

×Xα1+α2 exp((β∗
1j + t2)

⊤X) · ∂
|α2|+α3+2α4f

∂h
|α2|+α3+2α4

1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) +R1(X,Y )

=

k∗∑
j=1

∑
i∈Aj

2∑
2|ℓ1|+ℓ2=1

∑
α∈Iℓ1,ℓ2

exp(βn
0i)

2α4α!
(∆t2β

n
1ij)

α1(∆anij)
α2(∆bnij)

α3(∆σn
ij)

α4

×Xℓ1 exp((β∗
1j + t2)

⊤X) · ∂
ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) +R1(X,Y ), (14)

where R1(X,Y ) is a Taylor remainder such that R1(X,Y )/D′
1(Gn, G∗) → 0 as n → ∞. The last

equality in the above equation is obtained by defining ℓ1 = α1 + α2, ℓ2 = |α2|+ α3 + α4 and

Iℓ1,ℓ2 :=
{
α = (αi)

4
i=1 ∈ Nd × Nd × N× N : α1 + α2 = ℓ1, α3 + 2α4 = ℓ2 − |α2|

}
, (15)

for all (ℓ1, ℓ2) ∈ Rd × R such that 1 ≤ 2|ℓ1|+ ℓ2 ≤ 2. Analogously, Bn can be rewritten as

Bn = −
k∗∑
j=1

∑
i∈Aj

∑
|γ|=1

exp(βn
0i)

γ!
(∆t2β

n
1ij)

γXγ exp((β∗
1j + t2)

⊤X)gGn(Y |X) +R2(X,Y ), (16)

where R2(X,Y ) is a Taylor remainder such that R2(X,Y )/D′
1(Gn, G∗) → 0 as n → ∞. From the

formulations of An, Bn and En, we can represent Qn as the following linear combination

Qn =

k∗∑
j=1

2∑
2|ℓ1|+ℓ2=0

Tℓ1,ℓ2(j) ·Xℓ1 exp((β∗
1j + t2)

⊤X)
∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j )

+

k∗∑
j=1

1∑
|γ|=0

Sγ(j) ·Xγ exp((β∗
1j + t2)

⊤X)gGn(Y |X),
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with coefficients being denoted by Tℓ1,ℓ2(j) and Sγ(j) for all j ∈ [k∗], 0 ≤ 2|ℓ1| + ℓ2 ≤ 2 and
0 ≤ |γ| ≤ 1 where

Tℓ1,ℓ2(j) =



∑
i∈Aj

∑
α∈Iℓ1,ℓ2

exp(βn
0i)

2α4α!
(∆t2β

n
1ij)

α1(∆anij)
α2(∆bnij)

α3(∆σn
ij)

α4 ,

(ℓ1, ℓ2) ̸= (0d, 0)

∑
i∈Aj

exp(βn
0i)− exp(β∗

0j + t1), (ℓ1, ℓ2) = (0d, 0)

(17)

and

Sγ(j) =


−
∑

i∈Aj

exp(βn
0i)

γ!
(∆t2β

n
1ij)

γ , |γ| ≠ 0

−
∑

i∈Aj
exp(βn

0i) + exp(β∗
0j + t1), |γ| = 0.

(18)

Step 2: Non-vanishing coefficients

Now, we will demonstrate by contradiction that at least one of the terms Tℓ1,ℓ2(j)/D′
1(Gn, G∗),

Sγ(j)/D′
1(Gn, G∗) does not approach zero. Indeed, assume that all of them vanish when n → ∞,

then we get

k∗∑
j=1

|T0,0(j)|
D′

1(Gn, G∗)
=

k∗∑
j=1

|
∑

i∈Aj
exp(βn

0i)− exp(β∗
0j + t1)|

D′
1(Gn, G∗)

→ 0,

which implies that

1

D′
1(Gn, G∗)

·
k∗∑
j=1

∣∣∣ ∑
i∈Aj

exp(βn
0i)− exp(β∗

0j + t1)
∣∣∣ → 0. (19)

Similarly, by considering the limits of Tℓ1,ℓ2(j)/D′
1(Gn, G∗) for all j ∈ [k∗] and 1 ≤ 2|ℓ1|+ ℓ2 ≤ 2, we

obtain that

1

D′
1(Gn, G∗)

·
k∗∑
j=1

∑
i∈Aj

exp(βn
0i)∥(∆t2β

n
1ij ,∆anij ,∆bnij ,∆σn

ij)∥ → 0. (20)

Combine the results in equations (19) and (20), we have 1 = D′
1(Gn, G∗)/D′

1(Gn, G∗) → 0, which is
a contradiction. As a result, not all the limits of Tℓ1,ℓ2(j)/D′

1(Gn, G∗) and Sγ(j)/D′
1(Gn, G∗) equal

to zero.

Step 3: Fatou’s lemma involvement

Thus, let mn be the maximum of the absolute values of those terms, we have that 1/mn ̸→ ∞.
Subsequently, the Fatou’s lemma says that

lim
n→∞

1

mn
· V (gGn , gG∗)

D′
1(Gn, G∗)

≥
∫

lim inf
n→∞

1

mn
· |gGn(Y |X)− gG∗(Y |X)|

2D′
1(Gn, G∗)

d(X,Y ). (21)
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By assumption, the left-hand side of the above equation equals to zero, therefore, the integrand in
the right-hand side also equals to zero for almost surely (X,Y ), which leads to the following limit:
Qn/[mnD1(Gn, G∗)] → 0 as n → ∞ for almost surely (X,Y ). More specifically, we have

k∗∑
j=1

2∑
2|ℓ1|+ℓ2=0

ηℓ1,ℓ2(j) ·Xℓ1 exp((β∗
1j)

⊤X)
∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j )

+

k∗∑
j=1

1∑
|γ|=0

ωγ(j) ·Xγ exp((β∗
1j)

⊤X)gG∗(Y |X) = 0,

for almost surely (X,Y ), where ηℓ1,ℓ2(j) and ωγ(j) are the limits of Tℓ1,ℓ2(j)/[mnD′
1(Gn, G∗)] and

Sγ(j)/[mnD′
1(Gn, G∗)], respectively, for all j ∈ [k∗] , 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2 and 0 ≤ |γ| ≤ 1. Here, at

least one among ηℓ1,ℓ2(j) and ωγ(j) is different from zero. On the other hand, since the set

W1 : =

{
Xℓ1 exp((β∗

1j)
⊤X)

∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) : j ∈ [k∗], 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2

}
∪
{
Xγ exp((β∗

1j)
⊤X)gG∗(Y |X) : j ∈ [k∗], 0 ≤ |γ| ≤ 1

}
, (22)

is linearly independent (see Lemma 2 at the end of this proof), we obtain that ηℓ1,ℓ2(j) = ωγ(j) = 0
for all j ∈ [k∗] , 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2 and 0 ≤ |γ| ≤ 1, which is a contradiction. Thus, we reach the
local inequality in equation (12), that is, there exists ε′ > 0 that satisfies

inf
G∈Ek∗ (Θ),
D1(Gn,G∗)

V (gG, gG∗)/D1(G,G∗) > 0.

Then, in order to obtain the conclusion in equation (11), it suffices to prove its following global
version:

Global version:

inf
G∈Ek∗ (Θ),

D1(G,G∗)>ε′

V (gG, gG∗)/D1(G,G∗) > 0. (23)

Assume by contrary that there exists a sequence G′
n ∈ Ek∗(Θ) that satisfies{

limn→∞ V (gG′
n
, gG∗)/D1(G

′
n, G∗) = 0,

D1(G
′
n, G∗) > ε′.

Therefore, we obtain that V (gG′
n
, gG∗) → 0 as n → ∞. Since the set Θ is compact, we are able to

replace the sequence G′
n by its subsequence which converges to some mixing measure G′ ∈ Ek∗(Θ)

such that D(G′, G∗) > ε′. Then, by the Fatou’s lemma, we get

lim
n→∞

V (gG′
n
, gG∗) ≥

1

2

∫
lim inf
n→∞

|gG′
n
(Y |X)− gG∗(Y |X)| d(X,Y ),

which implies that ∫
|gG′(Y |X)− gG∗(Y |X)| d(X,Y ) = 0

14



Thus, we obtain that gG′(Y |X) = gG∗(Y |X) for almost surely (X,Y ). Now that the softmax
gating Gaussian mixture of experts is identifiable up to a translation (see Proposition 1), the
mixing measure G′ admits the form G′ =

∑k∗
i=1 exp(β

∗
0τ(i) + t1)δ(β∗

1τ(i)
+t2,a∗τ(i),b

∗
τ(i)

,σ∗
τ(i)

) for some
t1, t2, where τ is some permutation of the set {1, 2, . . . , k}. This leads to D1(G

′, G∗) = 0, which
contradicts the hypothesis that D1(G

′, G∗) > ε′ > 0. Hence, we obtain the inequality in equation (11).

To complete the proof, we will show the previous claim regarding the independence of elements in
W1 in the following lemma:

Lemma 2. The set W1 defined in equation (22) is linearly independent.

Proof of Lemma 2. Assume that we have the following equality for almost surely (X,Y ):

k∗∑
j=1

2∑
2|ℓ1|+ℓ2=0

ηℓ1,ℓ2(j) ·Xℓ1 exp((β∗
1j)

⊤X)
∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j )

+

k∗∑
j=1

1∑
|γ|=0

ωγ(j) ·Xγ exp((β∗
1j)

⊤X)gG∗(Y |X) = 0,

where ηℓ1,ℓ2(j) ∈ R and ωγ(j) ∈ R, we need to show that ηℓ1,ℓ2(j) = ωγ(j) = 0, for all j ∈ [k∗],
0 ≤ 2|ℓ1|+ ℓ2 ≤ 2 and 0 ≤ |γ| ≤ 1. The above equation is equivalent to

k∗∑
j=1

1∑
ζ=0

[ 2−2ζ∑
ℓ2=0

ηζ,ℓ2(j)
∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) + ωζ(j)gG∗(Y |X)

]
Xζ exp((β∗

1j)
⊤X) = 0,

for almost surely (X,Y ). Since β∗
11, . . . , β

∗
1k∗

are k∗ distinct values, we get that the set
{
exp((β∗

1j)
⊤X) : j ∈ [k∗]

}
is linearly independent, which implies that

1∑
ζ=0

[ 2−2ζ∑
ℓ2=0

ηζ,ℓ2(j)
∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) + ωζ(j)gG∗(Y |X)

]
Xζ = 0,

for all j ∈ [k∗] for almost surely (X,Y ). Obviously, the above equation is a polynomial of X ∈ X ,
where X is a compact subset of Rd. Then, we achieve that

2−2ζ∑
ℓ2=0

ηζ,ℓ2(j)
∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) + ωζ(j)gG∗(Y |X) = 0,

for all j ∈ [k∗] and ζ ∈ {0, 1}, for almost surely (X,Y ). Again, as (a∗j , b
∗
j , σ

∗
j ) for j ∈ [k∗] are k∗

distinct tuples, we have that ((a∗j )
⊤X + b∗j , σ

∗
j ) for j ∈ [k∗] are also k∗ distinct tuples for almost

surely X. Therefore,
{

∂ℓ2f

∂h
ℓ2
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ), gG∗(Y |X)

}
is a linearly independent set. As a

result, ηℓ1,ℓ2(j) = ωγ(j) = 0 for all j ∈ [k∗], 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2 and 0 ≤ |γ| ≤ 1. Hence, the proof is
completed.
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A.2 Proof of Theorem 2

In this proof, we will adapt the framework in Appendix A.1 to the setting of Theorem 2. However,
since the arguments utilized for the global version part remain the same (up to some changes of
notations) for the over-fitted setting, they will not be presented here again and we focus only on
proving the following local inequality by following the steps outlined in Appendix A.1:

lim
ε→0

inf
G∈Ok(Θ),

D2(Gn,G∗)≤ε

V (gG, gG∗)/D2(G,G∗) > 0. (24)

Assume that the above claim is not true, then there exists a sequence Gn :=
∑kn

i=1 exp(β
n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i )

∈
Ok(Θ) such that both terms V (gGn , gG∗)/D2(Gn, G∗) and D2(Gn, G∗) vanish to 0 when n tends to
infinity. As kn ≤ k for all n ∈ N, we are able to substitute the sequence Gn with its subsequence
which has the number of atoms kn = k′ ≤ k∗ being independent of n. Since the proof argument is
asymptotic, we also assume that kn = k′ for all n ≥ 1. Following the proof argument of Theorem 1 in
Appendix A.1, we also assume that the Voronoi cells Aj = An

j does not change with n for all j ∈ [k∗].
Furthermore, for any (ani , b

n
i , σ

n
i ) that i ∈ Aj , we have (ani , b

n
i , σ

n
i ) → (a∗j , b

∗
j , σ

∗
j ) as n approaches

infinity. Furthermore, there exist t1, t2 such that exp(βn
0i) → exp(β∗

0j + t1) and βn
1i → β∗

1j + t2 for
any i ∈ Aj and j ∈ [k∗]. Given t1, t2, we can upper bound the Voronoi loss function D2(Gn, G∗) as
follows:

D2(Gn, G∗) ≤
∑

j:|Aj |>1

∑
i∈Aj

exp(βn
0i)(∥(∆t2β

n
1ij ,∆bnij)∥r̄(|Aj |) + ∥(∆anij ,∆σn

ij)∥r̄(|Aj |)/2)

+
∑

j:|Aj |=1

∑
i∈Aj

exp(βn
0i)∥(∆t2β1ij ,∆anij ,∆bnij ,∆σn

ij)∥+
k∗∑
j=1

|
∑
i∈Aj

exp(βn
0i)− exp(β∗

0j + t1)|

:= D′
2(Gn, G∗).

Since V (gGn , gG∗)/D2(Gn, G∗) → 0, the above inequality leads to V (gGn , gG∗)/D′
2(Gn, G∗) → 0 as

n → ∞.

Step 1: Decomposition

In this step, we reuse the decomposition Qn = An +Bn + En in equation (13). However, under the
over-fitted setting, since there are some Voronoi cells Aj possibly having more than one element, we
continue to decompose An and Bn as follows:

An =
∑

j:|Aj |=1

∑
i∈Aj

exp(βn
0i)

[
u(X,Y |βn

1i, a
n
i , b

n
i , σ

n
i )− u(X,Y |β∗

1j + t2, a
∗
j , b

∗
j , σ

∗
j )
]

+
∑

j:|Aj |>1

∑
i∈Aj

exp(βn
0i)

[
u(X,Y |βn

1i, a
n
i , b

n
i , σ

n
i )− u(X,Y |β∗

1j + t2, a
∗
j , b

∗
j , σ

∗
j )
]

: = An,1 +An,2,
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and

Bn = −
∑

j:|Aj |=1

∑
i∈Aj

exp(βn
0i)

[
v(X,Y |βn

1i)− v(X,Y |β∗
1j + t2)

]
−

∑
j:|Aj |>1

∑
i∈Aj

exp(βn
0i)

[
v(X,Y |βn

1i)− v(X,Y |β∗
1j + t2)

]
: = Bn,1 +Bn,2.

Now, we apply the first-order Taylor expansions for two terms An,1 and Bn,1 as in equations (14)
and (16), while for An,2 and Bn,2, we use the Taylor expansions of orders r̄(|Aj |) and 2, respectively,
for each j : |Aj | > 1 as

An,2 =
∑

j:|Aj |>1

∑
i∈Aj

2r̄(|Aj |)∑
2|ℓ1|+ℓ2=1

∑
α∈Iℓ1,ℓ2

exp(βn
0i)

2α4α!
(∆t2β

n
1ij)

α1(∆anij)
α2(∆bnij)

α3(∆σn
ij)

α4

×Xℓ1 exp((β∗
1j + t2)

⊤X) · ∂
ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) +R3(X,Y ),

Bn,2 = −
∑

j:|Aj |>1

∑
i∈Aj

2∑
|γ|=1

exp(βn
0i)

γ!
(∆t2β

n
1ij)

γXγ exp((β∗
1j + t2)

⊤X)gGn(Y |X) +R4(X,Y ),

where Iℓ1,ℓ2 is defined in equation (15) and R3(X,Y ), R4(X,Y ) are Taylor remainders such that
Rp(X,Y )/D′

2(Gn, G∗) → 0 when n → ∞ for p ∈ {3, 4}. As a result, Qn can represented as

Qn =

k∗∑
j=1

2r̄(|Aj |)∑
2|ℓ1|+ℓ2=0

Tℓ1,ℓ2(j) ·Xℓ1 exp((β∗
1j + t2)

⊤X)
∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j )

+

k∗∑
j=1

1+1{|Aj |>1}∑
|γ|=0

Sγ(j) ·Xγ exp((β∗
1j + t2)

⊤X)gGn(Y |X), (25)

where Tℓ1,ℓ2(j) and Sγ(j) are defined in equations (17) and (18).

Step 2: Non-vanishing coefficients

Next, we will show that not all the quantities Tℓ1,ℓ2(j)/D′
2(Gn, G∗) and Sγ(j)/D′

2(Gn, G∗) go to 0
as n → ∞. Assume that all of them vanish when n tends to infinity. Then, by arguing similarly as
in equations (19) and (20), we obtain that

1

D′
2(Gn, G∗)

·
[ k∗∑
j=1

∣∣∣ ∑
i∈Aj

exp(βn
0i)− exp(β∗

0j + t1)
∣∣∣

+
∑

j:|Aj |=1

∑
i∈Aj

exp(βn
0i)∥(∆t2β

n
1ij ,∆anij ,∆bnij ,∆σn

ij)∥
]
→ 0.

Putting the above limit and the formulation of D2(Gn, G∗) together, we deduce that

1

D′
2(Gn, G∗)

·
∑

j:|Aj |>1

∑
i∈Aj

exp(β0i)(∥∆t2β
n
1ij ,∆bnij∥r̄(|Aj |) + ∥(∆anij ,∆σn

ij∥r̄(|Aj |)/2) ̸→ 0,
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which indicates that there exists some index j∗ ∈ [k∗] such that |Aj∗ | > 1 and

1

D′
2(Gn, G∗)

·
∑
i∈Aj∗

exp(β0i)∥(∆t2β
n
1ij∗ ,∆bnij∗)∥r̄(|Aj |) + ∥(∆anij∗ ,∆σn

ij∗)∥r̄(|Aj |)/2 ̸→ 0,

for all t2 ∈ Rd. Without loss of generality, we may assume that j∗ = 1. Recall that for (ℓ1, ℓ2) such
that 1 ≤ |ℓ1|+ ℓ2 ≤ r̄(|A1|), we have Tℓ1,ℓ2(1)/D′

2(Gn, G∗) → 0 as n → ∞. Thus, by dividing this
ratio and the left hand side of the above equation and let t2 = 0, we obtain that

∑
i∈A1

∑
α∈Iℓ1,ℓ2

exp(βn
0i)

2α4α!
(∆βn

1i1)
α1(∆ani1)

α2(∆bni1)
α3(∆σn

i1)
α4∑

i∈A1
exp(βn

0i)(∥(∆βn
1i1,∆bni1)∥r̄(|A1|) + ∥(∆ani1,∆σn

i1)∥r̄(|A1|)/2)
→ 0, (26)

for all (ℓ1, ℓ2) such that 1 ≤ |ℓ1|+ ℓ2 ≤ r̄(|A1|).
Let us define Mn := max{∥∆βn

1i1∥, ∥∆ani1∥1/2, |∆bni1|, |∆σn
i1|1/2 : i ∈ A1} and βn := maxi∈A1 exp(β

n
0i).

Note that the sequence exp(βn
0i)/βn is bounded, we will replace it by its subsequence that has a

positive limit p25i := limn→∞ exp(βn
0i)/βn. Thus, at least one among p25i for i ∈ A1 equals 1.

In addition, we also define

(∆βn
1i1)/Mn → p1i, (∆ani1)/Mn → p2i,

(∆bni1)/Mn → p3i, (∆σn
i1)/[2Mn] → p4i.

Here, at least one of p1i, p2i, p3i and p4i for i ∈ A1 equals either 1 or −1. Next, we divide both the
numerator and the denominator of the ratio in equation (26) by βnM

ℓ1+ℓ2
n , we achieve the following

system of polynomial equations:∑
i∈A1

∑
α∈Iℓ1,ℓ2

1

α!
· p25ip

α1
1i p

α2
2i p

α3
3i p

α4
4i = 0,

for all (ℓ1, ℓ2) such that 1 ≤ |ℓ1|+ ℓ2 ≤ r̄(|A1|). However, based on definition of r̄(|A1|), the above
system do not have any non-trivial solutions, which is a contradiction. Thus, not all the quantities
Tℓ1,ℓ2(j)/D′

2(Gn, G∗) and Sγ(j)/D′
2(Gn, G∗) go to 0 as n → ∞.

Step 3: Fatou’s lemma involvement

Subsequently, we denote by mn be the maximum of the absolute values of those quantities. Based
on the result in Step 2, we know that 1/mn ̸→ ∞. Then, by applying the Fatou’s lemma as in
equation (21), we get that Qn/[mnD′

2(Gn, G∗)] → 0 as n → ∞ for almost surely (X,Y ). It follows
from the decomposition of Qn in equation (25) that

k∗∑
j=1

2r̄(|Aj |)∑
2|ℓ1|+ℓ2=0

ηℓ1,ℓ2(j) ·Xℓ1 exp((β∗
1j)

⊤X)
∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j )

+

k∗∑
j=1

1+1{|Aj |>1}∑
|γ|=0

ωγ(j) ·Xγ exp((β∗
1j)

⊤X)gG∗(Y |X) = 0,
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for almost surely (X,Y ), where ηℓ1,ℓ2(j) and ωγ(j) denote the limits of Tℓ1,ℓ2(j)/[mnD′
2(Gn, G∗)]

and Sγ(j)/[mnD′
2(Gn, G∗)] as n → ∞, respectively, for all j ∈ [k∗] , 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2r̄(|Aj |) and

0 ≤ |γ| ≤ 1 + 1{|Aj |>1}. By definition, at least one among ηℓ1,ℓ2(j) and ωγ(j) is different from zero.
Nevertheless, as the set

W2 : =

{
Xℓ1 exp((β∗

1j)
⊤X)

∂ℓ2f

∂hℓ21
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) : j ∈ [k∗], 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2r̄(|Aj |)

}
∪
{
Xγ exp((β∗

1j)
⊤X)gG∗(Y |X) : j ∈ [k∗], 0 ≤ |γ| ≤ 1 + 1{|Aj |>1}

}
, (27)

is linearly independent (proof can be done similarly to Lemma 2), it follows that ηℓ1,ℓ2(j) = ωγ(j) = 0
for all j ∈ [k∗] , 0 ≤ 2|ℓ1| + ℓ2 ≤ 2r̄(|Aj |) and 0 ≤ |γ| ≤ 1 + 1{|Aj |>1}, which is a contradiction.
Hence, we achieve the inequality in equation (24), and complete the proof.

B Proofs of Auxiliary Results

In this appendix, we provide proofs for the remaining results of the paper.

B.1 Proof of Proposition 1

Given the notations in Proposition 1, assume that the equation gG(Y |X) = gG′(Y |X) holds true,
that is,

k∑
i=1

exp((β1i)
⊤X + β0i)∑k

j=1 exp((β1j)
⊤X + β0j)

f(Y |(ai)⊤X + bi, σi)

=

k′∑
i=1

exp((β′
1i)

⊤X + β′
0i)∑k

j=1 exp((β
′
1j)

⊤X + β′
0j)

f(Y |(a′i)⊤X + b′i, σ
′
i), (28)

for almost surely (X,Y ). Then, it follows from the identifiability of the location-scale Gaussian
mixtures that the number of atoms and the weight set of the mixing measure G equal to those of its
counterpart G′, i.e. k = k′ and{

exp((β1i)
⊤X + β0i)∑k

j=1 exp((β1j)
⊤X + β0j)

: i ∈ [k]

}
≡

{
exp((β′

1i)
⊤X + β′

0i)∑k
j=1 exp((β

′
1j)

⊤X + β′
0j)

: i ∈ [k]

}
,

for almost surely X. For simplicity, we may assume that

exp((β1i)
⊤X + β0i)∑k

j=1 exp((β1j)
⊤X + β0j)

=
exp((β′

1i)
⊤X + β′

0i)∑k
j=1 exp((β

′
1j)

⊤X + β′
0j)

,

for all i ∈ [k]. Since the softmax function is invariant to translation, we get that β0i = β′
0i + t1 and

β1i = β′
1i + t2 for some t1 ∈ R and t2 ∈ Rd. Therefore, equation (28) reduces to

k∑
i=1

exp(β0i)u(X,Y |β1i, ai, bi, σi) =
k∑

i=1

exp(β0i)u(X,Y |β1i, a′i, b′i, σ′
i)), (29)
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for almost surely (X,Y ), where u(X,Y |β1, a, b, σ) := exp(β⊤
1 X)f(Y |a⊤X+ b, σ) for all i ∈ [k]. Next,

we will partition the index set [k] into q subsets U1, U2, . . . , Uq such that for each ℓ ∈ [q], we have
exp(β0i) = exp(β0i′) for any i, i′ ∈ Uℓ. As a result, equation (29) can be rewritten as

q∑
ℓ=1

∑
i∈Uℓ

exp(β0i)u(X,Y |β1i, ai, bi, σi) =
q∑

ℓ=1

∑
i∈Uℓ

exp(β0i)u(X,Y |β1i, a′i, b′i, σ′
i),

for almost surely (X,Y ). Given the above equation, for each ℓ ∈ [q], we obtain that{
((ai)

⊤X + bi, σi) : i ∈ Uℓ

}
≡

{
((a′i)

⊤X + b′i, σ
′
i) : i ∈ Uℓ

}
,

for almost surely X, which directly leads to

{(ai, bi, σi) : i ∈ Uℓ} ≡
{
(a′i, b

′
i, σ

′
i) : i ∈ Uℓ

}
.

WLOG, we assume that (ai, bi, σi) = (a′i, b
′
i, σ

′
i) for all i ∈ Uℓ. Consequently,

q∑
ℓ=1

∑
i∈Uℓ

exp(β0i)δ{β1i,ai,bi,σi} =

q∑
ℓ=1

∑
i∈Uℓ

exp(β′
0i + t1)δ{β′

1i+t2,a′i,b
′
i,σ

′
i},

or equivalently, G ≡ G′
t1,t2 . Hence, the proof is completed.

B.2 Proof of Proposition 2

Our proof will be based on the convergence rates of density estimation from MLE in Theorem 7.4 in
[31]. Before stating this result here, let us introduce some necessary notations. Firstly, let Pk(Θ)
be the set of conditional densities of all mixing measures in Ok(Θ), i.e., Pk(Θ) := {gG(Y |X) : G ∈
Ok(Θ)}. Additionally, we define

P̃1/2
k (Θ) := {g1/2(G+G∗)/2

(Y |X) : G ∈ Ok(Θ)}.

Next, for each δ > 0, the Hellinger ball centered around the conditional density gG∗(Y |X) and
intersected with the set P̃1/2

k (Θ) is denoted by

P̃1/2
k (Θ, δ) :=

{
g1/2 ∈ P̃1/2

k (Θ) : h(g, gG∗) ≤ δ
}
.

Finally, in order to measure the size of the above set, [31] proposes using the following quantity:

JB(δ, P̃1/2
k (Θ, δ)) :=

∫ δ

δ2/213
H

1/2
B (t, P̃1/2

k (Θ, t), ∥ · ∥2) dt ∨ δ, (30)

where HB(t, P̃1/2
k (Θ, t), ∥ · ∥2) denotes the bracketing entropy [31] of P̃1/2

k (Θ, u) under the ℓ2-norm,
and t ∨ δ := max{t, δ}. Now, we are ready to recall the statement of Theorem 7.4 in [31]:

Theorem 3 (Theorem 7.4, [31]). Take Ψ(δ) ≥ JB(δ, P̃1/2
k (Θ, δ)) that satisfies Ψ(δ)/δ2 is a non-

increasing function of δ. Then, for some universal constant c and for some sequence (δn) such that√
nδ2n ≥ cΨ(δn), we achieve that

P
(
h(g

Ĝn
, gG∗) > δ

)
≤ c exp

(
−nδ2

c2

)
,

for all δ ≥ δn.
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The proof of this theorem can be seen in [31].

Proof of Proposition 2. Back to our main proof, since

HB(t, P̃1/2
k (Θ, u), ∥ · ∥2) ≤ HB(t,Pk(Θ, t), h)

for any t > 0, it follows from equation (30) that

JB(δ, P̃1/2
k (Θ, δ)) ≤

∫ δ

δ2/213
H

1/2
B (t,Pk(Θ, t), ∥ · ∥2) dt ∨ δ ≲

∫ δ

δ2/213
log(1/t)dt ∨ δ,

where we apply the upper bound of a bracketing entropy in Lemma 3 (cf. the end of this proof) in
the second inequality. Let Ψ(δ) = δ[log(1/δ)]1/2, we have Ψ(δ)/δ2 is a non-increasing function of θ.
Moreover, the above equation deduces that Ψ(δ) ≥ JB(δ, P̃1/2

k (Θ, δ)). Additionally, we also have
that

√
nδ2n ≥ cΨ(δn) for some universal constant c. As all the assumptions are met, Theorem 3 gives

us that

P(h(g
Ĝn

, gG∗) > C(log(n)/n)1/2) ≲ exp(−c log(n)),

for some universal constant C that depends only on Θ.

For completion, we will provide the result regarding the upper bound of a bracketing entropy in the
following lemma:

Lemma 3. Assume that Θ is a bounded set, then the following inequality holds true for any
0 ≤ ε ≤ 1/2:

HB(ε,Pk(Θ), h) ≲ log(1/ε).

Proof of Lemma 3. Firstly, we will establish an upper bound for the univariate Gaussian density
f(Y |a⊤X + b, σ). Since both X and Θ are bounded sets, there exist positive constants κ, u, ℓ such
that −κ ≤ a⊤X + b ≤ κ and ℓ ≤ σ ≤ u. As a result,

f(Y |a⊤X + b, σ) =
1√
2πh2

exp
(
− (Y − h1)

2

2h2

)
≤ 1√

2πℓ
.

For any |Y | ≥ 2κ, we have that (Y−h1)2

2h2
≥ Y 2

8u , which leads to

f(Y |a⊤X + b, σ) ≤ 1√
2πℓ

exp
(
− Y 2

8u

)
.

Putting the above results together, we obtain that f(Y |a⊤X + b, σ) ≤ K(Y |X), where we define
K(Y |X) := 1√

2πℓ
exp

(
− Y 2

8u

)
if |Y | ≥ 2κ, and K(Y |X) := 1√

2πℓ
otherwise.

Subsequently, let η ≤ ε, we assume that the set Pk(Θ) has an η-cover (under ℓ1-norm) denoted by
{π1, . . . , πN}, where N := N(η,Pk(Θ), ∥ · ∥1) is known as the η-covering number of Pk(Θ). Then,
we will build up the brackets of the form [νi(Y |X), µi(Y |X)] for all i ∈ [N ] as follows:

νi(Y |X) := max{πi(Y |X)− η, 0},
µi(Y |X) := max{πi(Y |X) + η,K(Y |X)}.
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Consequently, it can be checked that Pk(Θ) ⊂
⋃N

i=1[νi(Y |X), µi(Y |X)] with a note that µi(Y |X)−
νi(Y |X) ≤ min{2η,K(Y |X)}. Next, for each i ∈ [N ], we attempt to give an upper bound for

∥µi − νi∥1 =
∫
|Y |<2κ

(µi(Y |X)− νi(Y |X)) d(X,Y ) +

∫
|Y |≥2κ

(µi(Y |X)− νi(Y |X)) d(X,Y )

≤ Rη + exp
(
− R2

2u

)
≤ R′η,

where R := max{2κ,
√
8u} log(1/η) and R′ is some positive constant. By definition of the bracketing

entropy, since HB(R
′η,Pk(Θ), ∥ · ∥1) is the logarithm of the smallest number of brackets of size R′η

necessary to cover Pk(Θ), we achieve that

HB(R
′η,Pk(Θ), ∥ · ∥1) ≤ logN = logN(η,Pk(Θ), ∥ · ∥1)

≤ logN(η,Pk(Θ), ∥ · ∥∞),

where ∥ · ∥∞ denotes the sup-norm and the last inequality is due to the fact that ∥ · ∥∞ ≤ ∥ · ∥1.
Assume that the following upper bound for the covering number logN(η,Pk(Θ), ∥ · ∥∞) ≲ log(1/η)
holds true (proof provided at the end), then the above result leads to

HB(R
′η,Pk(Θ), ∥ · ∥1) ≲ log(1/η).

By selecting η = ε/R′, we receive that HB(ε,Pk(Θ), ∥ · ∥1) ≲ log(1/ε). Furthermore, since the
Hellinger distance is upper bounded by the ℓ1-norm, we reach the desired conclusion:

HB(ε,Pk(Θ), h) ≲ log(1/ε).

Upper bound of the covering number. For completion, we will establish the following upper
bound for the covering number, i.e.,

logN(η,Pk(Θ), ∥ · ∥∞) ≲ log(1/η).

Let us denote ∆η as an η-cover of size M1 for an k-dimensional simplex and Ω := {(a, b, σ) :
(β0, β1, a, b, σ) ∈ Θ}. Since Θ is a compact set, Ω is also a compact set in Rd+2. Thus, we can
find an η-cover Ωη of Ω with the covering number M2. It can be verified that M1 ≤ (5/η)k and
M2 ≲ O((1/η)(d+2)k).

For each mixing measure G =
∑k

i=1 exp(β0i)δ(β1i,ai,bi,σi) ∈ Ok(Θ), we consider another one denoted
by G̃ :=

∑k
i=1 exp(β0i)δ(β1i,ai,bi,σi)

, where (ai, bi, σi) ∈ Ωη such that (ai, bi, σi) are the closest to
(ai, bi, σi) for all i ∈ [k]. In addition, we also take into account the following mixing measure

G :=
∑k

i=1 exp(β0i)δ(β1i,ai,bi,σi)
, where (p̄i(X))ki=1 :=

(
exp(β

⊤
1iX+β0i)∑k

j=1 exp(β
⊤
1jX+β0j)

)k

i=1

is the closest to

(pi(X))ki=1 :=

(
exp(β⊤

1iX+β0i)∑k
j=1 exp(β

⊤
1jX+β0j)

)k

i=1

. We can verify that the conditional density gG belongs to the

following set:

R :=
{
gG ∈ Pk(Θ) : (pi(X))ki=1 ∈ ∆η, (ai, bi, σi)

k
i=1 ∈ Ωη

}
.
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By the triangle inequality, we have

∥gG − gG∥∞ ≤ ∥gG − g
G̃
∥∞ + ∥g

G̃
− gG∥∞.

From the formulation of G̃, we get the following bounds:

∥gG − g
G̃
∥∞ ≤

k∑
i=1

∥pi(X)[f(Y |(ai)⊤X + bi, σi)− f(Y |(ai)⊤X + bi, σi)]∥∞

≲
k∑

i=1

(∥ai − ai∥+ |bi − bi|+ |σi − σi|)

≲ η, (31)

where the second inequality follows from the facts that X is a bounded set. Additionally, we have

∥g
G̃
− gG∥∞ ≤

k∑
i=1

∥[pi(X)− p̄i(X)]f(Y |(ai)⊤X + bi, σi)∥∞ ≲ η (32)

Combine the bounds in equations (31) and (32), we receive ∥gG − gG∥∞ ≲ η, which means that R is
an η-cover (not necessarily smallest) of Pk(Θ) under the sup-norm. By definition of the covering
number, we know that

N(η,Pk(Θ), ∥ · ∥∞) ≤ O((5/η)k) · O((1/η)(d+2)k),

or equivalently,

logN(η,Pk(Θ), ∥ · ∥∞) ≲ log(1/η).

Hence, the proof is completed.

B.3 Proof of Lemma 1

First of all, let us recall the system of polynomial equations of interest here:
m∑
j=1

∑
α∈Iℓ1,ℓ2

1

α!
· p25jp

α1
1j p

α2
2j p

α3
3j p

α4
4j = 0, (33)

where Iℓ1,ℓ2 = {α = (α1, α2, α3, α4) ∈ Nd × Nd × N× N : α1 + α2 = ℓ1, |α2|+ α3 + 2α4 = ℓ2} for
any (ℓ1, ℓ2) ∈ Nd × N such that 0 ≤ |ℓ1| ≤ r, 0 ≤ ℓ2 ≤ r − |ℓ1| and |ℓ1|+ ℓ2 ≥ 1.

In this proof, we denote p1j = (p1j1, p1j2, . . . , p1jd) and p2j = (p2j1, p2j2, . . . , p2jd).

When m = 2:

By observing a portion of the above system when ℓ1 = 0d, which is,
m∑
j=1

∑
α3+2α4=ℓ2

p25jp
α3
3j p

α4
4j

α3!α4!
= 0, (34)
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for all 1 ≤ ℓ2 ≤ r, we deduce that r̄(m) ≤ 4 based on the Proposition 2.1 in [17]. Moreover, from the
discussion in Section 3.2 about the system in equation (33), we know that r̄(m) ≥ 3. As a result, it
is sufficient to show that r̄(m) > 3. Indeed, when r = 3, the system in equation (33) can be written
as follows:

m∑
j=1

p25jp1jl = 0 ∀l ∈ [d],
m∑
j=1

p25jp3j = 0,
m∑
j=1

p25j(p2ju + p1jvp3j) = 0 ∀u, v ∈ [d],

m∑
j=1

p25jp1jup1jv = 0 ∀u, v ∈ [d],
m∑
j=1

p25j

(1
2
p23j + p4j

)
= 0,

m∑
j=1

p25j

( 1

3!
p33j + p3jp4j

)
= 0,

m∑
j=1

p25jp1jup1jvp1jl = 0 ∀u, v, l ∈ [d],

m∑
j=1

p25j

(1
2
p1jup1jvp3j + p1jlp2jτ

)
= 0 ∀u, v, l, τ ∈ [d],

m∑
j=1

p25j

(1
2
p1ju · p23j + p1jvp4j + p2jlp3j

)
= 0 ∀u, v, l, τ ∈ [d]. (35)

It can be seen that the following is a non-trivial solution of the above system: p5j = 1, p1j = p2j = 0d

for all j ∈ [m], p31 =
√
3
3 , p32 = −

√
3
3 , p41 = p42 = −1

6 . Therefore, we obtain that r̄(m) > 3, which
leads to r̄(m) = 4.

When m = 3:

Note that r̄(m) is a monotonically increasing function of m, the previous result implies that
r̄(m) > r̄(2) = 4, or equivalently, r̄(m) ≥ 5 when m = 3. Additionally, according to the Proposition
2.1 in [17], we have that r̄(m) ≤ 6 based on the reduced system in equation (34). Thus, we only
need to show that r̄(m) > 5. The system in equation (33) when r = 5 is a combination of the system
in equation (35) and the following system:

m∑
j=1

p25jp1jup1jvp1jlp1jτ = 0 ∀u, v, l, τ ∈ [d],

m∑
j=1

p25j

( 1

4!
p43j +

1

2!
p23jp4j +

1

2!
p24j

)
= 0,

m∑
j=1

p25j

( 1

3!
p1jup

3
3j + p1jvp3jp4j +

1

2!
p2jlp

2
3j + p2jτp4j

)
= 0 ∀u, v, l, τ ∈ [d],

m∑
j=1

p25j

( 1

3!
p1ju1p1ju2p1ju3p3j +

1

2!
p1jv1p1jv2p2jv3

)
= 0 ∀{ui}3i=1, {vi}3i=1 ∈ [d],

m∑
j=1

p25j

( 1

2!2!
p1ju1p1ju2p

2
3j +

1

2!
p1ju3p1ju4p4j + p1ju5p1ju6p3j

)
= 0 ∀{ui}6i=1 ∈ [d],

m∑
j=1

p25j

5∏
i=1

p1jui = 0 ∀{ui}5i=1 ∈ [d],
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m∑
j=1

p25j

( 1

5!
p53j +

1

3!
p33jp4j +

1

2!
p3jp

2
4j

)
= 0,

m∑
j=1

p25j

( 1

4!
p1ju1p

4
3j +

1

2!
p1ju2p

2
3jp4j +

1

2!
p1ju3p

2
4j +

1

3!
p2ju4p

3
3j + p2ju5p3jp4j

)
= 0 ∀{ui}5i=1 ∈ [d],

m∑
j=1

p25j

( 1

4!

4∏
i=1

p1juip3j +
1

3!

7∏
i=5

p1juip2ju8

)
= 0 ∀{ui}8i=1 ∈ [d],

m∑
j=1

p25j

( 1

2!3!

2∏
i=1

p1juip
3
3j +

1

2!

4∏
i=3

p1juip3jp4j + p1ju5p2ju6(
1

2
p23j + p4j) +

1

2!

8∏
i=7

p2juip3j

)
= 0 ∀{ui}8i=1 ∈ [d],

m∑
j=1

p25j

( 1

3!2!

3∏
i=1

p1juip
2
3j +

1

3!

6∏
i=4

p1juip4j +
1

2!
p1ju7p2ju8p3j +

1

2!
p1ju9

11∏
i=10

p2jui

)
= 0∀{ui}11i=1 ∈ [d].

We can verify that the non-trivial solution mentioned in the previous setting also satisfies this system.
Hence, we conclude that r̄(m) = 6.
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