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Abstract

Taking the Fourier integral theorem as our starting point, in this paper we focus on
natural Monte Carlo and fully nonparametric estimators of multivariate distributions and
conditional distribution functions. We do this without the need for any estimated covari-
ance matrix or dependence structure between variables. These aspects arise immediately
from the integral theorem. Being able to model multivariate data sets using conditional
distribution functions we can study a number of problems, such as prediction for Markov
processes, estimation of mixing distribution functions which depend on covariates, and
general multivariate data. Estimators are explicit Monte Carlo based and require no
recursive or iterative algorithms.

Keywords: Conditional distribution function; Kernel smoothing; Mixing distribution;
Nonparametric estimator.

1 Introduction

Estimation of a multivariate distribution or conditional distribution function necessarily re-
quires the construction of a dependence structure between variables. This is usually applied to
a multivariate density function and then integrated to obtain the corresponding distribution
function; see, for example, Jin and Shao [1999]. For example, for a bivariate set of observa-
tions, marginal distributions are easy to estimate and can be achieved either parametrically
or nonparametrically; the latter including empirical distributions or smoothing estimators.
On the other hand, constructing a dependent model is more problematic, particulary from
a nonparametric perspective. See, for example, Panaretos and Konis [2012], Wand [1992],
Wand and Jones [1993], Staniswalis et al. [1993], and Chacon and Duong [2018].

The most common approach is to use smoothing methods based on kernels, such as the
Gaussian kernel. However, this would need the estimation of a covariance matrix. Even if the
interest focuses on a conditional distribution function with multiple conditioning variables,
the same problem arises as with the multivariate kernel methods. As a consequence, a number
of authors consider only a single covariate, such as Hall et al. [1999] and Veraverbeke et al.
[2014].

The estimation of a dependence structure can be achieved using a nonparametric estima-
tion of a copula function. See, for example, Chen and Huang [2007] and Geenens et al. [2017].
However, this is far from trivial and is by no means a popular or common approach. Even
with copulas, kernel methods are employed and now with the additional burden of dealing
with boundary values.

We focus on distribution functions with multiple conditional variables, and we manage this
fully nonparametrically without the need for the construction of a full covariance bandwidth
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matrix. Hence, the aim in this paper is to show how it is possible to work with multivariate
conditional distribution functions and obtain nonparametric estimators while avoiding the
need to estimate any dependence structure. We also consider a variety of other nonparametric
estimation of multivariate functions which are connected to the distribution functions, such
as quantile functions.

The starting point is the Fourier Integral Theorem. Briefly here, for a suitable function
m on Rd, the theorem is given by

m(y) = lim
R→∞

1

πd

∫
Rd

∫
[0,R]d

d∏
j=1

cos(sj(yj − xj))m(x) ds dx, (1)

for any y ∈ Rd where each of the two integrals listed are d–fold. In Ho and Walker [2021], the
authors consider multivariate density and multivariate regression estimation using equation
(1). Natural nonparametric Monte Carlo estimators are obtained. One drawback, despite
excellent convergence properties, is that density function estimators are not guaranteed to be
densities. However, it is easy to use equation (1) to obtain natural Monte Carlo estimators of
distribution functions and these can easily be adapted, using for example, isotonic regression
to be proper distribution functions. These are easily sampled, with an unlimited amount of
samples available, which can then be used to undertake statistical inference via a “generative
model” approach.

The important feature of equation (1) which forms the basis of the paper is that whatever
dependence structure exists within m(x), it is transferred to m(y) via the integration and the
use of independent terms of the type

d∏
j=1

sin(R(yj − xj))
yj − xj

,

for some suitable choice of R > 0. This is quite remarkable and as we shall see allows us to
obtain nonparametric Monte Carlo estimators of, for example, distribution functions without
requiring the construction of any dependence structure.

A number of authors have used the Fourier kernel for density estimation, see Parzen [1962]
and Davis [1975]. However, there has not to our knowledge been any attempt to use the kernel
for multivariate density estimation. The reason could well be the apparent inability to model
a covariance matrix within the kernel. On the other hand, from the foundations of the sin
kernel arising from the Fourier integral theorem, it is clear that a covariance matrix is not
required.

We will be focusing on distribution functions; hence adapting equation (1) to this scenario,
and for ease of introduction, we first restrict the setting to one dimension. Further, we
exchange the limit with R to some fixed value, to get

FR(y) = 1
2 +

1

π

∫
Si(R(y − x)) f(x) dx, (2)

where Si(z) =
∫ z
0 sin(x)/x dx. Equation (2) comes from equation (1) using an integration by

parts along with the fact that
∫∞
0 (sinx)/x dx = π/2. Here f is a density function on R, FR(y)

the approximated distribution function, with FR(y)→ F (y) as R→∞, and

F̂R(y) = 1
2 +

1

nπ

n∑
i=1

Si(R(y − Yi)) (3)
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is how we would estimate (2) from a sample (Y1, . . . , Yn). There are some practical aspects to
using equation (3) to estimate the distribution function, the main one being isotonic regression,
if required, to ensure one obtains a proper distribution function. We will also be using equation
(3) to generate samples when implementing a generative model.

The important contribution of the paper is that we can estimate conditional distributions
with more than one conditioning variable. If using alternative approaches, such as Gaussian
kernels, there is a need to install a covariance matrix. We do not need to do this so we
are estimating conditional distributions fully nonparametrically. Specific cases we consider
include estimating missing outcomes in a Markov process, requiring two conditional variables,
and also estimating a conditional mixing distribution.

The layout of the paper is as follows. In Section 2 we set down the theory for the estima-
tors from the Fourier integral theorem used throughout the paper. We also hint at a class of
function for which an integral theorem will hold, including the possibility of a Haar wavelet
integral theorem. In Section 3 we illustrate with conditional distribution functions; in Sec-
tion 4 with conditional quantile functions and Markov constructed conditional distributions.
Section 5 considers conditional mixing distribution functions. Finally, Section 6 contains a
brief discussions and the Appendix contains the proof to the main results.

2 Properties of the Fourier Integral Theorem

Before going into the details of applications of the Fourier integral theorem to estimate dis-
tribution functions and other related problems, we reconsider the approximation property of
the Fourier integral theorem. In the previous work, Ho and Walker [2021] utilize the tails
of the Fourier transform of the function m(·) to characterize the approximation error of the
Fourier integral theorem when truncating one of the integrals. However, the proof technique
in that work is inherently based on the nice property of sin function in the Fourier integral
theorem and is non-trivial to extend to other choices of useful cyclic functions; an example of
such a function is in a remark after Theorem 1.

In this work, we provide insight into the approximation error between F (y) and FR(y)
via the Riemann sum approximation theorem. This insight can be generalized into any cyclic
function which integrates to 0 over the cyclic interval, thereby enriching the family of integral
theorems beyond the Fourier integral theorem. Such extensions would provide for example a
Haar wavelet integral theorem.

To simplify the presentation, we define

mR(y) :=
1

πd

∫
Rd

∫
[0,R]d

d∏
j=1

cos(sj(yj − xj))m(x) ds dx

=
1

πd

∫
Rd

d∏
j=1

sin(R(yj − xj))
(yj − xj)

m(x) dx. (4)

We start with the following definition of the class of univariate functions that we use through-
out our study.

Definition 1. The univariate function f(·) is said to belong to the class T K(R) if for any
y ∈ R, the function g(x) = (f(x)− f(y))/(x− y) satisfies the following conditions:

3
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Figure 1. Simulation with the cumulative distribution function via the Fourier integral theo-

rem in equations (5) and (6). (a) Estimated F̂R (bold line) and true distribution (dashed line);

(b) Histogram of 10000 samples taken from F̂R.

1. The function g is differentiable, uniformly continuous up to the K-th order, and the
limits lim|x|→+∞ |g(k)(x)| = 0 for any 0 ≤ k ≤ K where g(k)(.) denotes the k-th order
derivative of g;

2. The integrals
∫
R |g

(k)(x)|dx are finite for all 0 ≤ k ≤ K.

Note that, for the function g in Definition 1, for any y ∈ R when x = y, we choose g(y) =
f (1)(y). An example of function that satisfies Definition 1 is Beta density function. Based on
Definition 1, we now state the following result.

Theorem 1. Assume that the univariate functions mj ∈ T Kj (R) for any 1 ≤ j ≤ d where

K1, . . . ,Kd are given positive integer numbers. Then, if we have m(x) =
∏d
j=1mj(xj) or

m(x) =
∑d

j=1mj(xj) for any x = (x1, . . . , xd), there exist universal constant C and C̄ de-
pending on d such that as long as R ≥ C we obtain

|mR(y)−m(y)| ≤ C̄/RK ,

where K = min1≤j≤d{Kj}.

The proof is presented in the Appendix. To appreciate the proof we demonstrate the key idea
in the one dimensional case. Here

mR(y)−m(y) =
1

π

∫ +∞

−∞

sin(R(y − x))

y − x
(m(x)−m(y)) dx

which we write as

mR(y)−m(y) =
1

π

∫ +∞

−∞
sin(R(x− y)) g(x) dx,

4
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Figure 2. Simulation with the conditional distribution function via the Fourier integral the-
orem. In this figure, we plot the estimated conditional distribution of y2 given y1 = y2 = 0
(bold line) and the true distribution (dashed line).

where g(x) = (m(x)−m(y))/(x− y). Without loss of generality set y = 0 to get

mR(y)−m(y) =
1

π

∫ +∞

−∞
sin(z) εg(zε) dz,

where ε = 1/R. Now due to the cyclic behaviour of the sin function we can write this as

mR(y)−m(y) =
1

π

∫ 2π

0
sin(t)

+∞∑
k=−∞

εg(ε(t+ 2πk)) dt.

The term
∑+∞

k=−∞ εg(ε(t+ 2πk)) is a Riemann sum approximation to an integral which con-
verges to a constant, for all t, as ε→ 0. The overall convergence to 0 is then a consequence of∫ 2π
0 sin t dt = 0. Hence, it is how the Riemann sum converges to a constant which determines

the speed at which mR(y)−m(y)→ 0.

Remark. It is now interesting to note that the sin function here could be replaced by any
cyclic function which integrates to 0 over the cyclic interval. For example,

φ(x) =


2
π (x− 2mπ), (2m− 1/2)π < x < (2m+ 1/2)π

2
π [(2m+ 1)π − x] , (2m+ 1/2)π < x < (2m+ 3/2)π.

This yields a wavelet integral theorem based on the Haar wavelet. There are potentially many
other such functions such as φ(x) and sinx, and this line of research will be studied in the
future.
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Figure 3. Generated samples (top) from estimated conditional distribution and 100 data sam-
ples (bottom) from the multivariate normal distribution with a Markov structure in Example
3.

3 Conditional distribution function

The distribution estimator for one dimensional independent and identically distributed (i.i.d.)
data is given in equation (3). In order to ensure that F̂R(y) lies between 0 and 1 we adapt to

F̂R(y) = min
{

1,max
{

0, F̂R(y)
}}

. (5)

Hence, from now on, whenever we write F̂R(y) it is this adapted estimator we refer to.
One of the key ideas we will be working on involves sampling from the distribution F̂R. We

can do this via the inverse distribution function approach; i.e., for a random uniform variable
u from (0, 1) we take the sample as

arg inf
y

F̂R(y) = u. (6)

Example 1. In the first toy example we take n = 100 and take the data Y1:n as independent
standard normal random variables. We plot F̂R(y) in Figure 1(a) with R = 5. We then
sample 10000 variables from F̂R and these are represented as a histogram in Figure 1(b). As
we can see from these figures, both the estimated cumulative distribution and the histogram
respectively yield good estimation of the true cumulative distribution and the density function
of the standard normal random variable.
Example 2. In the next example we consider a conditional distribution function with two
conditional variables. We take n = 500 independent observations from a three sequence of
Markov variables;

y1 = N(0, 1), [y2 | y1] = N(ρy1, 1− ρ2), [y3 | y2] = N(ρy2, 1− ρ2)

and take ρ = 0.6. We estimate the conditional distribution of y2 given y1 = y3 = 0 which in
general is

f(y2 | y1, y3) = N

(
c(y1 + y3)

1 + c2
,
1− c2

1 + c2

)
.

6
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Figure 4: Plot of generated samples (y∗2 , y
∗
3) in Example 3.

The estimated distribution is a straightforward extension of the one dimensional case, which
is given by:

F̂R1,R2(y2 | y1, y3) = 1
2 +

1

π

∑n
i=1 Si(R1(y2 − y2i))KR2(y1 − y1i)KR2(y3 − y3i)∑n

i=1KR2(y1 − y1i)KR2(y3 − y3i)
.

where we are now writing KR(z) := sin(Rz)/z. We also allow for the R to be different
depending on its placement within the estimator; i.e., with the dependent or conditional
variables.

The estimated distribution along with the true distribution are shown in Figure 2. For
this we took R1 = 10 and R2 = 6. As usual we implemented adaption (5). For graphical
representations when drawing the distribution using a grid we implement the isotonic regres-
sion technique to ensure the function is non–decreasing. However, for sampling, this is not
necessary. For independent observations y from some d–dimensional distribution function F

we can provide a generative model by estimating a sequence of marginal and conditional dis-
tribution functions. That is, suppose d = 5 and we extend the set–up illustrated in Example
2.

Example 3. We take data with a sample size of n = 1000 from the d = 5 multivariate normal
distribution with a Markov structure; so we take y1 = N(0, 1) and for j = 2, . . . , d we have
[yj | yj−1] = N

(
ρyj−1, 1− ρ2

)
. We use ρ = 0.6.

For the generative estimator we assume we do not know the data structure. We do this
by obtaining marginal and conditional distributions; specifically we estimate

F̂ (y1) = 1
2 +

1

nπ

n∑
i=1

Si(R1(y1 − y1i))

7
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Figure 5: Sequence of conditional distributions in the Engel95 dataset in Example 4.

and for j = 2 : d,

F̂ (yj | y1:j−1) = 1
2 +

1

π

∑n
i=1 Si(R1(yj − yji))

∏j−1
l=1 KR2(yl − yli)∑n

i=1

∏j−1
l=1 KR2(yl − yli)

.

To generate samples we use the idea from equation (6) sequentially, starting with F̂ (y1) to
get y∗1 and subsequently y∗2:d using the F̂ (yj | y∗1:j−1).

Figure 3 shows 100 generated y∗1:d and also 100 of the 1000 y1:d represented as a time
series plot. When viewed as samples from a joint distribution, each yj is marginally standard
normal and has correlation 0.6 with yj−1. The average of the means of the generated samples
is -0.15 and the average of the variances is 0.96. A plot of the generated samples (y∗2, y

∗
3) is

presented in Figure 4 and the measured correlation between the pairs of samples is 0.50.

Example 4. A further example involves a dataset from the R package np and is described
in Hayfield and Racine [2008]. The dataset is “Engel95” and consists of household data
from 1655 married families with 10 observations per family including expenditure on food,
catering, fuel and other such commodities. One of the variables is the number of children
in the household which is discrete and we leave that variable out of the dataset. We remain
with 9 variables and condition the 7 expenditure shares of food, catering, alcohol, fuel, motor,
fares, and leisure on the log of total expenditure and the log of total earnings. We number
the variables in the same order as we have just written them here.

We do the inference via sequential conditioning, starting with the conditional for F (y1 |
y8, y9) and then the conditionals F (yl | y1:l−1, y8, y9) for l = 2, . . . , 7. We estimate the condi-
tional distributions at the means of each of the variables and the conditionals are presented
in Figure 5. The jumps at the start of some of the distributions are due to a number of
households recording zero share in some of the expenditures. In the analysis, we took R = 20.

8
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Figure 6: Data plot with quartile functions from Engel95 dataset.

4 Quantile regression and Markov data

In this section, we discuss an application of the Fourier integral theorem to quantile regression
and Markov data.

4.1 Quantile regression

Quantile regression has become an important area of statistical analysis since the prioneering
work of Koenker and Bassett [1978]. The most popular approaches to nonparametric quantile
regression use the “pinball” loss function

lu(ξ) =

{
uξ ξ ≥ 0
(u− 1)ξ ξ < 0,

with 0 < u < 1 representing the quantile of interest. The idea is that the quantile regression
function Q(u | x) is the solution to the minimization problem;

min
f

n∑
i=1

lu(yi − f(xi)) + λ||f ||

where the observed data are (xi, yi)
n
i=1 and || · || is some chosen penalty function while f is

modelled in traditional ways using for example splines or polynomials or kernels. See, for
example, Yu and Jones [1998], Liu and Wu [2011], Takeuchi et al. [2005], and Koenker [2005].

Another traditional approach is to get the inverse of a kernel estimated distribution func-
tion, e.g., Daouia et al. [2013]; noting that there appears no direct kernel estimation of a
quantile. However, here we show how the Fourier integral theorem can be used to obtain a
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Figure 7. (a) Raw data of 9311 daily records of NYSE Composite Index; (b) Transformed
NYSE Composite Index data.

quantile regression function using the KR kernel. We are looking to find the function Q(u | x),
the quantile function corresponding to the distribution F (y | x). Now, fixing R, we have

QR(u | x) =
1

π

∫
sin(R(u− v))

u− v
Q(v | x) dv.

Transforming v = F (y | x) we get

QR(u | x) =
1

π

∫
sin(R(u− F (y | x)))

u− F (y | x)
y f(y | x)dy.

Consequently, the Monte Carlo estimator of QR(· | x) is given by

Q̂R(u | x) =
1

nπ

n∑
i=1

sin(R(u− F̂ (y∗i | x)))

u− F̂ (y∗i | x)
y∗i ,

where the (y∗i ) are taken from F̂ (· | x), which itself is estimated as

F̂ (y | x) = 1
2 +

1

π

∑n
j=1 Si(R(y − yj))KR(x− xj)∑n

j=1KR(x− xj)
.

We took data from the Engel95 data set; the first and second columns, regressing the first
column on the second column. With n = 1655 we took R = 10 and took 5000 samples from
each F̂ (· | x) with the x values being (0.02, 0.04, . . . , 0.2). We then computed the quartiles;
the data with the quartile functions are presented in Figure 6.

4.2 Markov data

The data for this section is to be found in the R package fBasics and consists of n = 9311
data points of daily records of the NYSE Composite Index. A plot of the raw data is given

10
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in Figure 7(a). We analyze the transformed data yi = 10 log(yrawi+1/yrawi), where (yrawi)
are the raw data. This gives us a sample size of n = 9310.

The aim is to assume a missing observation, we select the m = 1000-th observation, and
to generate samples for it. We do this in a full nonparametric setting where we make no
assumption on the transition mechanism and most importantly do not assign a dependence
structure from one observation to the next. The only assumption is the temporal homogeneity
of the transformed data (yi). A plot of the transformed data supporting this assumption is
provided in Figure 7(b).

To impute samples for the missing observation, we rely on the Markov property and hence
we need to estimate F (ym | ym−1, ym+1). This is provided by

F̂ (ym | ym−1, ym+1) = 1
2

+
1

π

∑
i 6=m−1,m,m+1 Si(R1(ym − yi))KR2(ym−1 − yi−1)KR2(ym+1 − yi+1)∑

i 6=m−1,m,m+1KR2(ym−1 − yi−1)KR2(ym+1 − yi+1)
.

For the simulation we took R1 = R2 = 50 and took 1000 generated samples from the dis-
tribution estimator. A histogram of the samples is presented in Figure 8. The true value of
x[1000] is 0.12 and the values either side are x[999] = 0.080 and x[1001] = −0.070. So the
value 0.12 is not lying in between the two where a lot of the mass is, quite rightly, from the
samples. Nevertheless, the coverage of 0.12 is good.

5 Mixing distribution

In this section we consider a nonparametric regression model where the density for observa-
tions y given x is given by p(y | x) =

∫
K(y − θ) dG(θ | x), for some kernel K, which we

assume to be normal distribution with variance h2. The aim is to estimate G(θ | x) for a new
predictor x. We will write out the procedure assuming x is one dimensional but this is easily
extendable to higher dimension. To get to the desired estimator, we first get the conditional
distribution P (y | x) using

P̂R1,R2(y | x) = 1
2 +

1

π

∑n
i=1 Si(R1(y − yi))KR2(x− xi)∑n

i=1KR2(x− xi)
.

11
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Figure 9. (a) Estimate of G(θ | x = 1) (bold line) alongside true distribution (dashed line);
(b) Plot of α(h) vs h.

We then get the estimator for G(θ | x) using P̂R1,R2(y | x), which is given by:

ĜR,R1,R2(θ | x) = 1
2 +

1

π

∫ R

0

∫ ∞
−∞

e
1
2 s

2h2 sin(s(θ − y))

s
dP̂R1,R2(y | x) ds.

In practice, for a new predictor x, we sample the data (y∗i )
N
i=1 from P̂R1,R2(y | x). The

best way to use the samples (y∗i ) and to complete the s integral is that we sample alongside
the y∗i an independent si taken uniformly from the interval (0, R). Hence, we get as our final
estimator,

Ĝ(θ | x) = 1
2 +

R

Nπ

N∑
i=1

e
1
2 s

2
i h

2 sin(si(θ − y∗i ))
si

. (7)

For this estimator we are at liberty to select our own sample size N .

5.1 Simulated data

We first illustrate with some simulated data; with n = 1000 we take observations from the
mixture model with

g(θ | x) = 0.4 N(θ | 0, 0.12x2) + 0.6 N(θ | x, 1).

The (xi) are sampled as standard normal and for the normal kernel we take h = 0.1. We
then estimate G(θ | x) with x = 1 and take R = R1 = R2 = 10 throughout. A plot of the
estimated distribution alongside the true one is given in Figure 9(a).

In general, the value for h will not be known. However, it is straightforward to estimate
and we outline the procedure here. The key point is that

P (y | x) =

∫
Gh(y − h z | x)φ(z) dz.

12
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Figure 10. Barnacle data (top) and median estimator of curve from mixing distribution
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We estimate P (y | x) without any reference to h. Hence, we can estimate Gh(· | x) for a range
of h and select the h which minimizes

α(h) =

∣∣∣∣P (y | x)−
∫
Gh(y − h z | x)φ(z) dz

∣∣∣∣ .
There is no need to do this for all (x, y); in practice we can select specific values for x and y
such as the respective sample means. The evaluation of the integral of G with respect to the
standard normal density can be done using Monte Carlo methods. An illustration involved
us taking a linear model for G(· | x); i.e. G(θ | x) = Φ(θ− x), and the plot of the α(h) verses
h is given in Figure 9(b). The minimum is at h = 0.12 and the true value is 0.1.

5.2 Real data

The aim in this subsection is to highlight the performance of the mixing distribution estimator
while modeling covariates as an alternative to standard nonparametric curve estimation. A
common model for nonparametric regression is of the form

yi = m(xi) + hεi

where εi are assumed to have zero mean and unit variance. In many cases, such as a dataset
we will consider, the variance is nonhomogeneous making estimation of m(·) problematic.

An alternative way to model such data is via the mixture model;

yi = θi + hεi

where we assume the (εi) are standard normal and we then model the θi to be from G(· | xi),
which we estimate using equation (7). For estimating the curve, we can numerically find the
median of Ĝ(· | x) and use this as an estimator.

To demonstrate this we use a dataset from the R package npregfast and a description
of the “barnacle” data appears in Sestelo et al. [2017]. Briefly here, we model y as the dry
weight of barnacles, taken from the Atlantic, and x is the rostrocarinal length. The sample
size is n = 2000 and we model the data using R = 10 and setting h to be 0.05. A plot of the
data and the corresponding median curve is presented in Figure 10.
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6 Discussion

In this paper we have used the Fourier integral theorem and associated Monte Carlo estimators
to provide new nonparametric estimators for conditional distribution functions and related
functions, such as quantile functions. Indeed the quantile regression function used in Section
3 is novel. The integral theorem is potentially a powerful tool which has yet to be utilized in
statistical analysis; relevant as it provides natural Monte Carlo estimators of functions.

7 Appendix

In this appendix, we give the proof of Theorem 1. To ease the presentation, the values of
universal constants (e.g., C, C1, C2, C̄ etc.) can change from line-to-line. For any x ∈ Rd, we
denote x = (x1, . . . , xd).

7.1 Proof of Theorem 1

We first prove the result of Theorem 1 when d = 1. In particular, we would like to show that
when the function m ∈ T K(R), there exists a universal constant C > 0 such that we have

|mR(y)−m(y)| ≤ C

RK
.

In fact, from the definition of mR(y) in equation (4), we have

|mR(y)−m(y)| =
∣∣∣∣ 1π
∫
R

sin(R(y − x))

(y − x)
(m(x)−m(y)) dx

∣∣∣∣ .
For simplicity of the presentation, for any y ∈ R we write g(x) = (m(x)−m(y))/(x− y) for
all x ∈ R. Then, we can rewrite the above equality as

|mR(y)−m(y)| =
∣∣∣∣ 1π
∫
R

sin(R(y − x))g(x)dx

∣∣∣∣
=

∣∣∣∣∣ 1π
∞∑

k=−∞

∫ y+
2π(k+1)

R

y+ 2πk
R

sin(R(y − x))g(x)dx

∣∣∣∣∣ .
Invoking the change of variables x = y + t+2πk

R , the above equation becomes

|mR(y)−m(y)| =

∣∣∣∣∣ 1

πR

∞∑
k=−∞

∫
[0,2π)

sin(t) · g
(
y +

t+ 2πk

R

)
dt

∣∣∣∣∣ . (8)

Since m ∈ T K(R), the function g is differentiable up to the K-th order. Therefore, using a
Taylor expansion up to the K-th order, leads to

g

(
y +

t+ 2πk

R

)
=

∑
α≤K−1

1

Rα
tα

α!
g(α)

(
y +

2πk

R

)

+
tK

RK(K − 1)!

∫ 1

0
(1− ξ)K−1g(K)

(
y +

2πk

R
+
ξt

R

)
dξ.
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Plugging the above Taylor expansion into equation (8), we have

|mR(y)−m(y)| =

∣∣∣∣∣ 1

πR

K∑
`=0

A`

∣∣∣∣∣ ≤ 1

πR

K∑
`=0

|A`| , (9)

where, for ` ∈ {0, 1, . . . ,K − 1}, we define

A` =
1

R`

∫
[0,2π)

(
t` sin(t)

`!

)
dt

( ∞∑
k=−∞

g(`)
(
y +

2πk

R

))
, and

AK =
∞∑

k=−∞

∫
[0,2π)

sin(t)

(
tK

RK(K − 1)!

∫ 1

0
(1− ξ)K−1g(K)

(
y +

2πk

R
+
ξt

R

)
dξ

)
dt.

We now find a bound for |A`| for ` ∈ {0, 1, . . . ,K − 1}; we will demonstrate that∣∣∣∣∣
∞∑

k=−∞
g(`)

(
y +

2πk

R

)∣∣∣∣∣ ≤ C

RK−(`+1)
, for all ` ∈ {0, 1, . . . ,K − 1} (10)

where C is some universal constant. To obtain these bounds, we will use an inductive argument
on `. We first start with ` = K − 1. In fact, we have∣∣∣∣ ∞∑

k=−∞
g(K−1)

(
y +

2πk

R

)
(2π)

R
−
∫
R
g(K−1)(x)dx

∣∣∣∣
=

∣∣∣∣ ∞∑
k=−∞

∫ y+
2π(k+1)

R

y+ 2πk
R

(
g(K−1)(x)− g(K−1)

(
y +

2πk

R

))
dx

∣∣∣∣
≤

∞∑
k=−∞

∫ y+
2π(k+1)

R

y+ 2πk
R

∣∣∣∣g(K−1)(x)− g(K−1)
(
y +

2πk

R

)∣∣∣∣ dx.
An application of Taylor expansion leads to

g(K−1)(x) = g(K−1)
(
y +

2πk

R

)
+

(
x− y − 2πk

R

)∫ 1

0
g(K)

(
(1− ξ)

(
y +

2πk

R

)
+ ξx

)
dξ.

Now for any ξ ∈ [0, 1] and x ∈
[
y + 2πk

R , y + 2π(k+1)
R

]
, we have∣∣∣∣g(K)

(
(1− ξ)

(
y +

2πk

R

)
+ ξx

)∣∣∣∣ ≤ sup
t∈

[
y+ 2πk

R
,y+

2π(k+1)
R

]
∣∣∣g(K)(t)

∣∣∣ .
Collecting the above results, we find that

∞∑
k=−∞

∫ y+
2π(k+1)

R

y+ 2πk
R

∣∣∣∣g(K−1)(x)− g(K−1)
(
y +

2πk

R

)∣∣∣∣ dx
≤

∞∑
k=−∞

(∫ y+
2π(k+1)

R

y+ 2πk
R

(
x− y − 2πk

R

)
dx

)
sup

t∈
[
y+ 2πk

R
,y+

2π(k+1)
R

]
∣∣∣g(K)(t)

∣∣∣
=

2π2

R2

∞∑
k=−∞

sup
t∈

[
y+ 2πk

R
,y+

2π(k+1)
R

]
∣∣∣g(K)(t)

∣∣∣ .
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Using a Riemann sum approximation theorem, we have

lim
R→∞

∞∑
k=−∞

sup
t∈

[
y+ 2πk

R
,y+

2π(k+1)
R

]
∣∣∣g(K)(t)

∣∣∣ 2π

R
=

∫
R

∣∣∣g(K)(x)
∣∣∣ dx <∞,

where the finite value of the integral is due to the assumption that m ∈ T K(R). Furthermore,
the above limit is uniform in terms of y as g(K) is uniformly continuous. Collecting the above
results, there exists a universal constant C such that as long as R ≥ C, the following inequality
holds:

2π2

R2

∞∑
k=−∞

sup
t∈

[
y+ 2πk

R
,y+

2π(k+1)
R

]
∣∣∣g(K)(t)

∣∣∣ ≤ C1

R

where C1 is some universal constant. Combining all of the previous results, we obtain∣∣∣∣ ∞∑
k=−∞

g(K−1)
(
y +

2πk

R

)
(2π)

R
−
∫
R
g(K−1)(x)dx

∣∣∣∣ ≤ C1

R
.

Since m ∈ T K(R), using integration by parts, we get∫
R
g(K−1)(x)dx = 0.

Therefore, we obtain the conclusion of equation (10) when ` = K − 1.

Now assume that the conclusion of equation (10) holds for 1 ≤ ` ≤ K − 1. We will prove
that the conclusion also holds for ` − 1. With a similar argument to the setting ` = K − 1,
we obtain∣∣∣∣ ∞∑

k=−∞
g(`)

(
y +

2πk

R

)
(2π)

R
−
∫
R
g(`)(x)dx

∣∣∣∣
=

∣∣∣∣∣
∞∑

k=−∞

∫ y+
2π(k+1)

R

y+ 2πk
R

(
g(`)(x)− g(`)

(
y +

2πk

R

))
dx

∣∣∣∣∣ . (11)

Using a Taylor expansion, we have

g(`)(x) = g(`)
(
y +

2πk

R

)
+

∑
α≤K−1−`

(
x− y − 2πkj

R

)α
α!

g(`+α)
(
y +

2πk

R

)

+

(
x− y − 2πk

R

)K−`
(K − `− 1)!

∫ 1

0
(1− ξ)K−`−1g(K)

(
(1− ξ)

(
y +

2πk

R

)
+ ξx

)
dξ.

Plugging the above Taylor expansion into equation (11), we find that

∞∑
k=−∞

∫ y+
2π(k+1)

R

y+ 2πk
R

∣∣∣∣g(`)(x)− g(`)
(
y +

2πk

R

)∣∣∣∣ dx ≤ S1 + S2,
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where S1 and S2 are defined as follows:

S1 =
∑

α≤K−1−`

∣∣∣∣ ∞∑
k=−∞

∫ y+
2π(k+1)

R

y+ 2πk
R

(
x− y − 2πkj

R

)α
α!

dx

 g(`+α)
(
y +

2πk

R

)∣∣∣∣
=

∑
α≤K−1−`

∣∣∣∣ ∞∑
k=−∞

(2π)α+1

Rα+1(α+ 1)!
g(`+α)

(
y +

2πk

R

)∣∣∣∣;

S2 =

∣∣∣∣ ∞∑
k=−∞

(∫ y+
2π(k+1)

R

y+ 2πk
R

(
x− y − 2πk

R

)K−`
(K − `− 1)!

×
∫ 1

0
(1− ξ)K−`−1g(K)

(
(1− ξ)

(
y +

2πk

R

)
+ ξx

)
dξ

)
dx

∣∣∣∣
≤

∞∑
k=−∞

∫ y+
2π(k+1)

R

y+ 2πk
R

∫ 1

0

(
x− y − 2πk

R

)K−`
(K − `− 1)!

(1− ξ)K−`−1 sup
t∈

[
y+ 2πk

R
,y+

2π(k+1)
R

]
∣∣∣g(K)(t)

∣∣∣ dξdx
=

∞∑
k=−∞

(K − `) (2π)K−`+1

RK−`+1(K − `+ 1)!
sup

t∈
[
y+ 2πk

R
,y+

2π(k+1)
R

]
∣∣∣g(K)(t)

∣∣∣ .
An application of the triangle inequality and the hypothesis of the induction argument shows
that

S1 ≤
∑

α≤K−1−`

(2π)α+1

Rα+1(α+ 1)!

∣∣∣∣∣
∞∑

k=−∞
g(`+α)

(
y +

2πk

R

)∣∣∣∣∣ ≤ C2

RK−`

where C2 is some universal constant.
Similar to the setting ` = K − 1, an application of the Riemann sum approximation

theorem leads to

S2 ≤ (K − `) (2π)K−`+1

RK−`+1(K − `+ 1)!

∞∑
k=−∞

sup
t∈

[
y+ 2πk

R
,y+

2π(k+1)
R

]
∣∣∣g(K)(t)

∣∣∣ ≤ C3

RK−`
,

when R is sufficiently large where C3 is some universal constant. Putting all the above results
together, as long as R ≥ C we have∣∣∣∣ ∞∑

k=−∞
g(`)

(
y +

2πk

R

)
(2π)

R
−
∫
R
g(`)(x)dx

∣∣∣∣ ≤ C̄

RK−`

for some universal constant C̄. As
∫
R g

(`)(x)dx = 0, the above inequality leads to the con-
clusion of equation (10) for 1 ≤ ` ≤ K − 1. As a consequence, we obtain the conclusion of
equation (10) for all ` ∈ {0, 1, . . . ,K − 1}.

Given equation (10), an application of the triangle inequality leads to

|A`| ≤
1

R`

∣∣∣∣∣
∫
[0,2π)

t` sin(t)

`!
dt

∣∣∣∣∣
∣∣∣∣∣
∞∑

k=−∞
g(`)

(
y +

2πk

R

)∣∣∣∣∣ ≤ C̄

RK−1
(12)
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for all 0 ≤ ` ≤ K − 1.
We now find a bound for |AK |. A direct application of the triangle inequality leads to the

following bound of |AK |:

|AK | ≤
∫
[0,2π)

∣∣sin(t)tK
∣∣

RK(K − 1)!
dt

( ∞∑
k=−∞

∫ 1

0
(1− ξ)K−1

∣∣∣∣g(K)

(
y +

2πk

R
+
ξt

R

)∣∣∣∣ dξ
)
.

For any ξ ∈ [0, 1] and t ∈ [0, 2π), we have∣∣∣∣g(K)

(
y +

2πk

R
+
ξt

R

)∣∣∣∣ ≤ sup
x∈

[
y+ 2πk

R
,y+

2π(k+1)
R

]
∣∣∣g(K)(x)

∣∣∣ .
Putting the above inequalities together, we find that

|AK | ≤
∫
[0,2π)

∣∣sin(t)tK
∣∣

RKK!
dt

 ∞∑
k=−∞

sup
x∈

[
y+ 2πk

R
,y+

2π(k+1)
R

]
∣∣∣g(K)(x)

∣∣∣
 .

From the Riemann sum approximation theorem, we obtain

(2π)

R1−K |AK | ≤ C1

∫
[0,2π)

∣∣sin(t)tK
∣∣

RKK!
dt,

where C1 is some universal constant. Collecting the above results, we conclude that

|AK | ≤
C̄

RK−1
(13)

for some constant C̄. Putting the bounds (12) and (13) into equation (9), we obtain the
conclusion of the theorem when d = 1.

We now provide the proof of Theorem 1 for general dimension d.
When m(x) =

∑d
j=1mj(xj) for any x = (x1, . . . , xd): From the definition of mR(y) in equa-

tion (4), we have

|mR(y)−m(y)| =

∣∣∣∣∣∣ 1

πd

∫
Rd

d∏
j=1

sin(R(yj − xj))
(yj − xj)

(m(x)−m(y)) dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

πd

∫
Rd

d∏
j=1

sin(R(yj − xj))
(yj − xj)

 d∑
j=1

mj(xj)−
d∑
j=1

mj(yj)

 dx

∣∣∣∣∣∣
≤

d∑
j=1

∣∣∣∣ 1π
∫
R

sin(R(yj − xj))
(yj − xj)

(mj(xj)−mj(yj)) dxj

∣∣∣∣ .
Since mj ∈ T Kj (R) for 1 ≤ j ≤ d, an application of the result of Theorem 1 when d = 1 leads
to ∣∣∣∣ 1π

∫
R

sin(R(yj − xj))
(yj − xj)

(mj(xj)−mj(yj)) dxj

∣∣∣∣ ≤ Cj
RKj
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where Cj are universal constants. Putting the above results together, we obtain the conclusion
of the theorem when m is the summation of the functions m1,m2, . . . ,md.

When m(x) =
∏d
j=1mj(xj) for any x = (x1, . . . , xd): Similar to the argument when m is the

summation of m1,m2, . . . ,md, we have

|mR(y)−m(y)| =

∣∣∣∣∣∣ 1

πd

∫
Rd

d∏
j=1

sin(R(yj − xj))
(yj − xj)

 d∏
j=1

mj(xj)−
d∏
j=1

mj(yj)

 dx

∣∣∣∣∣∣
=

∣∣∣∣ 1

πd

∫
Rd

d∏
j=1

sin(R(yj − xj))
(yj − xj)

( d−1∑
`=0

∏̀
j=1

mj(yj)

d∏
j=`+1

mj(xj)

−
`+1∏
j=1

mj(yj)

d∏
j=`+2

mj(xj)

)
dx

∣∣∣∣
≤

d−1∑
`=0

∣∣∣∣ 1

πd

∫
Rd

d∏
j=1

sin(R(yj − xj))
(yj − xj)

(∏̀
j=1

mj(yj)
d∏

j=`+1

mj(xj)

−
`+1∏
j=1

mj(yj)
d∏

j=`+2

mj(xj)

)
dx

∣∣∣∣
≤ C

d−1∑
`=0

∣∣∣∣ 1π
∫
R

sin(R(y`+1 − x`+1))

(y`+1 − x`+1)
(m`+1(x`+1)−m`+1(y`+1)) dx`+1

∣∣∣∣
where C is some universal constant. Using the above bound and the result in one dimension
of Theorem 1 for m1,m2, . . . ,md, we obtain the conclusion of the theorem when m is the
product of these functions.
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