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Statistical and Computational Complexities of BFGS Quasi-Newton Method
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Abstract
The gradient descent (GD) method has been used
widely to solve parameter estimation in general-
ized linear models (GLMs), a generalization of
linear models when the link function can be non-
linear. While GD has optimal statistical and com-
putational complexities for estimating the true pa-
rameter under the high signal-to-noise ratio (SNR)
regime of the GLMs, it has sub-optimal complex-
ities when the SNR is low, namely, the iterates
of GD require polynomial number of iterations
to reach the final statistical radius due to the lo-
cal convexity of the least-square loss functions of
the GLMs in this case. Even though Newton’s
method can be used to resolve the flat curvature
of the loss functions in the low SNR case, its com-
putational cost is prohibitive in high-dimensional
settings as it is O(d3). To address the shortcom-
ings of GD and Newton’s method, we propose the
use of BFGS quasi-Newton method to solve pa-
rameter estimation of the GLMs, which has a per
iteration cost of O(d2). On the optimization side,
when the SNR is low, we demonstrate that iterates
of BFGS converge linearly to the optimal solution
of the population least-square loss function, and
the contraction coefficient of the BFGS algorithm
is comparable to that of Newton’s method. On the
statistical side, we prove that the iterates of BFGS
reach the final statistical radius of the low SNR
GLMs after a logarithmic number of iterations,
which is much lower than the polynomial number
of iterations of GD.

1. Introduction
In supervised machine learning, we are given a set of n
independent samples denoted by X1, . . . , Xn with corre-
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sponding labels Y1, . . . , Yn, that are drawn from some un-
known distribution and our goal is to train a model that
maps the feature vectors to their corresponding labels. We
assume that the data is generated according to distribution
Pθ∗ which is parameterized by a ground truth parameter θ∗.
Our goal as the learner is to find θ∗ by solving the empirical
risk minimization (ERM) problem defined as

min
θ∈Rd

Ln(θ) :=
1

n

n∑
i=1

ℓ(θ; (Xi, Yi)), (1)

where ℓ(θ; (Xi, Yi)) is the loss function that measures
the error between the predicted output of Xi using pa-
rameter θ and its true label Yi. If we define θ∗n as an
optimal solution of the above optimization problem, i.e.,
θ∗n ∈ argminθ∈Rd Ln(θ), it can be considered as an ap-
proximation of the ground-truth solution θ∗, where θ∗ is
also a minimizer of the population loss defined as

min
θ∈Rd

L(θ) := E [ℓ(θ; (X,Y ))] . (2)

If one can solve the empirical risk efficiently, the output
model could be close to θ∗, when n is sufficiently large.
Several works have studied the complexity of iterative meth-
ods for solving ERM or directly the population loss, for
the case that the objective function is convex or strongly
convex with respect to θ (Balakrishnan et al., 2017; Ho et al.,
2020; Loh & Wainwright, 2015; Agarwal et al., 2012; Yuan
& Zhang, 2013; Dwivedi et al., 2020b; Hardt et al., 2016;
Candes et al., 2011). However, when we move beyond lin-
ear models, the underlying loss becomes non-convex and
therefore the behavior of iterative methods could substan-
tially change, and it is not even clear if they can reach a
neighborhood of a global minimizer of the ERM problem.

The focus of this paper is on the generalized linear model
(GLM) (Carroll et al., 1997; Netrapalli et al., 2015; Fienup,
1982; Shechtman et al., 2015; Feiyan Tian, 2021) where the
labels and features are generated according to a polynomial
link function and we have Yi = (X⊤

i θ∗)p + ζi, where ζi is
an additive noise and p ≥ 2 is an integer. Due to nonlinear
structure of the generative model, even if we select a convex
loss function ℓ, the ERM problem denoted to the considered
GLM could be non-convex with respect to θ. Interestingly,
depending on the norm of θ∗, the curvature of the ERM
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problem and its corresponding population risk minimization
problem could change substantially. More precisely, in the
case that ∥θ∗∥ is sufficiently large, which we refer to this
case as the high signal-to-noise ratio (SNR) regime, the
underlying population loss of the problem of interest is
locally strongly convex and smooth. On the other hand, in
the regime that ∥θ∗∥ is close to zero, denoted by the low
SNR regime, then the underlying problem is neither strongly
convex nor smooth, and in fact, it is ill-conditioned.

These observations lead to the conclusion that in the high
SNR setting, due to strong convexity and smoothness of
the underlying problem, gradient descent (GD) reaches the
final statistical radius exponentially fast and overall it only
requires logarithmic number of iterations. However, in the
low SNR case, as the problem becomes locally convex, GD
converges at a sublinear rate to the final statistical radius
and thus requires polynomial number of iterations in terms
of the sample size. To resolve this issue, (Ren et al., 2022a)
recommended the use of GD with Polyak step size to ac-
celerate the convergence of GD in the low SNR case and
showed that the number of iterations becomes logarithmic
function of the sample size. However, as this method is still
a first-order method, its overall complexity scales linearly
by the condition number of the problem which depends on
the condition number of the feature vectors covariance and
the norm ∥θ∗∥. Moreover, implementation of Polyak step
size requires access to the optimal objective function value.
Even in the cases that we can approximate the optimal value
sufficiently well, the Polyak iterates still have instability
during training due to the influence of noise in the models.

An alternative approach is using Newton’s method to han-
dle the ill-conditioning issue in the low SNR case as well
as eliminating the need to estimate the optimal function
value. As we show in this paper, this idea indeed addresses
the issue of poor curvature of the problem and leads to an
exponentially fast rate with contraction factor 2p−2

2p−1 , when
the sample size is infinite. Moreover, in the high SNR
setting, Newton’s method converges at a quadratic rate as
the problem is strongly convex and smooth. Alas, these
improvements come at the expense of increasing the com-
putational complexity of each iteration to O(d3) which is
indeed more than the per iteration computational cost of GD
that is O(d). These points lead to this question:

Is there a computationally-efficient method that
performs well in both high and low SNR settings
at a reasonable per iteration computational cost?

Contributions. In this paper, we address this question and
show that the BFGS method is capable of achieving these
goals. BFGS is a quasi-Newton method that approximates
the objective function curvature using gradient information
and its per iteration cost is O(d2). It is well-known that it

enjoys a superlinear convergence rate that is independent of
condition number in strongly convex and smooth settings,
and hence, in the high SNR setting it outperforms GD. In the
low SNR setting, where the Hessian at the optimal solution
could be singular, we show that the BFGS method converges
linearly and outperforms the sublinear convergence rate of
GD. Next, we formally summarize our contributions.

• Infinite sample, low SNR: For the infinite sample case
where we minimize the population loss, we show that
in the low SNR case the iterates of BFGS converge to
the ground truth θ∗ at an exponentially fast rate that
is independent of all problem parameters except the
power of link function p. We further show that the
linear convergence contraction coefficient of BFGS is
comparable to that of Newton’s method. This conver-
gence result of BFGS is also of general interest as it
provides the first global linear convergence of BFGS
without line-search for a setting that is neither strictly
nor strongly convex.

• Finite sample, low SNR: By leveraging the results
developed for the population loss of the low SNR
regime, we show that in the finite sample case, the
BFGS iterates converge to the final statistical radius
O(1/n1/(2p+2)) within the true parameter after a loga-
rithmic number of iterations O(log(n)). It is substan-
tially lower than the required number of iterations for
fixed-step size GD, which is O(n(p−1)/p), to reach a
similar statistical radius. This improvement is the di-
rect outcome of the linear convergence of BFGS versus
the sublinear convergence rate of GD in the low SNR
case. Further, while the iteration complexity of BFGS
is comparable to the logarithmic number of iterations
of GD with Polyak step size, we show that BFGS re-
moves the dependency of the overall complexity on the
condition number of the problem as well as the need
to estimate the optimal function value.

• Experiments: We conduct numerical experiments for
both infinite and finite sample cases to compare the
performance of GD (with constant stepsize and Polyak
stepsize), Newton’s method and BFGS. The provided
empirical results are consistent with our theoretical
findings and show the advantages of BFGS in the low
SNR regime.

2. BFGS Algorithm
In this section, we review the basics of the BFGS quasi-
Newton method, which is the main algorithm we analyze.
Consider the case that we aim to minimize a differentiable
convex function f : Rd → R. The BFGS update is given by

θk+1 = θk − ηkHk∇f(θk), ∀k ≥ 0, (3)
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where ηk is the step size and Hk ∈ Rd×d is a positive
definite matrix that aims to approximate the true Hessian
inverse ∇2f(θk)

−1. There are several approaches for ap-
proximating Hk leading to different quasi-Newton methods,
(Conn et al., 1991; Broyden, 1965; Broyden et al., 1973;
Gay, 1979; Davidon, 1959; Fletcher & Powell, 1963; Broy-
den, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970;
Nocedal, 1980; Liu & Nocedal, 1989), but in this paper,
we focus on the celebrated BFGS method, in which Hk is
updated as

Hk =

(
I −

sk−1u
⊤
k−1

s⊤k−1uk−1

)
Hk−1

(
I −

uk−1s
⊤
k−1

s⊤k−1uk−1

)

+
sk−1s

⊤
k−1

s⊤k−1uk−1
, ∀k ≥ 1,

(4)

where the variable variation sk−1 and gradient displacement
uk−1 are defined as

sk−1 := θk − θk−1,

uk−1 := ∇f(θk)−∇f(θk−1), ∀k ≥ 1,
(5)

respectively. The logic behind the update in (4) is to en-
sure that the Hessian inverse approximation Hk satisfies the
secant condition Hkuk−1 = sk−1, while it stays close to
the previous approximation matrix Hk−1. The update in (4)
only requires matrix-vector multiplications, and hence, the
computational cost per iteration of BFGS is O(d2).

The main advantage of BFGS is its fast superlinear conver-
gence rate under the assumption of strict convexity, i.e.,
limk→∞ ∥θk − θopt∥/∥θk−1 − θopt∥ = 0, where θopt is
the optimal solution. Previous results on the superlinear
convergence of quasi-Newton methods were all asymptotic,
until the recent advancements on the non-asymptotic anal-
ysis of quasi-Newton methods (Rodomanov & Nesterov,
2021a;b;c; Jin & Mokhtari, 2020; Jin et al., 2022; Ye et al.,
2021; Lin et al., 2021a;b). For instance, (Jin & Mokhtari,
2020) established a local superlinear convergence rate of
(1/

√
k)k for BFGS. However, all these superlinear conver-

gence analyses require the objective function to be smooth
and strictly or strongly convex. Alas, these conditions are
not satisfied in the low SNR setting, since the Hessian at
the optimal solution could be singular, and hence the loss
function is neither strongly convex nor strictly convex; we
further discuss this point in Section 3. This observation
implies that we need novel convergence analyses to study
the behavior of BFGS in the low SNR setting.

3. Generalized Linear Model with Polynomial
Link Function

In this section, we formally present the generalized lin-
ear model (GLM) setting that we consider in our pa-

per, and discuss the low and high SNR settings and op-
timization challenges corresponding to these cases. Con-
sider the case that the feature vectors are denoted by
X ∈ Rd and their corresponding labels are denoted by
Y ∈ R. Suppose that we have access to n sample points
(Y1, X1), (Y2, X2), . . . , (Yn, Xn) that are i.i.d. samples
from the following generalized linear model with polyno-
mial link function of power p (Carroll et al., 1997), i.e.,

Yi = (X⊤
i θ∗)p + ζi, (6)

where θ∗ is a true but unknown parameter, p ∈ N is a given
power, and ζ1, . . . , ζn are independent Gaussian noises with
zero mean and variance σ2. The Gaussian assumption on
the noise is for the simplicity of the discussion and similar
results hold for the sub-Gaussian i.i.d. noise case. Fur-
thermore, we assume the feature vectors are generated as
X ∼ N (0,Σ) where Σ ∈ Rd×d is a symmetric positive
definite matrix. Here we focus on the settings that p ∈ N+

and p ≥ 2.

The above class of GLMs with polynomial link functions
arise in several settings. When p = 1, the model in (6) is
the standard linear regression model, and for the case that
p = 2, the above setup corresponds to the phase retrieval
model (Fienup, 1982; Shechtman et al., 2015; Candes et al.,
2011; Netrapalli et al., 2015), which has found applications
in optical imaging, x-ray tomography, and audio signal pro-
cessing. Moreover, the analysis of GLMs with p ≥ 2 also
serves as the basis of the analysis on other popular statistical
models. For example, as shown by Yi & Caramanis (2015);
Wang et al. (2015); Xu et al. (2016); Balakrishnan et al.
(2017); Daskalakis et al. (2017); Dwivedi et al. (2020a);
Kwon et al. (2019); Dwivedi et al. (2020b); Kwon et al.
(2021), the local landscape of log-likelihood for Gaussian
mixture models and mixture linear regression models are
identical to GLMs for p = 2.

In the case that the polynomial link function parameter in
the GLM model in (6) is p = 2, by adapting similar argu-
ments from (Kwon et al., 2021) under the symmetric two-
component location Gaussian mixture, there are essentially
three regimes for estimating the true parameter θ∗: Low
signal-to-noise ratio (SNR) regime: ∥θ∗∥/σ ≤ C1(d/n)

1/4

where d is the dimension, n is the sample size, and C1 is
a universal constant; Middle SNR regime: C1(d/n)

1/4 ≤
∥θ∗∥/σ ≤ C where C is a universal constant; High SNR
regime: ∥θ∗∥/σ ≥ C. The main idea is that with different
θ∗, the optimization landscape of the parameter estimation
problem changes. By generalizing the insights from the case
p = 2, we define the following regimes for any p ≥ 2:

• (i) Low SNR regime: ∥θ∗∥/σ ≤ C1(d/n)
1/(2p) where

d is the dimension, n is the sample size, and C1 is a
universal constant;

• (ii) Middle SNR regime: C1(d/n)
1/(2p)≤∥θ∗∥/σ ≤
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C where C is a universal constant;

• (iii) High SNR regime: ∥θ∗∥/σ ≥ C.

Note that, the rate (d/n)1/2p that we use to define the SNR
regimes is from the statistical rate of estimating the true
parameter θ∗ when θ∗ approaches 0. Next, we provide
insight into the landscape of the least-square loss function
for each regime. In particular, given the GLM in (6), the
sample least-square takes the following form:

min
θ∈Rd

Ln(θ) :=
1

n

n∑
i=1

(
Yi −

(
X⊤

i θ
)p)2

. (7)

To obtain insight about the landscape of the loss function
Ln, a useful approach is to consider an approximation of
that function by its population version, which we refer to as
population least-square loss function and is given by:

min
θ∈Rd

L(θ) := E[Ln(θ)], (8)

where the outer expectation is taken with respect to the data.

High SNR regime. In the setting that the ground truth
parameter has a relatively large norm, i.e., ∥θ∗∥ ≥ C for
some constant C > 0 that only depends on σ, the population
loss in (8) is locally strongly convex and smooth around θ∗.
More precisely, when ∥θ − θ∗∥ is small, we have

(X⊤θ∗)p − (X⊤θ)p

= p(X⊤θ∗)p−1X⊤(θ − θ∗) + o(∥θ − θ∗∥).

Hence, in a neighborhood of the optimal solution, the objec-
tive in (8) can be approximated as

L(θ) = p2(θ − θ∗)⊤EX

[
X(X⊤θ∗)2p−2X⊤] (θ − θ∗)

+ σ2 + o(∥θ − θ∗∥2).

Indeed, if ∥θ∗∥ ≥ Cσ the above function behaves as a
quadratic function that is smooth and strongly convex, as-
suming that o(∥θ − θ∗∥2) is negligible. As a result, the
iterates of gradient descent (GD) converge to the solution at
a linear rate and it requires κ log(1/ϵ) to reach an ϵ-accurate
solution, where κ depends on the conditioning of the co-
variance matrix Σ and the norm of θ∗. In this case, BFGS
converges superlinearly to θ∗ and the rate would be inde-
pendent of κ, while the cost per iteration would be O(d2).

Low SNR regime. As mentioned above, in the high SNR
case, GD has a fast linear rate. However, in the low SNR
case where ∥θ∗∥ is small and ∥θ∗∥ ≤ C1(d/n)

1/(2p), the
strong convexity parameter approaches zero when the sam-
ple size n goes to infinity and the problem becomes ill-
conditioned. In this case, we deal with a function that is
only convex and its gradient is not Lipschitz continuous. To
better elaborate on this point, let us focus on the case that

θ∗ = 0 as a special case of the low SNR setting. Considering
the underlying distribution of X , which is X ∼ N (0,Σ),
for such a low SNR case, the population loss can be written
as

L(θ) = EX

[
(X⊤θ)2p

]
+σ2 = (2p−1)!!∥Σ1/2θ∥2p+σ2.

(9)
Since we focus on p ≥ 2 it can be verified that L(θ) is not
strongly convex in a neighborhood of the solution θ∗ = 0.
For this class of functions, it is well-known that GD with
constant step size would converge at a sublinear rate, and
hence GD iterates require polynomial number of iterations
to reach the final statistical radius. In the next section, we
study the behavior of BFGS for solving the low SNR setting
and showcase its advantage compared to GD.

Middle SNR regime. Different from the low and high
SNR regimes, the middle SNR regime is generally harder
to analyze as the landscapes of both the population and
sample least-square loss functions are complex. Adapting
the insight from middle SNR regime of the symmetric two-
component location Gaussian mixtures from (Kwon et al.,
2021), for the middle SNR setting of the generalized lin-
ear model, the eigenvalues of the Hessian matrix of the
population least-square loss function approach 0 and their
vanishing rates depend on some increasing function of ∥θ∗∥.
The optimal statistical rate of the optimization algorithms,
such as gradient descent algorithm, for solving θ∗ depends
strictly on the tightness of these vanishing rates in terms of
∥θ∗∥, which are non-trivial to obtain. In fact, to the best
of our knowledge, there is no result on the convergence of
iterative methods (such as GD or its variants) for GLMs
with a polynomial link function in the middle SNR. Hence,
we leave the study of BFGS for this setting as a future work.

4. Convergence Analysis in the Low SNR
Regime: Population Loss

In this section, we focus on the convergence properties of
BFGS for the population loss in the low SNR case intro-
duced in (9). This analysis provides an intuition for the
analysis of the finite sample case that we discuss in Sec-
tion 5, as we expect these two loss functions to be close
to each other when the number of samples n is sufficiently
large. Note that the loss function in (9) can be considered as
a special case of the following convex optimization problem:

min
θ∈Rd

f(θ) = ∥Aθ − b∥q, (10)

where A ∈ Rm×d is a matrix, b ∈ Rm is a given vector,
and q satisfies q ≥ 4. We should note that for q ≥ 4,
the considered objective is not strictly convex because the
Hessian is singular when Aθ = b. Indeed, if we set m = d
and further let A be Σ1/2 and choose b = Aθ∗ = 0, then
we recover the problem in (9) for q = 2p.
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Notice that the problem in (10), which serves as a surrogate
for the finite sample problem that we plan to study in the
next section, has the same solution set as the quadratic prob-
lem of minimizing ∥Aθ − b∥2 with solution (A⊤A)−1A⊤b
when A⊤A is invertible. Given this point, one might sug-
gest that instead of minimizing (10) we could directly solve
the quadratic problem which is indeed much easier to solve.
This point is valid, but the goal of this section is not to effi-
ciently solve problem (10) itself. Our goal is to understand
the convergence properties of the BFGS method for solv-
ing the problem in (10) with the hope that it will provide
some intuitions for the convergence analysis of BFGS for
the empirical loss (7) in the low SNR regime. As we will
discuss in Section 5, the convergence analysis of BFGS on
the population loss which is a special case of (10) is closely
related to the one for the empirical loss in (7).

One remark is that population loss in (9) holds for the re-
strictive assumption of θ∗ = 0, which is only a special case
of the general low SNR regime of ∥θ∗∥ ≤ C1(d/n)

1/(2p).
Our ultimate goal is to analyze the convergence behavior of
the BFGS method applied to the empirical loss (7) of GLM
problems. The errors between gradients and Hessians of
the population loss with θ∗ = 0 and ∥θ∗∥ ≤ C1(d/n)

1/(2p)

are upper bounded by the corresponding statistical errors
between the population loss (8) and the empirical loss (7)
in the low SNR regime, respectively. Therefore, the errors
between iterations of applying BFGS to the population loss
with θ∗ = 0 and ∥θ∗∥ ≤ C1(d/n)

1/(2p) are negligible com-
pared to the statistical errors. Instead of directly analyzing
BFGS for the population loss (8) in the general low SNR
regime, studying the convergence properties of BFGS for
the population loss (9) with θ∗ = 0 can equivalently lay
foundations for the convergence analysis of BFGS for the
empirical loss (7) in the low SNR regime, which is the main
target of this paper. The details can be found in the proof of
Theorem 5.1.

Moreover, our results would be of general interest from an
optimization point of view, since there is no global conver-
gence theory (without line-search) for the BFGS method in
the literature for the case that the objective function is not
strictly convex, and our analysis provides the first result for
such general settings. Before, stating our results, we first
state the assumptions.

Assumption 4.1. There exists θ̂ ∈ Rd, such that b = Aθ̂.
In other words, b is in the range of matrix A.

This assumption implies that the problem in (10) is realiz-
able, θ̂ is an optimal solution, and the optimal function value
is zero. This assumption is satisfied in our considered low
SNR setting in (9) as θ∗ = 0 which implies b = 0.

Assumption 4.2. The matrix A⊤A ∈ Rd×d is invertible.
This is equivalent to A⊤A ≻ 0.

The above assumption is also satisfied for our considered
setting as we assume that the covariance matrix for our input
features is positive definite. Combining Assumptions 4.1
and 4.2, we conclude that θ̂ is the unique optimal solution of
problem (10). Next, we state the convergence rate of BFGS
for solving problem 10 under the disclosed assumptions.

Theorem 4.3. Consider the BFGS method in (3)-(5). Sup-
pose Assumptions 4.1 and 4.2 hold, and the initial Hes-
sian inverse approximation matrix is selected as H0 =
∇2f(θ0)

−1, where θ0 ∈ Rd is an arbitrary initial point. If
the step size is ηk = 1 for all k ≥ 0, then the iterates of
BFGS converge to the optimal solution θ̂ at a linear rate of

∥θk − θ̂∥ ≤ rk−1∥θk−1 − θ̂∥, ∀k ≥ 1, (11)

where the contraction factors rk ∈ [0, 1) satisfy

r0 =
q − 2

q − 1
, rk =

1− rq−2
k−1

1− rq−1
k−1

, ∀k ≥ 1. (12)

The proof of this theorem is available in Appendix A.1. The-
orem 4.3 shows that the iterates of BFGS converge globally
at a linear rate to the optimal solution of (10). This result is
of interest as it illustrates the iterates generated by BFGS
converge globally without any line search scheme and the
stepsize is fixed as ηk = 1 for any k ≥ 0. Moreover, the
initial point θ0 is arbitrary and there is no restriction on the
distance between θ0 and the optimal solution θ̂. This result
is in contrast to most analyses of quasi-Newton methods
which require the initial point θ0 to be in a local neighbor-
hood of θ̂ to guarantee the linear or superlinear convergence
rate, without line-search.
Remark 4.4. The cost of computing the initial Hessian in-
verse approximation H0 = ∇2f(θ0)

−1 is O(d3), but this
cost is only required for the first iteration, and it is not re-
quired for k ≥ 1 as for those iterates we update the Hessian
inverse approximation matrix Hk based on the update in (4)
at a cost of O(d2).

Note that the result in Theorem 4.3 does not specify the
exact complexity of BFGS for solving problem(10), as the
contraction factors rk are not explicitly given. In the fol-
lowing theorem, we show that for q ≥ 4, the linear rate
contraction factors {rk}∞k=0 also converge linearly to a fixed
point contraction factor r∗ determined by the parameter q.

Theorem 4.5. Consider the linear convergence factors
{rk}∞k=0 defined in (12) from Theorem 4.3. If q ≥ 4, then
the sequence {rk}∞k=0 converges to r∗ ∈ (0, 1) that is deter-
mined by the equation

rq−1
∗ + rq−2

∗ = 1, (13)

and the rate of convergence is linear with a contraction
factor that is at most 1/2, i.e.,

|rk − r∗| ≤ (1/2)
k |r0 − r∗|, ∀k ≥ 0. (14)
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The proof is in Appendix A.2. Based on Theorem 4.5, the
iterates of BFGS eventually converge to the optimal solution
at the linear rate of r∗ determined by (13). Specifically, the
factors {rk}∞k=0 converge to the fixed point r∗ at a linear
rate with the contraction factor of 1/2. Further, the linear
convergence factors {rk}∞k=0 and their limit r∗ are all only
determined by q, and they are independent of the dimension
d and the condition number κA of the matrix A. Hence, the
performance of BFGS is not influenced by high-dimensional
or ill-conditioned problems. This result is independently im-
portant from an optimization point of view, as it provides the
first global linear convergence of BFGS without line-search
for a setting that is not strictly or strongly convex, and inter-
estingly the constant of linear convergence is independent
of dimension or condition number.

We illustrate the convergence of factors {rk}∞k=0 to the
fixed point r∗ in Figure 4 of the appendix B for q = 4
and q = 100. In plots (a) and (b), we observe that rk
becomes close to r∗ after only 5 iterations. Hence, the linear
convergence rate of BFGS is approximately r∗ after only a
few iterations. We further observe in plots (c) and (d) that
the factors {rk}∞k=0 converge to the fixed point r∗ at a linear
rate upper bounded by 1/2. Note that r∗ is the solution of
(13). These plots verify our results in Theorem 4.5.

4.1. Comparison with Newton’s Method

Next, we compare the convergence results of BFGS for solv-
ing problem (10) with the one for Newton’s method. The
following theorem characterizes the global linear conver-
gence of Newton’s method with unit step size applied to the
objective function in (10).

Theorem 4.6. Consider applying Newton’s method to op-
timization problem (10) and suppose Assumptions 4.1 and
4.2 hold. Moreover, suppose the step size is ηk = 1 for any
k ≥ 0. Then, the iterates of Newton’s method converge to
the optimal solution θ̂ at a linear rate of

∥θk − θ̂∥ =
q − 2

q − 1
∥θk−1 − θ̂∥, ∀k ≥ 1. (15)

Moreover, this linear convergence rate q−2
q−1 is smaller than

the fixed point r∗ defined in (13) of the BFGS quasi-Newton
method, i.e., q−2

q−1 < r∗ < 2q−3
2q−2 for all q ≥ 4.

The proof is available in Appendix A.3. The convergence
results of Newton’s method are also global without any
line search method, and the linear rate q−2

q−1 is independent
of dimension d and condition number κA. Furthermore,
the condition q−2

q−1 < r∗ implies that iterates of Newton’s
method converge faster than BFGS, but the gap is not sub-
stantial as r∗ < 2q−3

2q−2 . On the other hand, the computational
cost per iteration of Newton’s method is O(d3) which is
worse than the O(d2) of BFGS.

Moving back to our main problem, one important impli-
cation of the above convergence results is that in the low
SNr setting the iterates of BFGS converge linearly to the
optimal solution of the population loss function, while the
contraction coefficient of BFGS is comparable to that of
Newton’s method which is (2p− 2)/(2p− 1). For instance,
for p = 2, 3, 5, 10, the linear rate contraction factor of New-
ton’s method are 0.667, 0.8, 0.889, 0.947 and the approxi-
mate linear rate contraction factor of BFGS denoted by r∗
are 0.755, 0.857, 0.922, 0.963, respectively.

5. Convergence Analysis in the Low SNR
Regime: Finite Sample Setting

Thus far, we have demonstrated that the BFGS iterates con-
verge linearly to the true parameter θ∗ when minimizing
the population loss function L of the GLM in (9) in the
low SNR regime. In this section, we study the statistical
behavior of the BFGS iterates for the finite sample case by
leveraging the insights developed in the previous section
about the convergence rate of BFGS in the infinite sample
case, i.e., population loss. More precisely, we focus on the
application of BFGS for solving the least-square loss func-
tion Ln defined in (7) for the low SNR setting. The iterates
of BFGS in this case follow the update rule

θnk+1 = θnk − ηkH
n
k∇Ln(θ

n
k ), (16)

where Hn
k is updated using the gradient information of the

loss Ln by the BFGS rule.

We next show that the BFGS iterates (16) {θnk}k≥0 converge
to the final statistical radius within a logarithmic number
of iterations under the low SNR regime of the GLMs. To
prove this claim, we track the difference between the iter-
ates {θnk}k≥0 generated based on the empirical loss and the
iterates {θk}k≥0 generated according to the population loss.
Assuming that they both start from the same initialization θ0,
with the concentration of the gradient ∥∇Ln(θ)−∇L(θ)∥
and the Hessian ∥∇2Ln(θ) −∇2L(θ)∥op from Mou et al.
(2019); Ren et al. (2022b) we control the deviation between
these two sequences. Using this bound and the convergence
results of the iterates generated based on the population loss
discussed in the previous section, we prove the following
result for the finite sample setting.

Theorem 5.1. Consider the low SNR regime of the GLM
in (6) namely, ∥θ∗∥ ≤ C1(d/n)

1/(2p). Apply the BFGS
method to the empirical loss (7) with the initial Hessian
inverse approximation matrix as

H0 = ∇2f(θn0 )
−1

,

where θn0 ∈ B(θ∗, r) for some r > 0 and step size ηk = 1.
For any failure probability δ ∈ (0, 1), if the number of sam-
ples is n ≥ C2(d log(d/δ))

2p, and the number of iterations
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satisfies T ≥ log(n/d(log(1/δ))), then with probability
1− δ, we have

min
t∈[T ]

∥θnt − θ∗∥ ≤ C3

(
d log(1/δ)

n

) 1
2p+2

, (17)

where C1, C2, and C3 are universal constants independent
of n and d, and C3 has a polynomial dependency on r.

The proof is available in Appendix A.4. Theorem 5.1 shows
that BFGS achieves the statistical accuracy in O(log n) it-
erations, which is faster than the sublinear convergence
O(n

p−1
p ) of GD shown in (Ren et al., 2022a). A few com-

ments about Theorem 5.1 are in order.

Comparing to GD, GD with Polyak step size , and
Newton’s method: Theorem 5.1 indicates that under the
low SNR regime, the BFGS iterates reach the final statis-
tical radius O(n−1/(2p+2)) within the true parameter θ∗

after O(log(n)) number of iterations. The statistical ra-
dius is slightly worse than the optimal statistical radius
O(n−1/(2p)). However, we conjecture that this is due to
the proof technique and BFGS can still reach the optimal
O(n−1/(2p)) in practice. In our experiments, in the next
section, we observe that when d = 4 and p = 2, the sta-
tistical radius of BFGS is closer to the optimal radius of
O(n−1/4) instead of O(n−1/6) suggested by our analysis.
We leave an improvement of the statistical analysis as the
future work. On the other hand, the overall computational
complexity of BFGS, which is O(log(n)), is indeed better
than the polynomial number of iterations of GD, which is at
the order of O(n(p−1)/p) (Corollary 3 in (Ho et al., 2020)).

Moreover, the complexity of BFGS is better than the one for
GD with Polyak step size which is O(κ log(n)) iterations
(Corollary 1 in (Ren et al., 2022a)), where κ is the condition
number of the covariance matrix Σ. Note that while the
iteration complexity of BFGS is comparable to that of GD
with Polyak step size in terms of the sample size, the BFGS
overcomes the need to approximate the optimal value of
the sample least-square loss Ln, which can be unstable in
practice, and also removes the dependency on the condition
number that appears in the complexity bound of GD with
Polyak step size. Finally, the iteration complexity of BFGS
is comparable to the O(log(n)) of Newton’s method (Corol-
lary 3 in (Ho et al., 2020)), while per iteration cost of BFGS
is lower than Newton’s method.

On the minimum number of iterations: The results in
Theorem 5.1 involve the minimum number of iterations,
namely, this result holds for some 1 ≤ t ≤ T . It suggests
that the BFGS iterates may diverge after they reach the
final statistical radius. As highlighted in (Ho et al., 2020),
such instability behavior of BFGS is inherent to fast and
unstable methods. While it may sound limited, this issue
can be handled via an early stopping scheme using the cross-

validation approaches. We illustrate such early stopping of
the BFGS iterates for the low SNR regime in Figure 2.

6. Numerical Experiments
We divide our experiments into two sections where the first
one focuses on the behavior of iterative methods on the
population loss of GLM with polynomial link functions and
the second one focuses on the finite sample setting.

Experiments for the population loss function. In this
section, we compare the performance of Newton’s method,
BFGS, GD with constant step size, and GD with Polyak
step size applied to (10) which corresponds to the population
loss. We choose different values of parameter m, dimension
d and the exponential parameter q in (10). We generate a
random matrix A ∈ Rm×d and a random vector θ̂ ∈ Rd,
and compute the vector b = Aθ̂ ∈ Rd. The initial point
θ0 ∈ Rd is also generated randomly. The GD constant step
size η is tuned by hand to achieve the best performance
of GD on each problem. We present the logarithmic scale
of ∥θk − θ̂∥ versus the number of iteration k for different
algorithms. All the values of different parameters m, d, q
and η as well as the numerical results of our experiments
are shown in Figure 1.

We observe that GD with constant step converges slowly
due to its sub-linear convergence rate. The performance
of GD with Polyak step size is also poor when dimension
is large or the parameter q is huge. This is due to the fact
that as dimension increases the problem becomes more ill-
conditioned and hence the linear convergence contraction
factor approaches 1. We observe that both Newton’s method
and BFGS generate iterations with linear convergence rates,
and their linear convergence rates are only affected by the
parameter q, i.e., the dimension d has no impact over the
performance of BFGS and Newton’s method. Although the
convergence speed of Newton’s method is faster than BFGS,
their gap is not significantly large as we expected from our
theoretical results in Section 4.

Experiments for the empirical loss function. We next
study the statistical and computational complexities of
BFGS on the empirical loss. In our experiments, we first
consider the case that d = 4 and the power of the link
function is p = 2, namely, we consider the multivariate
setting of the phase retrieval problem. The data is gener-
ated by first sampling the inputs according to {Xi}ni=1 ∼
N (0,diag(σ2

1 , · · · , σ2
4)) where σk = (0.5)k−1, and then

generating their labels based on Yi = (X⊤
i θ∗)2 + ζi where

{ζi}ni=1 are i.i.d. samples from N (0, 0.01). In the low SNR
regime, we set θ∗ = 0, and in the high SNR regime we
select θ∗ uniformly at random from the unit sphere. Further,
for GD, we set the step size as η = 0.1, while for Newton’s
method and BFGS, we use the unit stepsize η = 1.
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Figure 1. Convergence of Newton’s method, BFGS, GD with constant step size and GD with Polyak step size for different values of d
and q. In plot (a), m = 100 and η = 10−4. In plot (b), m = 100 and η = 10−8. In plot (c), m = 2000 and η = 10−12. In plot (d),
m = 2000 and η = 10−15.
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Figure 2. Illustration of different methods with high SNR regime in (a) and low SNR regime in (b). Illustration of the statistical radius of
BFGS with high SNR regime in (c) and low SNR regime in (d).

In plots (a) and (b) of Figure 2, we consider the setting that
the sample size is n = 104, and we run GD, GD with Polyak
step size, BFGS, and Newton’s method to find the optimal
solution of the sample least-square loss Ln. Furthermore,
for both Newton’s method and the BFGS algorithm, due to
their instability, we also perform cross-validation to choose
their early stopping. In particular, we split the data into
training and the test sets. The training set consists of 90% of
the data while the test set has 10% of the data. The yellow
points in plots (a) and (b) of Figure 2 show the iterates of
BFGS and Newton, respectively, with the minimum valida-
tion loss. As we observe, under the low SNR regime, the
iterates of GD with Polyak step size, BFGS and Newton’s
method converge geometrically fast to the final statistical
radius while those of the GD converge slowly to that radius.
Under the high SNR regime, the iterates of all of these meth-
ods converge geometrically fast to the final statistical radius.
The faster convergence of GD with Polyak step size over
GD is due to the optimality of step size of, while the faster
convergence of BFGS and Newton’s method over GD is
due to their independence on the problem condition number.
Finally, in plots (c) and (d) of Figure 2, we run BFGS when
the sample size is ranging from 102 to 104 to empirically
verify the statistical radius of these methods. As indicated
in the plots of that figure, under the high SNR regime, the

BFGS has statistical radius is O(n−1/2), while under the
low SNR regime, its statistical radius becomes O(n−1/4).

We present additional numerical experiments regarding the
linear contraction factors, experiments on the empirical loss
with high dimensions and empirical results for the middle
SNR regimes in the appendix B.

7. Conclusions
In this paper, we analyzed the convergence rates of BFGS
on both population and empirical loss functions of the gener-
alized linear model in the low SNR regime. We showed that
in this case, BFGS outperforms GD and performs similar
to Newton’s method in terms of iteration complexity, while
it requires a lower per iteration computational complexity
compared to Newton’s method. We also provided experi-
ments for both infinite and finite sample loss functions and
showed that our empirical results are consistent with our
theoretical findings. Perhaps one limitation of the BFGS
method is that its computational cost is still not linear in
the dimension and scales as O(d2). One future research
direction is to analyze some other iterative methods such
as limited memory-BFGS (L-BFGS) which may be able
to achieve a fast linear convergence rate in the low SRN
setting, while its computational cost per iteration is O(d).
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A. Proofs
Lemma A.1. Consider the objective function in (10) satisfying Assumption 4.1 and 4.2. Then, the inverse matrix of its
Hessian ∇2f(θ) can be expressed as

∇2f(θ)
−1

=
(A⊤A)−1

q∥Aθ − b∥q−2
− (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
. (18)

Proof. Notice that the Hessian of objective function (10) can be expressed as

∇2f(θ) = q∥Aθ − b∥q−2A⊤A+ q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(Aθ − b)⊤A. (19)

We use the Sherman–Morrison formula. Suppose that X ∈ Rd×d is an invertible matrix and a, b ∈ Rd are two vectors
satisfying that 1 + b⊤X−1a ̸= 0. Then, the matrix X + ab⊤ is invertible and

(X + ab⊤)−1 = X−1 − X−1ab⊤X−1

1 + b⊤X−1a
. (20)

Applying the Sherman–Morrison formula with X = q∥Aθ − b∥q−2A⊤A, a = q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b) and
b = A⊤(Aθ − b). Notice that A⊤A is invertible, hence X is invertible and

1 + b⊤X−1a

= 1 + (Aθ − b)⊤A
(A⊤A)−1

q∥Aθ − b∥q−2
q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)

= 1 + (q − 2)(Aθ − b)⊤A
(A⊤A)−1A⊤A(θ − θ̂)

∥Aθ − b∥2

= 1 + (q − 2)
(Aθ − b)⊤(Aθ − b)

∥Aθ − b∥2

= q − 1 ̸= 0. (Since q ≥ 4.)

(21)

Therefore, we obtain that

∇2f(θ)
−1

=
(A⊤A)−1

q∥Aθ − b∥q−2
−

(A⊤A)−1

q∥Aθ−b∥q−2 q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(A⊤(Aθ − b))⊤ (A⊤A)−1

q∥Aθ−b∥q−2

q − 1

=
(A⊤A)−1

q∥Aθ − b∥q−2
− (q − 2)

q(q − 1)∥Aθ − b∥q
(A⊤A)−1AA⊤(θ − θ̂)(θ − θ̂)⊤AA⊤(A⊤A)−1

=
(A⊤A)−1

q∥Aθ − b∥q−2
− (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
.

(22)

As a consequence, we obtain the conclusion of the lemma.

Lemma A.2. Banach’s Fixed-Point Theorem. Consider the differentiable function f : D ⊂ R → D ⊂ R. Suppose
that there exists C ∈ (0, 1) such that |f ′(x)| ≤ C for any x ∈ D. Now let x0 ∈ D be arbitrary and define the sequence
{xk}∞k=0 as

xk+1 = f(xk), ∀k ≥ 0. (23)

Then, the sequence {xk}∞k=0 converges to the unique fixed point x∗ defined as

x∗ = f(x∗), (24)

with linear convergence rate of
|xk − x∗| ≤ Ck|x0 − x∗|, ∀k ≥ 0. (25)

Proof. Check (Goebel & Kirk, 1990).
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A.1. Proof of Theorem 4.3

We use induction to prove the convergence results in (11) and (12). Note that b = Aθ̂ by Assumption 4.1 and the gradient
and Hessian of the objective function in (10) are explicitly given by

∇f(θ) = q∥Aθ − b∥q−2A⊤(Aθ − b) = q∥Aθ − b∥q−2A⊤A(θ − θ̂), (26)

∇2f(θ) = q∥Aθ − b∥q−2A⊤A+ q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(Aθ − b)⊤A. (27)

Applying Lemma A.1, we can obtain that

∇2f(θ)
−1

=
(A⊤A)−1

q∥Aθ − b∥q−2
− (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
. (28)

First, we consider the initial iteration

θ1 = θ0 −H0∇f(θ0) = θ0 −∇f(θ0)
−1∇f(θ0), (29)

θ1 − θ̂ = θ0 − θ̂ −∇f(θ0)
−1∇f(θ0). (30)

Notice that b = Aθ̂ by Assumption 4.1 and

∇2f(θ0)
−1∇f(θ0)

=

[
(A⊤A)−1

q∥Aθ0 − b∥q−2
− (q − 2)(θ0 − θ̂)(θ0 − θ̂)⊤

q(q − 1)∥Aθ0 − b∥q

]
q∥Aθ − b∥q−2A⊤A(θ0 − θ̂)

= θ0 − θ̂ − q − 2

q − 1

(θ0 − θ̂)⊤A⊤A(θ0 − θ̂)

∥Aθ0 − b∥2
(θ0 − θ̂)

= θ0 − θ̂ − q − 2

q − 1

(Aθ0 − b)⊤(Aθ0 − b)

∥Aθ0 − b∥2
(θ0 − θ̂)

= θ0 − θ̂ − q − 2

q − 1
(θ0 − θ̂).

(31)

Therefore, we obtain that

θ1 − θ̂ = θ0 − θ̂ −∇f(θ0)
−1∇f(θ0) =

q − 2

q − 1
(θ0 − θ̂). (32)

Condition (11) holds for k = 1 with r0 = q−2
q−1 . Now we assume that condition (11) holds for k = t where t ≥ 1, i.e.,

θt − θ̂ = rt−1(θt−1 − θ̂). (33)

Considering the condition b = Aθ̂ in Assumption 4.1 and the condition in (33), we further have

Aθt − b = A(θt − θ̂) = rt−1A(θt−1 − θ̂) = rt−1(Aθt−1 − b), (34)

which implies that
∇f(θt) = qrq−1

t−1 ∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂). (35)

We further show that the variable displacement and gradient difference can be written as

st−1 = θt − θt−1 = θt − θ̂ − θt−1 + θ̂ = (rt−1 − 1)(θt−1 − θ̂), (36)

and
ut−1 = ∇f(θt)−∇f(θt−1) = q(rq−1

t−1 − 1)∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂). (37)

Considering these expressions, we can show that the rank-1 matrix in the update of BFGS ut−1s
⊤
t−1 is given by

ut−1s
⊤
t−1 = q(rq−1

t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂)(θt−1 − θ̂)⊤, (38)
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and the inner product s⊤t−1ut−1 can be written as

s⊤t−1ut−1 = q(rq−1
t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q−2(θt−1 − θ̂)⊤A⊤A(θt−1 − θ̂)

= q(rq−1
t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q.

(39)

These two expressions allow us to simplify the matrix I − ut−1s
⊤
t−1

s⊤t−1ut−1
in the update of BFGS as

I −
ut−1s

⊤
t−1

s⊤t−1ut−1
= I − A⊤A(θt−1 − θ̂)(θt−1 − θ̂)⊤

∥A(θt−1 − θ̂)∥2
. (40)

An important property of the above matrix is that its null space is the set of the vectors that are parallel to ut−1. Considering
the expression for ut−1, any vector that is parallel to A⊤A(θt−1 − θ̂) is in the null space of the above matrix. We can easily
observe that the gradient defined in (35) satisfies this condition and therefore(

I −
ut−1s

⊤
t−1

s⊤t−1ut−1

)
∇f(θt)

= qrq−1
t−1 ∥A(θt−1 − θ̂)∥q−2

(
I − A⊤A(θt−1 − θ̂)(θt−1 − θ̂)⊤

∥A(θt−1 − θ̂)∥2

)
A⊤A(θt−1 − θ̂)

= qrq−1
t−1 ∥A(θt−1 − θ̂)∥q−2

(
A⊤A(θt−1 − θ̂)− A⊤A(θt−1 − θ̂)∥A(θt−1 − θ̂)∥2

∥A(θt−1 − θ̂)∥2

)
= 0.

(41)

This important observation shows that if the condition in (33) holds, then the BFGS descent direction Ht∇f(θt) can be
simplified as

Ht∇f(θt)

=

(
I −

st−1u
⊤
t−1

s⊤t−1ut−1

)
Ht−1

(
I −

ut−1s
⊤
t−1

s⊤t−1ut−1

)
∇f(θt) +

st−1s
⊤
t−1

s⊤t−1ut−1
∇f(θt)

=
st−1s

⊤
t−1

s⊤t−1ut−1
∇f(θt)

=
(rt−1 − 1)2(θt−1 − θ̂)(θt−1 − θ̂)⊤

q(rq−1
t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q

qrq−1
t−1 ∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂)

=
1− rt−1

1− rq−1
t−1

rq−1
t−1 (θt−1 − θ̂)

∥A(θt−1 − θ̂)∥q−2(θt−1 − θ̂)⊤A⊤A(θt−1 − θ̂)

∥A(θt−1 − θ̂)∥q

=
1− rt−1

1− rq−1
t−1

rq−1
t−1 (θt−1 − θ̂).

(42)

This simplification implies that for the new iterate θt+1, we have

θt+1 − θ̂ = θt −Ht∇f(θt)− θ̂ = θt − θ̂ − 1− rt−1

1− rq−1
t−1

rq−1
t−1

(θt − θ̂)

rt−1

=
1− rq−2

t−1

1− rq−1
t−1

(θt − θ̂) = rt(θt − θ̂),

(43)

where

rt =
1− rq−2

t−1

1− rq−1
t−1

. (44)

Therefore, we prove that condition (11) holds for k = t+ 1. By induction, we prove the linear convergence results in (11)
and (12).
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One property of this convergence results is that the error vectors {θk − θ̂}∞k=0 are parallel to each other with the same
direction as shown in (11). This indicates that the iterations {θk}∞k=0 converge to the optimal solution θ̂ along the same
straight line defined by θ0 − θ̂. Only the length of each vector θk − θ̂ reduces to zero with the linear convergence rates
{rk}∞k=0 specified in (12) and the direction remains all the same.

A.2. Proof of Theorem 4.5

Recall that we have

r0 =
q − 2

q − 1
, rk =

1− rq−2
k−1

1− rq−1
k−1

, ∀k ≥ 1. (45)

Consider that q ≥ 4 and define the function g(r) as

g(r) :=
1− rq−2

1− rq−1
, r ∈ [0, 1]. (46)

Suppose that r∗ ∈ (0, 1) satisfying that r∗ = g(r∗), which is equivalent to

rq−1
∗ + rq−2

∗ = 1. (47)

Notice that

g′(r) =
(q − 1)rq−2 − r2q−4 − (q − 2)rq−3

(1− rq−1)2
, (48)

and

(q − 1)rq−2 − r2q−4 − (q − 2)rq−3

= rq−3[(q − 1)(r − 1)− (rq−1 − 1)]

= rq−3(r − 1)(q − 1− rq−1 − 1

r − 1
)

= rq−3(r − 1)(q − 1−
q−2∑
i=0

ri).

(49)

Since r ∈ [0, 1], we have that

rq−3 ≥ 0, r − 1 ≤ 0,

q−2∑
i=0

ri ≤
q−2∑
i=0

1 = q − 1. (50)

Therefore, we obtain that
(q − 1)rq−2 − r2q−4 − (q − 2)rq−3 ≤ 0, (51)

and

|g′(r)| = r2q−4 + (q − 2)rq−3 − (q − 1)rq−2

(1− rq−1)2
. (52)

Our target is to prove that for any r ∈ [0, 1],

|g′(r)| ≤ 1

2
. (53)

First, we present the plots of |g′(r)| for r ∈ [0, 1] with 4 ≤ q ≤ 11 in Figure 3. We observe that for 4 ≤ q ≤ 11,
|g′(r)| ≤ 1/2 always holds.

Next, we prove that for q ≥ 12 and any r ∈ [0, 1], we have

|g′(r)| = (q − 1)rq−2 − r2q−4 − (q − 2)rq−3

(1− rq−1)2
≤ 1

2
, (54)

which is equivalent to

r2q−2 − 2r2q−4 − 2rq−1 + 2(q − 1)rq−2 − 2(q − 2)rq−3 + 1 ≥ 0, ∀r ∈ [0, 1]. (55)
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Figure 3. Plots of |g′(r)| with r ∈ [0, 1] for 4 ≤ q ≤ 11.

Define the function h(r) as

h(r) := r2q−2 − 2r2q−4 − 2rq−1 + 2(q − 1)rq−2 − 2(q − 2)rq−3 + 1. (56)

We obtain that
dh(r)

dr
= 2rq−4h(1)(r), (57)

where
h(1)(r) := (q − 1)rq+1 − 2(q − 2)rq−1 − (q − 1)r2 + (q − 1)(q − 2)r − (q − 2)(q − 3). (58)

Hence, we have that
dh(1)(r)

dr
= (q − 1)h(2)(r), (59)

where
h(2)(r) := (q + 1)rq − 2(q − 2)rq−2 − 2r + q − 2. (60)

Therefore, we obtain that
dh(2)(r)

dr
= h(3)(r) := (q + 1)qrq−1 − 2(q − 2)2rq−3 − 2, (61)

and
dh(3)(r)

dr
= rq−4h(4)(r), (62)

where
h(4)(r) := q(q + 1)(q − 1)r2 − 2(q − 2)2(q − 3). (63)

Now we define the function l(q) as

l(q) := 2(q − 2)2(q − 3)− q(q + 1)(q − 1)

= q3 − 14q2 + 33q − 24

= q2(q − 14) + 33(q − 1) + 9.

(64)
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We observe that for q ≥ 14, we have l(q) > 0 and we calculate that l(12) = 84 > 0 and l(13) = 236 > 0. Hence, we
obtain that l(q) > 0 for all q ≥ 12, which indicates that for all r ∈ [0, 1],

r2 ≤ 1 <
2(q − 2)2(q − 3)

q(q + 1)(q − 1)
, (65)

q(q + 1)(q − 1)r2 − 2(q − 2)2(q − 3) < 0. (66)

Therefore, for all r ∈ [0, 1], h(4)(r) defined in (63) satisfies that h(4)(r) < 0 and from (62) we know that dh(3)(r)
dr < 0. Hence,

h(3)(r) defined in (61) is decreasing function and h(3)(r) <= h(3)(0) = −2 < 0. We know that dh(2)(r)
dr = h(3)(r) < 0,

which implies that h(2)(r) defined in (60) is decreasing function. So we have that h(2)(r) ≥ h(2)(1) = 1 > 0. From

(59) we know that dh(1)(r)
dr > 0 and h(1)(r) defined in (58) is increasing function for r ∈ [0, 1]. Hence, we get that

h(1)(r) ≤ h(1)(1) = 0 and from (57) we obtain that h(r) defined in(56) is decreasing function for r ∈ [0, 1]. Therefore, we
have that h(r) ≥ h(1) = 0 and condition (55) holds for all r ∈ [0, 1], which is equivalent to |g′(r)| ≤ 1/2.

In summary, we proved that for any q ≥ 12, we have |g′(r)| ≤ 1/2. Combining this with the results from Figure 3, we
obtain that |g′(r)| ≤ 1/2 holds for all q ≥ 4. Applying Banach’s Fixed-Point Theorem from Lemma A.2, we prove the final
conclusion (14).

A.3. Proof of Theorem 4.6

Notice that the gradient and the Hessian of the objective function (10) can be expressed as

∇f(θ) = q∥Aθ − b∥q−2A⊤(Aθ − b) = q∥Aθ − b∥q−2A⊤A(θ − θ̂), (67)

∇2f(θ) = q∥Aθ − b∥q−2A⊤A+ q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(Aθ − b)⊤A. (68)

Applying Lemma A.1, we can obtain that

∇2f(θ)
−1

=
(A⊤A)−1

q∥Aθ − b∥q−2
− (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
. (69)

Hence, we have that for any k ≥ 1,
θk = θk−1 −∇f(θk−1)

−1∇f(θk−1), (70)

θk − θ̂ = θk−1 − θ̂ −∇f(θk−1)
−1∇f(θk−1). (71)

Notice that b = Aθ̂ by Assumption 4.1 and

∇f(θk−1)
−1∇f(θk−1)

= [
(A⊤A)−1

q∥Aθk−1 − b∥q−2
− (q − 2)(θk−1 − θ̂)(θk−1 − θ̂)⊤

q(q − 1)∥Aθk−1 − b∥q
]q∥Aθ − b∥q−2A⊤A(θk−1 − θ̂)

= θk−1 − θ̂ − q − 2

q − 1

(θ0 − θ̂)⊤A⊤A(θk−1 − θ̂)

∥Aθk−1 − b∥2
(θk−1 − θ̂)

= θk−1 − θ̂ − q − 2

q − 1

(Aθk−1 − b)⊤(Aθk−1 − b)

∥Aθk−1 − b∥2
(θk−1 − θ̂)

= θk−1 − θ̂ − q − 2

q − 1
(θk−1 − θ̂).

(72)

Therefore, we prove the conclusion that for any k ≥ 1,

θk − θ̂ = θk−1 − θ̂ −∇f(θk−1)
−1∇f(θk−1) =

q − 2

q − 1
(θk−1 − θ̂). (73)

We observe that the iterations generated by Newton’s method also satisfy the parallel property, i.e., all vectors {θk − θ̂}∞k=0

are parallel to each other with the same direction.

Notice that the function h(r) = rq−1 + rq−2 is strictly increasing and h( q−2
q−1 ) < 1, h(r∗) = 1 as well as h( 2q−3

2q−2 ) > 1.
Hence, we know that q−2

q−1 < r∗ < 2q−3
2q−2 .
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A.4. Proof of Theorem 5.1

In the following proof, we use L and Ln to denote the population objective and empirical objective, and θt and θnt , Hn
t

and Ht to denote the corresponding iterations and Hessian approximating matrices in the population update and empirical
update accordingly. For the ease of presentation, we use Cp to denote any constant that is independent of d, n, and Cp

can be varied case by case to simply the proof. From Mou et al. (2019) and Ren et al. (2022b), we have that, as long as
n = Ω((d log d/δ)2p), we have the following two uniform concentration results:

sup
θ∈B(θ∗,r)

∥∇Ln(θ))−∇L(θ))∥ ≤Cp(∥θ∗∥+ r)p−1
√

d log(1/δ)/n,

sup
θ∈B(θ∗,r)

∥∇2Ln(θ))−∇2L(θ))∥ ≤Cp(∥θ∗∥+ r)p−2
√

d log(1/δ)/n.
(74)

Notice that we have

L(θ) = E[(Y − (X⊤θ)p)2] = E[((X⊤θ∗)p + ζ − (X⊤θ)p)2] (75)

= E[((X⊤θ∗)p − (X⊤θ)p)2] + E[2ζ((X⊤θ∗)p − (X⊤θ)p)2] + E[ζ2] (76)

= E[((X⊤θ∗)p − (X⊤θ)p)2] + σ2, (77)

where we use the fact that ζ is independent of X and E[ζ] = 0, E[ζ2] = σ2. Hence, we have that

∇L(θ) = 2pE[((X⊤θ∗)p − (X⊤θ)p)(X⊤θ)p−1X]. (78)

∇2L(θ) = −2p2E[(X⊤θ)2p−2XX⊤] + 2p(p− 1)E[((X⊤θ∗)p − (X⊤θ)p)(X⊤θ)p−2)XX⊤]. (79)

We denote L0 as the population loss function with respect to the assumption of θ∗ = 0. Therefore, we have that

L0(θ) = E[(X⊤θ)p)2] + σ2. (80)

∇L0(θ) = −2pE[(X⊤θ)p)(X⊤θ)p−1X]. (81)

∇2L0(θ) = −2p2E[(X⊤θ)2p−2XX⊤]− 2p(p− 1)E[(X⊤θ)p(X⊤θ)p−2)XX⊤]. (82)

Hence, we have

∥∇L(θ)−∇L0(θ)∥ = CpE[(X⊤θ∗)p(X⊤θ)p−1X] ≤ CpE[∥X∥2p]∥θ∗∥p∥θ∥p−1. (83)

Recall that X is a Gaussian or sub-Gaussian random variable with E[∥X∥2p] < +∞. For any θ ∈ B(θ∗, r), ∥θ∥ ≤ ∥θ∗∥+ r

and in the low SNR regime, we have ∥θ∗∥ ≤ C1(
d
n )

1
2p . Hence, we have

sup
θ∈B(θ∗,r)

∥∇L(θ)−∇L0(θ)∥ ≤Cp(∥θ∗∥+ r)p−1
√
d log(1/δ)/n. (84)

Similarly, we have that

∥∇2L(θ)−∇2L0(θ)∥ = CpE[(X⊤θ∗)p(X⊤θ)p−2XX⊤] ≤ CpE[∥X∥2p]∥θ∗∥p∥θ∥p−2. (85)

sup
θ∈B(θ∗,r)

∥∇2L(θ)−∇2L0(θ)∥ ≤Cp(∥θ∗∥+ r)p−2
√

d log(1/δ)/n. (86)

Leveraging (74), (84) and (86) we obtain that

sup
θ∈B(θ∗,r)

∥∇Ln(θ))−∇L0(θ))∥ ≤Cp(∥θ∗∥+ r)p−1
√
d log(1/δ)/n, (87)

sup
θ∈B(θ∗,r)

∥∇2Ln(θ))−∇2L0(θ))∥ ≤Cp(∥θ∗∥+ r)p−2
√
d log(1/δ)/n. (88)
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This explains the remark of assumption θ∗ = 0 in section 4. The errors between gradients and Hessians of the population loss
with θ∗ = 0 and ∥θ∗∥ ≤ C1(d/n)

1/(2p) are upper bounded by the corresponding statistical errors between the population
loss (8) and the empirical loss (7) in the low SNR regime, respectively. Hence, L0 and L can be treated as equivalent. In the
following proof, we replace all L0 with L in the general low SNR regime. We can assume that the results of Theorem 4.3
and 4.5 also hold for the L, i.e., there exists linear convergence rates {rt}∞t=0 with

∥θt+1 − θ∗∥ ≤ rt∥θt − θ∗∥ ∀t ≥ 0.

Recall that L0(θ) = EX

[
(X⊤θ)2p

]
= Cp∥Σ1/2θ∥2p. Since L0 is equivalent to L, we can also assume that

λmax(∇2L(θ))) ≤ Cp∥θ − θ∗∥2p−2, λmin(∇2L(θ))) ≥ Cp∥θ − θ∗∥2p−2, ∥∇L(θ))∥ ≤ Cp∥θ − θ∗∥2p−1. (89)

We assume that ∥θ∗∥ ≤ ∥θ − θ∗∥ for any θ. Otherwise, we have that ∥θ − θ∗∥ < ∥θ∗∥ ≤ C1(
d
n )

1
2p by the definition of the

low SNR regime, which indicates that θ has already achieved the optimal statistical radius. Hence, for any θ ∈ B(θ∗, r), we
have that ∥θ∗∥ ≤ ∥θ − θ∗∥ ≤ r and thus, we have the following conditions

sup
θ∈B(θ∗,r)

∥∇Ln(θ))−∇L(θ))∥ ≤Cpr
p−1
√

d log(1/δ)/n, (90)

sup
θ∈B(θ∗,r)

∥∇2Ln(θ))−∇2L(θ))∥ ≤Cpr
p−2
√

d log(1/δ)/n. (91)

In this proof, we use induction and apply conditions (89), (90) and (91) to prove the final results and start with the base case.
Assume θn0 = θ0, and ∥θ0 − θ∗∥p ≥ Cpε(n, δ). For the first step, we have that

∥θn1 − θ1∥ =∥(∇2Ln(θ0))
−1∇Ln(θ0)− (∇2L(θ0))−1∇L(θ0)∥

≤
∥∥∥(∇2Ln(θ0)

)−1 − (∇2L(θ0))−1
∥∥∥ ∥∇Ln(θ0)∥+

∥∥∥(∇2L(θ0)
)−1
∥∥∥ ∥∇Ln(θ0)−∇L(θ0)∥

(92)

We observe that for invertible matrices A and B,

(A−1 −B−1) = A−1(B −A)B−1. (93)

We can bound

∥∇2Ln(θ0)
−1 −∇2L(θ0)−1∥

≤ ∥(∇2Ln(θ0))
−1∥∥∇2Ln(θ0)−∇2L(θ0)∥∥(∇2L(θ0))−1∥

≤ Cp∥θ0 − θ∗∥2−3p
√
d log(1/δ)/n,

(94)

which leads to the bound

∥θn1 − θ1∥ ≤ Cp∥θ0 − θ∗∥1−p
√
d log(1/δ)/n. (95)

We now show that, ∀t < T = O(log(n/d)), we have

∥θnt − θt∥ ≤ ct∥θt−1 − θ∗∥1−p
√
d log(1/δ)/n, (96)

where ct = Θ(exp(t)). Before we start, we assume ∀t < T , we have

ct∥θt − θ∗∥−p
√

d log(1/δ)/n ≤ 1

Cp
. (97)

Otherwise, our results simply follow. We now prove (96) by induction. Notice that from (95), we know that (96) holds for
t = 1. Assume for k ≤ t, we have ∥θnk − θk∥ ≤ ck∥θk − θ∗∥1−p

√
d log(1/δ)/n. Note that

∥θnt+1 − θt+1∥ ≤ ∥θnt − θt∥+ ∥Hn
t ∇Ln(θ

n
t )−Ht∇L(θt)∥. (98)
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We apply the update of

Hn
t =

(
I −

snt−1(u
n
t−1)

⊤

(un
t−1)

⊤snt−1

)
Hn

t−1

(
I −

un
t−1(s

n
t−1)

⊤

(snt−1)
⊤un

t−1

)
+

snt−1(s
n
t−1)

⊤

(snt−1)
⊤un

t−1

, (99)

Ht =

(
I − st−1(ut−1)

⊤

(ut−1)⊤st−1

)
Ht−1

(
I − ut−1(st−1)

⊤

(st−1)⊤ut−1

)
+

st−1(st−1)
⊤

(st−1)⊤ut−1
, (100)

and (
I −

ut−1s
⊤
t−1

s⊤t−1ut−1

)
∇L(θt) = 0, (101)

which follows equation (41) from the population analysis. Then, we have the following decomposition:

∥Hn
t ∇Ln(θ

n
t )−Ht∇f(θt)∥ =

∥∥∥∥Hn
t ∇Ln(θ

n
t )−

st−1s
⊤
t−1

s⊤t−1ut−1
∇L(θt)

∥∥∥∥
≤
∥∥∥∥(I − snt−1(u

n
t−1)

⊤

(un
t−1)

⊤snt−1

)
Hn

t−1

(
I −

un
t−1(s

n
t−1)

⊤

(snt−1)
⊤un

t−1

)
∇Ln(θ

n
t )

∥∥∥∥+ ∥∥∥∥ snt−1(s
n
t−1)

⊤

(snt−1)
⊤un

t−1

∇Ln(θ
n
t )−

st−1s
⊤
t−1

s⊤t−1ut−1
∇L(θt)

∥∥∥∥ ,
(102)

Now we bound these two terms separately. The first term can be bounded as∥∥∥∥(I − snt−1(u
n
t−1)

⊤

(un
t−1)

⊤snt−1

)
Hn

t−1

(
I −

un
t−1(s

n
t−1)

⊤

(snt−1)
⊤un

t−1

)
∇Ln(θ

n
t )

∥∥∥∥
≤
∥∥∥∥I − snt−1(u

n
t−1)

⊤

(un
t−1)

⊤snt−1

∥∥∥∥ ∥Hn
t−1∥

∥∥∥∥(I − un
t−1(s

n
t−1)

⊤

(snt−1)
⊤un

t−1

)
∇Ln(θ

n
t )

∥∥∥∥
≤ ∥Hn

t−1∥
∥∥∥∥(I − un

t−1(s
n
t−1)

⊤

(snt−1)
⊤un

t−1

)
∇Ln(θ

n
t )

∥∥∥∥ ,
(103)

and∥∥∥∥(I − un
t−1(s

n
t−1)

⊤

(snt−1)
⊤un

t−1

)
∇Ln(θ

n
t )

∥∥∥∥ =

∥∥∥∥(I − un
t−1(s

n
t−1)

⊤

(snt−1)
⊤un

t−1

)
∇Ln(θ

n
t )−

(
I −

ut−1s
⊤
t−1

s⊤t−1ut−1

)
∇L(θt)

∥∥∥∥
≤ ∥∇Ln(θ

n
t )−∇L(θt)∥+

∥∥∥∥∥un
t−1s

n
t−1

⊤∇Ln(θ
n
t )

(snt−1)
⊤un

t−1

−
un
t−1s

⊤
t−1∇L(θt)

s⊤t−1ut−1

∥∥∥∥∥+
∥∥∥∥un

t−1s
⊤
t−1∇L(θt)

s⊤t−1ut−1
−

ut−1s
⊤
t−1∇L(θt)

s⊤t−1ut−1

∥∥∥∥
≤ ∥∇Ln(θ

n
t )−∇L(θt)∥+ ∥un

t−1∥
∣∣∣∣ (snt−1)

⊤∇Ln(θ
n
t )

(snt−1)
⊤un

t−1

−
s⊤t−1∇L(θt)
s⊤t−1ut−1

∣∣∣∣+ ∥un
t−1 − ut−1∥

s⊤t−1∇L(θt)
s⊤t−1ut−1

,

(104)

where we use the fact that
∥∥∥I − snt−1(u

n
t−1)

⊤

(un
t−1)

⊤snt−1

∥∥∥ ≤ 1 and
(
I − ut−1s

⊤
t−1

s⊤t−1ut−1

)
∇L(θt) = 0. The second term can be bounded as

∥∥∥∥ snt−1(s
n
t−1)

⊤

(snt−1)
⊤un

t−1

∇Ln(θ
n
t )−

st−1s
⊤
t−1

s⊤t−1ut−1
∇L(θt)

∥∥∥∥
≤
∥∥∥∥ snt−1(s

n
t−1)

⊤

(snt−1)
⊤un

t−1

∇Ln(θ
n
t )−

snt−1s
⊤
t−1

s⊤t−1ut−1
∇L(θt)

∥∥∥∥+ ∥∥∥∥ snt−1s
⊤
t−1

s⊤t−1ut−1
∇L(θt)−

st−1s
⊤
t−1

s⊤t−1ut−1
∇L(θt)

∥∥∥∥
≤ ∥snt−1∥

∣∣∣∣ (snt−1)
⊤∇Ln(θ

n
t )

(snt−1)
⊤un

t−1

−
s⊤t−1∇L(θt)
s⊤t−1ut−1

∣∣∣∣+ ∥st−1 − snt−1∥
s⊤t−1∇L(θt)
s⊤t−1ut−1

.

(105)

We start from the bound on several basic terms.
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• Bounds related to snt−1:

∥snt−1 − st−1∥ ≤∥θnt − θt∥+ ∥θnt−1 − θt−1∥

≤(ct∥θt−1 − θ∗∥1−p + ct−1∥θt−2 − θ∗∥1−p)
√
d log(1/δ)/n

≤(ct + ct−1r
p−1
t−1 )∥θt−1 − θ∗∥1−p

√
d log(1/δ)/n,

(106)

which also gives

∥snt−1∥ ≤∥st−1∥+ ∥snt−1 − st−1∥

=(1− rt−1)∥θt−1 − θ∗∥+ (ct∥θt−1 − θ∗∥1−p + ct−1∥θt−2 − θ∗∥1−p)
√
d log(1/δ)/n

≤(1− rt−1)∥θt−1 − θ∗∥+ 1 + 1/rt−2

Cp
∥θt−1 − θ∗∥

≤∥θt−1 − θ∗∥,

(107)

where we use the fact that ct∥θt−1 − θ∗∥−p
√
d log(1/δ)/n ≤ 1

Cp
and we can choose sufficiently large Cp to make the

last inequality holds.

• Bounds related to ∇Ln(θ
t
n):

∥∇Ln(θ
n
t )−∇L(θt)∥

≤∥∇Ln(θ
n
t )−∇L(θnt )∥+ ∥∇L(θnt )−∇L(θt)∥

≤Cp∥θnt − θ∗∥p−1
√
d log(1/δ)/n+ Cp∥θnt − θt∥ (∥θnt − θt∥+ ∥θt − θ∗∥)2p−2

≤Cp (∥θnt − θt∥+ ∥θt − θ∗∥)p−1
√

d log(1/δ)/n
(
1 + ct∥θt−1 − θ∗∥1−p (∥θnt − θt∥+ ∥θt − θ∗∥)p−1

)
≤(Cp + Cpct)∥θt−1 − θ∗∥p−1

√
d log(1/δ)/n,

(108)

which also gives

∥∇Ln(θ
n
t )∥ ≤ ∥∇L(θt)∥+ ∥∇Ln(θ

n
t )−∇L(θt)∥ ≤ Cp∥θt − θ∗∥2p−1, (109)

where we still use the fact that ct∥θt−1− θ∗∥−p
√
d log(1/δ)/n ≤ 1

Cp
and we can choose sufficiently large Cp to make

the noise term negligible.

• Bounds related to un
t−1:

∥un
t−1 − ut−1∥

≤∥∇Ln(θ
n
t )−∇L(θt)∥+ ∥∇Ln(θ

n
t−1)−∇L(θt−1)∥

≤(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p−1
√
d log(1/δ)/n.

(110)

With the same technique, we can show that

∥un
t−1∥ ≤ Cp∥θt−1 − θ∗∥2p−1. (111)

• Bound of |(snt−1)
⊤∇Ln(θ

n
t )− s⊤t−1∇L(θt)|:

|(snt−1)
⊤∇Ln(θ

n
t )− s⊤t−1∇L(θt)|

≤∥snt−1 − st−1∥∥∇Ln(θ
n
t )∥+ ∥st−1∥∥∇Ln(θ

n
t )−∇L(θt)∥

≤(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p
√
d log(1/δ)/n.

(112)

And with the same technique, we have

Cp∥θt−1 − θ∗∥2p ≤ (snt−1)
⊤∇Ln(θ

n
t ) ≤ Cp∥θt−1 − θ∗∥2p.
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• Bound of |(snt−1)
⊤un

t−1 − s⊤t−1ut−1|:

|(snt−1)
⊤(un

t−1)− s⊤t−1ut−1|
≤∥snt−1 − st−1∥∥un

t−1∥+ ∥st−1∥∥un
t−1 − ut−1∥

≤(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p
√
d log(1/δ)/n,

(113)

which also gives

Cp∥θt−1 − θ∗∥2p ≤ (snt−1)
⊤un

t−1 ≤ Cp∥θt−1 − θ∗∥2p. (114)

• Bound for
∣∣∣ (snt−1)

⊤∇Ln(θ
n
t )

(snt−1)
⊤un

t−1
− s⊤t−1∇L(θt)

s⊤t−1ut−1

∣∣∣:∣∣∣∣ (snt−1)
⊤∇Ln(θ

n
t )

(snt−1)
⊤un

t−1

−
s⊤t−1∇L(θt)
s⊤t−1ut−1

∣∣∣∣
≤
∣∣(snt−1)

⊤∇Ln(θ
n
t )− s⊤t−1∇L(θt)

∣∣ s⊤t−1ut−1 + s⊤t−1∇L(θt)
∣∣s⊤t−1ut−1 − (snt−1)

⊤un
t−1

∣∣
(snt−1)

⊤un
t−1s

⊤
t−1ut−1

≤(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥−p
√

d log(1/δ)/n.

(115)

• Straightforward computation shows that s⊤t−1∇L(θt) = Cp∥θt − θ∗∥2p, s⊤t−1ut−1 = Cp∥θ − θ∗∥2p.

To summarize, we have that∥∥∥∥(I − un
t−1(s

n
t−1)

⊤

(snt−1)
⊤un

t−1

)
∇Ln(θ

n
t )

∥∥∥∥ ≤(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p−1
√
d log(1/δ)/n, (116)

∥∥∥∥ snt−1(s
n
t−1)

⊤

(snt−1)
⊤un

t−1

∇Ln(θ
n
t )−

st−1s
⊤
t−1

s⊤t−1ut−1
∇L(θt)

∥∥∥∥ ≤(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥1−p
√
d log(1/δ)/n. (117)

Now we bound ∥Hn
t ∥. Recall the update of Hn

t

Hn
t =

(
I −

snt−1(u
n
t−1)

⊤

(un
t−1)

⊤snt−1

)
Hn

t−1

(
I −

un
t−1(s

n
t−1)

⊤

(snt−1)
⊤un

t−1

)
+

snt−1(s
n
t−1)

⊤

(snt−1)
⊤un

t−1

. (118)

With the property of ∥I − snt−1(u
n
t−1)

⊤

(un
t−1)

⊤snt−1
∥ ≤ 1 and ∥I − un

t−1(s
n
t−1)

⊤

(snt−1)
⊤un

t−1
∥ ≤ 1, we have that

∥Hn
t ∥ ≤∥I −

snt−1(u
n
t−1)

⊤

(un
t−1)

⊤snt−1

∥∥Hn
t−1∥∥I −

un
t−1(s

n
t−1)

⊤

(snt−1)
⊤un

t−1

∥+ ∥
snt−1(s

n
t−1)

⊤

(snt−1)
⊤un

t−1

∥

≤∥Hn
t−1∥+

∥snt−1∥2

(snt−1)
⊤un

t−1

≤
∥∥∥(∇2Ln(θ0)

)−1
∥∥∥+ t−1∑

i=0

∥sni ∥2

(sni )
⊤(un

i )
.

(119)

From the previous computation, we know

∥sni ∥2

(sni )
⊤(un

i )
≤ Cp∥θi − θ∗∥2−2p. (120)

From Theorem 4.5 of the population analysis, we know that there exists 0 < rl < rh < 1, such that for all the linear
convergence rates {rt}∞t=0, we have rl ≤ rt ≤ rh for all t ≥ 0 and ∥θt+1 − θ∗∥ = rt∥θt − θ∗∥ for all t ≥ 0. Hence, we
have that for all 0 ≤ i ≤ t− 1,

∥θt−1 − θ∗∥ =

t−2∏
j=i

rj∥θi − θ∗∥ ≤ rt−1−i
h ∥θi − θ∗∥, (121)
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∥θi − θ∗∥ ≥ ri+1−t
h ∥θt−1 − θ∗∥, (122)

∥θi − θ∗∥2−2p ≤ r
(2p−2)(t−1−i)
h ∥θt−1 − θ∗∥2−2p, (123)

t−1∑
i=0

∥θi − θ∗∥2−2p ≤
t−1∑
i=0

r
(2p−2)(t−1−i)
h ∥θt−1 − θ∗∥2−2p ≤ 1

1− r2p−2
h

∥θt−1 − θ∗∥2−2p. (124)

Hence, we obtain that

∥Hn
t ∥ ≤

∥∥∥(∇2Ln(θ0)
)−1
∥∥∥+ t−1∑

i=0

∥sni ∥2

(sni )
⊤(un

i )

≤ 1

λmin(∇2Ln(θ0))
+ Cp

t−1∑
i=0

∥sni ∥2

(sni )
⊤(un

i )

≤ 1

2p∥θ0 − θ∗∥2p−2
+ Cp

1

1− r2p−2
h

∥θt−1 − θ∗∥2−2p

≤

(
r
(2p−2)(t−1)
h

2p
+

Cp

1− r2p−2
h

)
∥θt−1 − θ∗∥2−2p.

(125)

As long as Cp is large enough, we obtain that

∥Hn
t ∥ ≤ Cp∥θt−1 − θ∗∥2−2p, (126)

and

∥Hn
t−1∥ ≤ Cp∥θt−2 − θ∗∥2−2p ≤ Cp

1

r2−2p
t−2

∥θt−1 − θ∗∥2−2p ≤ Cpr
2p−2
h ∥θt−1 − θ∗∥2−2p. (127)

Combining the previous results of (102), (103), (116), (117) and (127), we have that

∥Hn
t ∇L(θnt )−Ht∇L(θt)∥ ≤ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥1−p

√
d log(1/δ)/n. (128)

Notice that by induction, we observe that

∥θnt − θt∥ ≤ ct∥θt−1 − θ∗∥1−p
√
d log(1/δ)/n

= ct
1

r1−p
t−1

∥θt − θ∗∥1−p
√
d log(1/δ)/n

≤ ctr
p−1
h ∥θt − θ∗∥1−p

√
d log(1/δ)/n

≤ (Cp + Cpct + Cpct−1)∥θt − θ∗∥1−p
√
d log(1/δ)/n.

(129)

Therefore for Cp large enough, we have that

∥θnt+1 − θt+1∥ ≤ ∥θnt − θt∥+ ∥Hn
t ∇Ln(θ

n
t )−Ht∇L(θt)∥

≤ (Cp + Cpct + Cpct−1)∥θt − θ∗∥1−p
√
d log(1/δ)/n.

(130)

We define that

ct+1 = Cp + Cpct + Cpct−1, (131)

and we prove that

∥θnt+1 − θt+1∥ ≤ ct+1∥θt − θ∗∥1−p
√
d log(1/δ)/n. (132)
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With the standard recursion, we know that ct ≤ (Cp)
t for Cp large enough. Therefore, using induction we proved that (96)

holds:

∥θnt − θt∥ ≤ ct∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n, (133)

where ct = Θ(exp(t)). Notice that

∥θnt − θ∗∥ ≤ ∥θnt − θt∥+ ∥θt − θ∗∥ ≤(Cp)
t∥θt − θ∗∥1−p

√
d log(1/δ)/n+ ∥θt − θ∗∥. (134)

The optimal T with minimum ∥θnT − θ∗∥ should satisfy that

CT
p ∥θT − θ∗∥−p

√
d log(1/δ)/n = Cp, (135)

for which we obtain T = C log(n/d log(1/δ))
2(p+1) for some C = polylog(p), and ∥θnT − θ∗∥ ≤ Cp(d log(1/δ)/n)

1/(2p+2), that
finishes the proof.

B. Additional Experiments Results
B.1. Experiments for Linear Factors
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(b) q = 100.
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Figure 4. Convergence of factors {rk}∞k=0 to r∗.

B.2. Additional Experiments for the Empirical Loss
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(a) High SNR regime.
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(b) Low SNR regime.
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(c) High SNR regime.
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(d) Low SNR regime.

Figure 5. Convergence and statistical results in d = 50. Convergence of different methods for high SNR regime are shown in (a) and low
SNR regime in (b). Statistical radius of BFGS in high SNR regime and low SNR regime are shown in (c) and (d).

To show that BFGS can also be applied to high dimension scenarios, we conduct additional experiments on the generalized
linear model with input d = 50, 100, 500 and the power of link function p = 2. The inputs are generated by {Xi}ni=1 ∼
N (0,diag(σ2

1 , ·, σ2
d)) where σk = (0.96)k−1, and the remaining setting and hyper-parameters are set identical to the low

dimension scenarios. The results are shown in Figure 5 and 6. As the results show, the performance of BFGS in high
dimensional scenarios are nearly identical to the low dimensional scenarios.
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(a) High SNR regime (d = 100).
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(b) Low SNR regime (d = 100).
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(c) High SNR regime (d = 500).
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(d) Low SNR regime (d = 500).

Figure 6. Convergence of different methods with d = 100 for high SNR regime are shown in (a) and low SNR regime in (b). Convergence
of different methods with d = 500 for high SNR regime are shown in (c) and low SNR regime in (d).

B.3. Experiments in Middle SNR Regime

Here we briefly illustrate the behavior of BFGS in Middle SNR regime. We consider the generalized linear model with
d = 50, 100, 500 and p = 2. The inputs are still generated by {Xi}ni=1, but θ∗ now is uniformly sampled from the sphere
with radius n−1/6.
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(a) d = 50.
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(b) d = 50.
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Figure 7. Convergence results and statistical results for medium SNR regime with d = 50 are shown in (a) and (b). Convergence of
different methods with d = 100 and d = 500 for medium SNR regime are shown in (c) and (d).

The results are shown in Figure 7. We can see BFGS still converges fast, and the statistical radius of middle SNR regime lies
between the Hign SNR and Low SNR. A rigorous characterization of the statistical radius of middle SNR regime will be left
as future work.


