
Under review as a conference paper at ICLR 2022

TRANSFORMER WITH A MIXTURE OF GAUSSIAN KEYS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-head attention is a driving force behind state-of-the-art transformers which
achieve remarkable performance across a variety of natural language processing
(NLP) and computer vision tasks. It has been observed that for many applications,
those attention heads learn redundant embedding, and most of them can be removed
without degrading the performance of the model. Inspired by this observation,
we propose Transformer with a Mixture of Gaussian Keys (Transformer-MGK),
a novel transformer architecture that replaces redundant heads in transformers
with a mixture of keys at each head. These mixtures of keys follow a Gaussian
mixture model and allow each attention head to focus on different parts of the
input sequence efficiently. Compared to its conventional transformer counterpart,
Transformer-MGK accelerates training and inference, has fewer parameters, and
requires less FLOPs to compute while achieving comparable or better accuracy
across tasks. Transformer-MGK can also be easily extended to use with linear
attentions. We empirically demonstrate the advantage of Transformer-MGK in a
range of practical applications including language modeling and tasks that involve
very long sequences. On the Wikitext-103 and Long Range Arena benchmark,
Transformer-MGKs with 4 heads attain comparable or better performance to the
baseline transformers with 8 heads.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become the state-of-the-art model for sequence processing
tasks, solving many challenging problems in natural language processing and computer vision (Al-
Rfou et al., 2019; Dai et al., 2019; Williams et al., 2018; Devlin et al., 2018; Brown & et al., 2020;
Howard & Ruder, 2018; Rajpurkar et al., 2016; Dehghani et al., 2018; So et al., 2019; Dosovitskiy
et al., 2020; Touvron et al., 2020). These models can also transfer the learned knowledge from a
pre-trained model to task that involves different data modalities and has limited supervision (Radford
et al., 2018; 2019; Devlin et al., 2018; Yang et al., 2019; Liu et al., 2019). The success of transformers
is rooted in the self-attention mechanism as their fundamental building blocks for modeling (Cho
et al., 2014; Parikh et al., 2016; Lin et al., 2017). For each token, self-attention computes a weighted
average of the feature representations of other tokens where the weight is proportional to a similarity
score between each pair of tokens. This mechanism allows a token to pay attention to other tokens in
the sequence and attain a contextual representation (Bahdanau et al., 2014; Vaswani et al., 2017; Kim
et al., 2017). It has been shown that the representation capacity of the attention mechanism (Tenney
et al., 2019) and its capability of capturing diverse syntactic and semantic relationships (Tenney et al.,
2019; Vig & Belinkov, 2019; Clark et al., 2019; Voita et al., 2019a; Hewitt & Liang, 2019) is key to
the impressive performance of transformers in practice.

1.1 SELF-ATTENTION

For a given input sequence X := [x1, · · · ,xN]> ∈ RN×Dx of N feature vectors, self-attention
transforms X into the output sequence H in the following two steps:

Step 1. The input sequence X is projected into the query matrix Q, the key matrix K, and the value
matrix V via three linear transformations

Q = XW>
Q;K = XW>

K ;V = XW>
V ,

where WQ,WK ∈ RD×Dx , and WV ∈ RDv×Dx are the weight matrices. We denote Q :=
[q1, · · · , qN]>,K := [k1, · · · ,kN]>, and V := [v1, · · · ,vN]>, where the vectors qi,ki,vi for
i = 1, · · · , N are the query, key, and value vectors, respectively.

1

Under review as a conference paper at ICLR 2022

Step 2. The output sequence H := [h1, · · · ,hN]> is then computed as follows

H = softmax
(
QK>/

√
D
)
V := AV, (1)

where the softmax function is applied to each row of the matrix (QK>)/
√
D. For each query vector

qi for i = 1, · · · , N , an equivalent form of Eqn. (1) to compute the output vector hi is given by

hi =

N∑
j=1

softmax
(
q>i kj/

√
D
)
vj :=

N∑
j=1

aijvj . (2)

The matrix A ∈ RN×N and its component aij for i, j = 1, · · · , N are the attention matrix and
attention scores, respectively. The self-attention computed by Eqn. (1) and (2) is called the scaled
dot-product attention or softmax attention. In our paper, we call a transformer that uses this attention
the softmax transformer. The structure that the attention matrix A learns from training determines
the ability of the self-attention to capture contextual representation for each token.

Multi-head Attention Each output sequence H forms an attention head. In multi-head attention,
multiple heads are concatenated to compute the final output. Let H be the number of heads and
WO ∈ RHDv×HDv be the projection matrix for the output. The multi-head attention is defined as

MultiHead({Q}Hi=1, {K}Hi=1, {V}Hi=1) = Concat(H1,H2, . . . ,HH)WO. (3)

Even though multi-head attention extends single-head attention to capture diverse attention patterns
and improve the performance of transformers, it has been shown that transformers for practical tasks
including sequence classification and language modeling learn redundant heads (Michel et al., 2019).
These redundant heads compute similar attention mappings. Having many of them in the model limits
the representation capacity of the transformer while wasting parameters, memory and computation,
impeding the application of transformers to many important large-scale tasks.

1.2 CONTRIBUTION

We establish the correspondence between self-attention in transformer and a Gaussian mixture model
(GMM) and propose Transformer with a Mixture of Gaussian Keys (Transformer-MGK), a novel class
of transformers that can avoid the head redundancy. At the core of Transformer-MGK is replacing
the attention key kj in each head by a GMM to allow the query qi, as well as its associated token, to
attend to more diverse positions in the input sequence, thereby increasing the representation of each
attention head and reducing the chance of learning redundant heads. Our contribution is four-fold:

1. We construct a GMM and show that attention scores in self-attention match posterior distribu-
tion in our model, providing a probabilistic framework to study self-attention in transformers.

2. Under our probabilistic framework for self-attention, we introduce an additional mixture of
Gaussian to model each attention key. We empirically show that this mixture of Gaussian
keys (MGK) can capture a diversity of attention patterns, thus alleviating head redundancy.

3. We extend our MGK to use with linear attentions and propose the mixture of linear keys
(MLK) for efficient computation and better memory footprint.

4. We empirically show that Transformer-MGK and Transformer-MLK are comparable or better
than the corresponding baseline transformers with softmax and linear attentions while only
using half the number of attention heads and reducing both model complexity measured by
the number of parameters and computational cost in terms of FLOPs.

Organization: We structure this paper as follows: In Section 2, we establish the connection be-
tween GMM and self-attention and then present our Transformer-MGK and its extensions including
Transformer-MLK. In Section 3, we validate and empirically analyze the efficiency and accuracy of
Transformer-MGK/MLK. We discuss related works in Section 4. The paper ends up with concluding
remarks. More experimental details are provided in the Appendix.

2 TRANSFORMER WITH A MIXTURE OF GAUSSIAN KEYS

2.1 ATTENTION SCORE AS A POSTERIOR DISTRIBUTION

We first consider a query qi ∈ Q and a key kj ∈ K. Let t be a N -dimensional binary random
variable having a 1-of-N representation in which a particular element tj is equal to 1 and all other

2

Under review as a conference paper at ICLR 2022

elements are equal to 0. We use tj to indicate the position j of the key kj . In particular, let I be the
identity matrix, we model the distribution p(qi) by the following GMM:

p(qi) =

N∑
j=1

πjp(qi|tj = 1) =

N∑
j=1

πjN (qi |kj , σ2
j I), (4)

where πj is the prior p(tj = 1). Given the query qi, how likely qi matches the key kj is given by
posterior p(tj = 1|qi). This posterior is computed as follows

p(tj = 1|qi) =
πjN (qi |kj , σ2

j)∑
j′ πj′N (qi |kj′ , σ2

j′)
=

πj exp
(
−‖qi − kj‖2/2σ2

j

)
∑
j′ πj′ exp

(
−‖qi − kj′‖2/2σ2

j′

)
=

πj exp
[
−
(
‖qi‖2 + ‖kj‖2

)
/2σ2

j

]
exp

(
qik
>
j /σ

2
j

)
∑
j′ πj′ exp

[
− (‖qi‖2 + ‖kj′‖2) /2σ2

j′

]
exp

(
qik>j′/σ

2
j′

) . (5)

We further assume that the query qi and the key kj are normalized, and the prior πj is uniform.
We will justify these assumptions in our Remarks at the end of this section. We also let σ2

j = σ2,
j = 1, 2, . . . ,K. Then the posterior p(tj = 1|qi) can be written as

p(tj = 1|qi) = exp
(
qik
>
j /σ

2
)
/
∑
j′

exp
(
qik
>
j′/σ

2
)
. (6)

The right-hand side of Eqn. (6) matches the attention score given in Eqn. (2) when σ2 =
√
D. Thus,

we show that under right assumptions, the attention score between the query qi and the key kj in an
attention unit of a transformer is the posterior p(tj = 1|qi), which indicates the responsibility that
the key kj takes for ‘explaining’ the query qi, which in turn decide, for example, how much a token
at position i pays attention to a token at position j in the input sequence.

Remark 1 The assumption that the query qi and the key kj are normalized is realistic and not
artificial. In many applications, those two vectors are normalized. Schlag et al. (2021) points out
that such normalization is to avoid instability occurring during the training.

Remark 2 In practice, the prior is chosen to be uniform when there is no prior knowledge available.

2.2 TRANSFORMER WITH A MIXTURE OF GAUSSIAN KEYS: EACH KEY IS AGAIN A
GAUSSIAN MIXTURE MODEL

As we have seen from Eqn. (6), the key kj is used to explain the query qi via the posterior P(tj = 1|qi).
Via this simple connection, each query qi is treated to be as a sample from the mixture of N
keys

∑N
j=1 πjN (qi|kj , σ2

j Id). However, the assumption that the distribution P(qi|tj = 1) at each
subpopulation is Gaussian in Eqn. (4) can be quite strong as there is no guarantee that this assumption
is valid in practice. In particular, it may happen that the distribution of each subpopulation is
asymmetric or skewed or even multimodal. Therefore, using the Gaussian distribution for each
subpopulation can potentially limit the explanation power and diversity of each subpopulation/ key. It
indicates that we should use more expressive distributions to represent P(qi|tj = 1).

Mixture of Gaussian keys: To improve the explanation power of each key kj , potentially increase
the representation of each attention head, and reduce the chance of learning redundant heads, we
would like to model it as mixture of Gaussian distributions. We refer to this model as Transformer
with a Mixture of Gaussian Keys (Transformer-MGK). In particular, in Transformer-MGK we model
each key kj at position j as a mixture of M Gaussians N (kjr, σ

2
jrI), r = 1, 2, . . . ,M . Here we are

overloading the notation a little bit and use kjr and σ2
jrI to denote the mean and covariance matrix of

the rth Gaussian at position j. Let z be a M -dimensional binary random variable having a 1-of-M
representation. We use zr to indicate the rth Gaussian in the mixture. Let πjr ≡ P(zr = 1|tj = 1),
our MGK can be written as

P(qi|tj = 1) =
∑
r

P(zr = 1|tj = 1)P(qi|zr = 1, tj = 1) =
∑
r

πjrN (qi |kjr, σ2
jrI). (7)

Our motivation of using mixture of Gaussian distributions to represent the distribution of each
subpopulation in Eqn. (7) stems from the following important approximation result:

3

Under review as a conference paper at ICLR 2022

Theorem 1 Assume that P is probability distribution on [−a, a]d for some a > 0 and admits density
function p such that p is differentiable and bounded. Then, for any given variance σ > 0 and for any
ε > 0, there exists a mixture of K components

∑K
i=1 πiN (θi, σ

2I) where K ≤ (C log(1/ε))d for
some universal constant C such that

sup
x∈Rd

|p(x)−
K∑
i=1

πiφ(x|θi, σ2I)| ≤ ε,

where φ(x|θ, σ2I) is the density function of multivariate Gaussian distribution with mean θ and
covariance matrix σ2I.

The proof of Theorem 1 is in Appendix C. The result of Theorem 1 suggests that regardless of
the real form of P(qi|tj = 1), we can use finite mixture of Gaussian distributions to approximate
P(qi|tj = 1). It allows us to have richer approximation of P(qi|tj = 1) than by using a simple
Gaussian distribution in Eqn. (4). Similar to the derivation above, the posterior p(tj = 1|qi) in
Transformer-MGK can be written as

P(tj = 1|qi) =
∑
r πjr exp

(
qik
>
jr/σ

2
jr

)
∑
j′
∑
r πj′r exp

(
qik>j′r/σ

2
j′r

) . (8)

Furthermore, in Transformer-MGK, we relax the assumption that the queries and keys are normalized.
Thus, when computing P(tj = 1|qi), we compute the Gaussian kernels between the queries and keys
instead of their dot products. The posterior P(tj = 1|qi) in Transformer-MGK is then given by

P(tj = 1|qi) =
∑
r πjr exp

(
−‖qi − kjr‖2/2σ2

jr

)
∑
j′
∑
r πj′r exp

(
−‖qi − kj′r‖2/2σ2

j′r

) . (9)

As proven in Section 2.1, this posterior corresponds to the attention score. Thus, Eqn. (9) is the
formula for computing the attention score in Transformer-MGK. We compute the output vector hi of
the self-attention in Transformer-MGK as follows

hi =
∑
j

 ∑
r πjr exp

(
−‖qi − kjr‖2/2σ2

jr

)
∑
j′
∑
r πj′r exp

(
−‖qi − kj′r‖2/2σ2

j′r

)
vj . (10)

2.3 INFERENCE AND LEARNING VIA THE EXPECTATION MAXIMIZATION ALGORITHM

Let γir ≡ P(zr = 1|qi, tj = 1), in MGK, we apply the E-step inference in the Expectation-
Maximization (EM) algorithm to estimate this posterior given the query qi. The posterior γir is also
known as the responsibility that the component N (kjr, σ

2
jrI) takes to account for the observation,

which in MGK is the query qi. Below we propose two approaches to estimate this responsibility.

Soft E-step Using soft E-step inference, the EM algorithm makes a soft assignment, in which each
query is associated with all clusters. The responsibilities are then given by

γir =
πjr exp

(
−‖qi − kjr‖2/2σ2

jr

)
∑
r′ πjr′ exp

(
−‖qi − kjr′‖2/2σ2

jr′

) . (11)

At learning time, the responsibilities estimated by Eqn. (11) are used to update the prior πjr, i.e.
πjr = Njr/N , where N is the number of queries and Njr =

∑N
i=1 γir. These updated priors πjr

are then used in Eqn. (9) to compute attention scores.

Hard E-step Hard E-step performs a hard assignment of queries to key clusters, in which each
query is associated uniquely with one cluster. This is similar to the K-means algorithm (Lloyd, 1982)
and corresponds to the MGK at the limit when the variance parameter σ2

jr goes to 0. Following the
derivation of K-means from a GMM in (Bishop, 2006), Eqn. (9) becomes

P(tj = 1|qi) =
maxr exp

(
−‖qi − kjr‖2/2σ2

jr

)
∑
j′ maxr exp

(
−‖qi − kj′r‖2/2σ2

j′r

) . (12)

4

Under review as a conference paper at ICLR 2022

Remark 3 The hard E-step inference allows the attention score to be computed more efficiently
because the priors πjr no longer play an active role in the algorithm and can be completely ignored.
Learning via Stochastic Gradient Descent (SGD) In order to increase the efficiency of the model,
in MGK, we fix the variance parameter σ2

jr to be
√
D as in the standard softmax attention and make

the cluster means, i.e. the keys, kjr learnable parameters. We also make the prior πjr learnable
parameters as one of the design options. In that case, both kjr and πjr are learned via SGD. This
update via SGD can be considered as a generalized M-step (Bishop, 2006).
Design Options for Keys (Option A) We follow the standard setting in the softmax transformer
and make the keys kjr a linear projection of the input xj , i.e. kjr = xjW

>
Kr

, where xj ∈ R1×Dx ,
WKr ∈ RD×Dx and r = 1, 2, . . . ,M . (Option B) Alternatively, we also make the keys kjr shifted
version of each other to save computation, i.e. kjr = xjW

>
K + br, where WK ∈ RD×Dx .

2.4 TRANSFORMER WITH A MIXTURE OF LINEAR KEYS

The MGK can be easily extended to use with linear attentions. We call that model Transformer
with a Mixture of Linear Keys (Transformer-MLK). In this section, we adopt the formulation of
linear attentions from (Katharopoulos et al., 2020) to derive Transformer-MLK. Similar approach
can be taken to derive Transformer-MLK when using with other linear attentions such as those
in performers (Choromanski et al., 2021) and fast-weight transformers (Schlag et al., 2021). In
Transformer-MLK, the Gaussian kernel in Eqn. (10) is linearized as the product of feature maps φ(·)
on the vectors qi and kj . The associative property of matrix multiplication is then utilized to derive
the following efficient computation of the attention map

hi =

∑
j

∑
r πjrφ(qi)

>φ(kjr)vj∑
j

∑
r πjrφ(qi)

>φ(kjr)
=
φ(qi)

>∑
j

∑
r πjrφ(kjr)v

>
j

φ(qi)>
∑
j

∑
r πjrφ(kjr)

. (13)

Replacing
∑
j

∑
r πjrφ(qi)

>φ(kjr)vj with φ(qi)>
∑
j

∑
r πjrφ(kjr)v

>
j , as in linear transformers,

reduces the memory and computational cost of computing the attention map in Transformer-MLK
from O(N2) to O(N), making Transformer-MLK scalable to very long sequences.

3 EXPERIMENTAL RESULTS

In this section, we numerically justify the efficiency of Transformer-MGK/MLK and empirically study
the advantage of using mixture of keys on various benchmarks, including different tasks in the Long
Range Arena (LRA) (Tay et al., 2021) (Section 3.1) and language modeling on Wikitext-103 (Merity
et al., 2017) (Section 3.2). We aim to show that: (i) Transformer-MGK/MLK with half the number of
heads is comparable or better than the baseline softmax and linear transformers with the full number
of heads while being more efficient in both computational cost and memory footprints; (ii) Mixture of
keys helps reduce the redundancy in multi-head transformers and benefits learning of the long-term
dependency in long input sequences; (iii) Using the same number of heads, Transformer-MGK/MLK
significantly outperforms the baseline softmax and linear transformers. Especially in the case of
Transformer-MLK, it helps reduce the performance gap between softmax and linear transformers.

Throughout this section, we compare Transformer-MGK/MLK with the softmax and linear trans-
formers that have the same or double the number of attention heads. In all experiments, for our
Transformer-MGK/MLK models, we set M=2 where M is the number of Gaussians, i.e. keys, at each
timestep. Among the design options for Transformer-MGK mentioned in Section 2.3, we use the
one with Soft-E step but make the parameter πjr and kjr learnable and fix the variance σ2

jr to be
constants. We study both implementations for keys: (A) kjr is a linear projection of the input xj , i.e.,
kjr = xjW

>
Kr

and (B) kjr are shifted version of each other, i.e., kjr = xjW
>
K + br.

In this section, we refer to the Transformer-MGK/MLK whose keys are implemented by (A) as
Transformer-MGK/MLK, and whose keys are implemented by (B) as Transformer-sMGK/sMLK. We
empirically compare these models with other design options for Transformer-MGK in Section 3.4.
Details on datasets, models, and training are provided in Appendix A.1.

3.1 LONG RANGE ARENA (LRA) BENCHMARK

Models and baselines We compare our 1-head, 2-head, 4-head Transformer-MGK and MLK with
the baseline softmax (Vaswani et al., 2017) and linear transformers (Katharopoulos et al., 2020) that
have 1 head, 2 heads, 4 heads, and 8 heads. Each model consists of two layers, and we adopt the
model and training setting from (Xiong et al., 2021) in our experiments.

5

Under review as a conference paper at ICLR 2022

Table 1: Test Accuracy (%) of Transformer-MGK compared with the baseline softmax transformer on the LRA
benchmark. Our Transform-MGKs outperform softmax transformers while using half the number of heads,
having less parameters, and requiring less FLOPs (see Figure 3 for details). Results are averaged over 5 runs.

Model ListOps Text Retrieval Average
Softmax 12 heads 36.64 65.62 82.18 61.48
Softmax 8 heads 37.03 65.71 81.74 61.49
Transformer-sMGK 4 heads 37.25 65.51 82.79 61.85
Transformer-MGK 4 heads 36.98 65.69 82.23 61.63
Softmax 4 heads 36.89 65.26 81.54 61.23
Transformer-sMGK 2 heads 37.35 65.17 82.20 61.57
Transformer-MGK 2 heads 36.88 65.37 81.83 61.36
Softmax 2 heads 36.76 64.90 79.1 60.25
Transformer-sMGK 1 head 37.31 65.04 81.23 61.19
Transformer-MGK 1 head 37.13 65.40 80.63 61.05
Softmax 1 head 36.81 64.48 77.9 59.73

Table 2: Test Accuracy (%) of Transformer-MLK compared with the linear transformer on the LRA. Our
Transform-MLKs achieve comparable/better accuracy than the baselines while using half the number of heads,
having less parameters, and requiring less FLOPs (see Figure 3 for details). Results are averaged over 5 runs.

Model ListOps Text Retrieval Average
Linear 12 heads 20.26 65.87 81.97 56.03
Linear 8 heads 19.17 65.85 81.18 55.40
Transformer-sMLK 4 heads 20.11 65.74 81.53 55.79
Transformer-MLK 4 heads 20.06 65.7 81.34 55.7
Linear 4 heads 19.37 65.81 81.65 55.61
Transformer-sMLK 2 heads 19.88 65.61 81.66 55.71
Transformer-MLK 2 heads 20.12 65.72 80.80 55.54
Linear 2 heads 18.35 65.94 80.94 55.07
Transformer-sMLK 1 head 18.87 65.57 80.37 54.93
Transformer-MLK 1 head 18.34 65.70 81.09 55.04
Linear 1 head 18.60 65.70 80.6 54.96

Figure 1: Training loss and test accuracy of Transformer-MGK/MLK vs. softmax/linear transformer on the
retrieval task, which has the longest average sequence-length and attention span among the LRA tasks (Tay et al.,
2021). The impressive performance of Transformer-MGK/MLK on this challenging task validates the capability
of our models to capture long-range dependencies via learning a diversity of attention patterns.

Results We summarize our results in Table 1. Transformer-MGKs with half the number of heads
consistently achieve better test accuracy than the baseline softmax attention across tasks. Since
fewer heads are needed, transformer-MGKs use less parameters and need less FLOPs to compute
than the baselines. We provide a detailed efficiency analysis for Transformer-MGKs in Figure 3.
More interestingly, these efficiency advantages of Transformer-MGK over the baseline become more
significant as the number of heads in the baseline model grows. When using the same number of
heads as the baseline models, Transformer-MGKs further improve over those baselines. Among the
models, Transformer-sMGK performs the best across LRA tasks.

We also compare the performance of Transformer-MLK with the baseline linear transformers in
Table 2. Like Transformer-MGK, Transformer-MLK yields comparable or better results than the
baseline using only half the number of heads with less parameters and FLOPs. When using the same
number of heads, Transformer-MLK helps improve the linear transformer further.

We provide results of the 12-head baselines in Table 1 and 2 for reference. It is interesting to notice
from Table 1 and 2 that even our 2-head Transformer-MGK/MLK models achieve better or equivalent
results to the 12-head and 8-head baselines. A comparison between the 12-head baselines with our
6-head Transformer-MGK/MLK models on the retrieval task is provided in Table 8 in Appendix A.9.

In Figure 1, we compare the training loss and test accuracy curves of our 1-head and 2-head
Transformer-MGK/MLK with the 2-head softmax and 2-head linear transformers on the document

6

Under review as a conference paper at ICLR 2022

Table 3: Perplexity (PPL) on WikiText-103 of Transformer-MGK and MLK compared to the baselines. Both
Transformer-MGK and MLK achieve comparable or better PPL than the baselines while using only half the
number of heads. When using the same number of heads, our models significantly improve the baselines.

Method Valid PPL Test PPL
Softmax 8 heads (small) 33.15 34.29
Transformer-MGK 4 heads (small) 33.28 34.21
Transformer-sMGK 8 heads (small) 32.92 33.99
Transformer-MGK 8 heads (small) 32.74 33.93
Softmax 4 heads (small) 34.80 35.85
Linear 8 heads (small) 38.07 39.08
Transformer-MLK 4 heads (small) 38.49 39.46
Transformer-MLK 8 heads (small) 37.78 38.99
Linear 4 heads (small) 39.32 40.17
Softmax 8 heads (medium) 27.90 (Schlag et al., 2021) 29.60 (Schlag et al., 2021)
Transformer-MGK 4 heads (medium) 27.58 28.86

retrieval task. This retrieval task has the longest average sequence-length and attention span among
the LRA tasks (Tay et al., 2021). On this task, as shown in Figure 1, our Transformer-MGKs/MLKs
are always better than the baseline models throughout the training. This observation corroborates our
models’s capability of capturing long-range dependencies in very long input sequences.

3.2 LANGUAGE MODELING ON WIKITEXT-103

Next we confirm the advantage of our models on a large-scale application. We consider the word-level
language modeling task on WikiText-103 (Merity et al., 2017) for our experiments in this section.

Models and baselines We compare 4 and 8-head Transformer-MGKs/MLKs with 8-head soft-
max (Vaswani et al., 2017) and linear transformers (Katharopoulos et al., 2020). Each model consists
of 16 layers. Our experiments follow the setting for small/medium models from (Schlag et al., 2021).

Results As shown in Table 3, our Transformer-MGKs outperform the baseline softmax transformers.
Even when using half the number of attention heads (i.e., 4 vs. 8 heads as in the baselines), the
Transformer-MGK still achieves better test perplexities (PPL) than the baseline. Adding more
heads into Transformer-MGKs improves their performance. Similarly, Transformer-MLKs attain
comparable test/validation PPL to the baseline linear transformers when using half the number of
attention heads. When using the same number of attention heads as in the baseline, Transformer-
MLKs consistently achieve better performance. Note that reducing the number of heads from 8 to
4 in the baseline models significantly decreases their performance with more than 1.5 reduction in
test/validation PPL for the softmax transformer and more than 1.0 reduction in test/validation PPL for
the linear transformer. Our proposed Transformer-MGK and Transformer-MLK helps close this gap.

To further examine the scalability of our models, we apply the MGK on a stronger baseline, which is
the 8-head medium softmax transformer in (Schlag et al., 2021). This model has 90M parameters, 16
layers, 8 attention heads per layer, and hidden size of 256. The size of our baseline model is close to
BERTBase (Devlin et al., 2019), which has 110M parameters, 12 layers, 12 attention heads per layer,
and hidden size of 768. Applying our MGK on top of this baseline and using only 4 heads instead
of 8, we significantly improve the test PPL from 29.60 to 28.86 while reducing the model size and
computational cost, demonstrating the advantages of our scaled models.

3.3 NEURAL MACHINE TRANSLATION ON IWSLT’14 GERMAN TO ENGLISH

We further examine the advantages of our methods on the IWSLT’14 German-English machine
translation task (Cettolo et al., 2014). Table 9 in Appendix A.10 shows that the 2-head Transformer-
MGK and sMGK models achieve the BLEU score of 34.34 and 34.69, respectively, which are
comparable to and better than the BLUE score of 34.42 of the 4-head softmax transformer baseline.

3.4 EMPIRICAL ANALYSIS

We conduct empirical analysis based on the Transformer-MGK trained for the document retrieval
tasks. Results for Transformer-MLKs and the WikiText-103 task are provided in the Appendix.

Transformer-MGK helps avoid learning redundant heads We visually compare attention matrices
learned by Transformer-MGKs and the baseline softmax transformer on the document retrieval task
in Figure 2. In particular, we randomly select an attention matrix at each head in each layer and
visualize that attention matrix for each model in comparison. Figure 2(Left) shows that the queries

7

Under review as a conference paper at ICLR 2022

C
ou

nt

La
ye

r 1
La

ye
r 2

Rank

Softmax 4 Heads MGK 4 Heads MGK 2 Heads

Figure 2: (Left) Visualization of attention matrices in the baseline 4-head softmax transformer (left), 4-head
Transformer-MGK (middle), and 2-head Transformer-MGK (right) trained on the document retrieval task.
Attention matrices from our Transformer-MGKs have more diverse pattern than those from the baseline softmax
transformer, reducing the risk of learning redundant heads. (Right) Rank distribution of attention matrices shows
that attention matrices in Transformer-MGK have higher rank than those in the softmax transformer and thus
can capture more diverse attention patterns.

in Transformer-MGKs can attend to a variety of keys and equivalently to other tokens at different
positions in the input sequence. This diversity in attention pattern helps reduce the chance that the
model learns similar and redundant attention matrices at different heads significantly.

Another metric to measure the representation capacity of an attention matrix is its rank. Attention
matrices with high ranks can capture more diverse attention patterns compared to those with low
ranks (Nguyen et al., 2021). We study the rank of the attention matrix from the Transformer-MGK and
the softmax transformer trained for the retrieval task. In particular, we randomly select 1000 different
attention matrices at each layer from each model. Then, we perform singular value decomposition
(SVD) to compute the rank of each matrix and threshold the singular values smaller than 10−6.
Figure 2(Right) presents the distribution of the rank of attention matrices at each layer of the
Transformer-MGK and the softmax transformer. We observe that attention matrices in Transformer-
MGK has higher rank than those in the softmax transformer. Thus, our attention with MGK is capable
of capturing more diverse and complex attention patterns than the baseline softmax attention.

Transformer-MGK/MLK reduces model complexity and computational cost Figure 3 compares
the computational cost, measured in FLOPS, and model complexity, measured in the number of
parameters, between our Transformer-MGK/MLK that has half the number of heads and the full-head
softmax/linear transformer. The more heads being used, the more advantage Transformer-MGK/MLK
has over the softmax/linear transformer. For much larger transformer models, this saving is significant.

Figure 3: Computational cost (FLOPs) and the number of parameters of Transformer-MGK vs the baseline
softmax transformer (Left) and Transformer-MLK vs. the baseline linear transformer (Right). The efficiency
advantage of Transformer-MGK/MLK over the baselines in both metrics grows with the number of head.

Comparing different inference and learning techniques Table 4 compares the performance of
Transformer-MGKs using different design options mentioned in Section 2.3 on the LRA benchmark.
In particular, we consider the following three design options: A) Soft-E step, parameters πjr and
kjr are learnable via SGD, and variance σ2

jr are constants, B) Soft-E step, parameter πjr is updated
according to the M-step update, kjr are learnable via SGD, and variance σ2

jr are constants, and
C) Hard-E step, πjr and kjr are learnable via SGD, and variance σ2

jr are constants. Note that
Transformer-MGKs with setting A are the default models we use in all experiments above. In Table 4,
Transformer-MGK + Hard-E is the Transformer-MGK with setting C, Transformer-MGK + Soft-E is
the Transformer-MGK with setting B, and Transformer-MGK only is the Transformer-MGK with

8

Under review as a conference paper at ICLR 2022

Table 4: Performance of Transformer-MGK using different inference/learning techniques on LRA benchmark.
Model ListOps Text Retrieval Average
Transformer-sMGK + Hard-E 1 head 37.25 64.7 81.29 61.08
Transformer-sMGK + Soft-E 1 head 37.05 64.68 81.44 61.05
Transformer-sMGK 1 head 37.31 65.04 81.23 61.19
Transformer-MGK + Hard-E 1 head 19.40 65.40 80.72 55.17
Transformer-MGK + Soft-E 1 head 33.85 65.25 80.73 59.94
Transformer-MGK 1 head 37.13 65.40 80.63 61.05

setting A. It is worth noting that Transformer-sMGK + Hard-E obtains comparable results to the
models with the best performance in each task even though it is the most efficient model in our study.

4 RELATED WORK
Efficient Transformers Efficient transformers can be classified into several categories, as summa-
rized in (Roy et al., 2021). Among these categories are models which design the attention matrix to
have sparse structure (Parmar et al., 2018; Liu et al., 2018; Qiu et al., 2019; Child et al., 2019; Beltagy
et al., 2020). Another category includes models that combine two or more different access patterns to
improve the coverage (Child et al., 2019; Ho et al., 2019). Access patterns can also be made learnable
in a data-driven fashion (Kitaev et al., 2020; Roy et al., 2021; Tay et al., 2020). Other efficient
transformers take advantage of a side memory module to access multiple tokens at once (Lee et al.,
2019; Sukhbaatar et al., 2019; Asai & Choi, 2020; Beltagy et al., 2020). Finally, low-rank and kernel-
ization approximation are utilized to enhance the memory and computational efficiency of computing
self-attention (Tsai et al., 2019; Wang et al., 2020; Katharopoulos et al., 2020; Choromanski et al.,
2021; Shen et al., 2021; Nguyen et al., 2021; Peng et al., 2021). In addition to the aforementioned
efficient transformers, multi-query attention that shares keys and values between different attention
heads (Shazeer, 2019) has also been studied to reduce the memory-bandwidth cost and increase the
speed for incremental transformer inference (see Appendix A.11). Last but not least, methods such as
using auxiliary losses (Al-Rfou et al., 2019) and adaptive input embedding (Baevski & Auli, 2019)
have been explored to speed up the convergence of training transformers. Our MGK/MLK can be
easily incorporated into the methods above to further improve their accuracy and efficiency.

Redundancy in Transformers Latest works suggest that most of the neurons and heads in the
pre-trained transformer are redundant and can be removed when optimzing towards a downstream
task (Dalvi et al., 2020; Michel et al., 2019; Durrani et al., 2020). Other works also study the
contextualized embeddings in pretrained networks under this redundancy due to overparameterization
and show that the representations learned within these models are highly anisotropic (Mu & Viswanath,
2018; Ethayarajh, 2019). An emerging body of work is proposed to distill and prune the model,
including (Sanh et al., 2019; Sun et al., 2019; Voita et al., 2019b; Sajjad et al., 2020). Our MGK/MLK
approch can be combined with these distilling and pruning methods to improve their performance.

Mixture Models for Transformers Several works have used mixture models to study and enhance
transformers. Switch transformers (Fedus et al., 2021) employ the routing algorithm in Mixture of
Experts (MoE) to reduce the communication and computational costs in transformers. (Nguyen et al.,
2018; Patel et al., 2016) derive a probablistic framework based on GMMs for deep neural networks
that can be extended to study transformers and attention-based architectures. Other works that use
mixture models with transformers include (Cho et al., 2020; Guo et al., 2019; Jiang et al., 2020).

5 CONCLUDING REMARKS
In this paper, we proposed Transformer-MGK, a class of transformers that use Gaussian mixture
model to represent the key vectors in self-attention. Transformer-MGK reduces the redundancy
among heads in transformer. Furthermore, attention heads in the Transformer-MGK have better
representation capability than those in the baseline, allowing the Transformer-MGK to achieve
comparable or better performance than the baseline softmax transformer while using only half of
the number of heads. Comparing to the baseline, the Transformer-MGK uses fewer parameters and
requires less FLOPs to compute. We extend the Transformer-MGK into the Transformer-MLK to
use linear attentions for better efficiency. We empirically validate the advantage of the Transformer-
MGK/MLK over the baseline softmax and linear transformers on various benchmarks including
tasks in the LRA benchmark, WikiText-103 language modeling, and IWSLT’14 machine translation.
In our work, we make the means and the variance of the cluster learnable variables and constants,
respectively. It is interesting to explore how to leverage the M-step update in the EM algorithm
to update those parameters. Furthermore, we leave the application of Transformer-MGK/MLK for
improving the vision transformer (Dosovitskiy et al., 2020; Touvron et al., 2020) as future work.

9

Under review as a conference paper at ICLR 2022

Reproducibility Statement: Source codes for our experiments are provided in the supplementary
materials of the paper. The details of our experimental settings and computational infrastructure are
given in Section 3 and the Appendix. All datasets that we used in the paper are published, and they
are easy to find in the Internet.

Ethics Statement: Given the nature of the work, we do not foresee any negative societal and ethical
impacts of our work.

REFERENCES

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. Character-level
language modeling with deeper self-attention. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 3159–3166, 2019.

Akari Asai and Eunsol Choi. Challenges in information seeking qa: Unanswerable questions and
paragraph retrieval. arXiv preprint arXiv:2010.11915, 2020.

A. G. Bacharoglou. Approximation of probability distributions by convex mixtures of Gaussian
measures. Proceedings of the American Mathematical Society, 138:2619–2628, 2010.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In
International Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=ByxZX20qFQ.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Christopher M Bishop. Pattern recognition. Machine learning, 128(9), 2006.

Tom Brown and et al. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Sys-
tems, volume 33, pp. 1877–1901, 2020. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report on
the 11th iwslt evaluation campaign, iwslt 2014. In Proceedings of the International Workshop on
Spoken Language Translation, Hanoi, Vietnam, volume 57, 2014.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014.
Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL https://www.aclweb.
org/anthology/D14-1179.

Sung Min Cho, Eunhyeok Park, and Sungjoo Yoo. Meantime: Mixture of attention mechanisms with
multi-temporal embeddings for sequential recommendation. In Fourteenth ACM Conference on
Recommender Systems, pp. 515–520, 2020.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with
performers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Ua6zuk0WRH.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? an analysis of BERT’s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pp. 276–286, Florence, Italy, August
2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-4828. URL https:
//www.aclweb.org/anthology/W19-4828.

10

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://www.aclweb.org/anthology/W19-4828
https://www.aclweb.org/anthology/W19-4828

Under review as a conference paper at ICLR 2022

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and Yonatan Belinkov. Analyzing redundancy in
pretrained transformer models. arXiv preprint arXiv:2004.04010, 2020.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and Yonatan Belinkov. Analyzing individual neurons in
pre-trained language models. arXiv preprint arXiv:2010.02695, 2020.

Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geometry
of bert, elmo, and gpt-2 embeddings. arXiv preprint arXiv:1909.00512, 2019.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

S. Ghosal and A. van der Vaart. Entropies and rates of convergence for maximum likelihood and
bayes estimation for mixtures of normal densities. Ann. Statist., 29:1233–1263, 2001.

Maosheng Guo, Yu Zhang, and Ting Liu. Gaussian transformer: a lightweight approach for natural
language inference. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pp. 6489–6496, 2019.

Stephen José Hanson. A stochastic version of the delta rule. Physica D: Nonlinear Phenomena, 42
(1-3):265–272, 1990.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2733–
2743, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1275. URL https://www.aclweb.org/anthology/D19-1275.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers. arXiv preprint arXiv:1912.12180, 2019.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 328–339, Melbourne, Australia, July 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P18-1031. URL https://www.aclweb.org/anthology/P18-1031.

Junyan Jiang, Gus G Xia, Dave B Carlton, Chris N Anderson, and Ryan H Miyakawa. Transformer
vae: A hierarchical model for structure-aware and interpretable music representation learning. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 516–520. IEEE, 2020.

11

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://www.aclweb.org/anthology/D19-1275
https://www.aclweb.org/anthology/P18-1031

Under review as a conference paper at ICLR 2022

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International Conference on Machine
Learning, pp. 5156–5165. PMLR, 2020.

Yoon Kim, Carl Denton, Luong Hoang, and Alexander M Rush. Structured attention networks. arXiv
preprint arXiv:1702.00887, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
Conference on Machine Learning, pp. 3744–3753. PMLR, 2019.

Zhouhan Lin, Minwei Feng, Cı́cero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and
Yoshua Bengio. A structured self-attentive sentence embedding. CoRR, abs/1703.03130, 2017.
URL http://arxiv.org/abs/1703.03130.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198,
2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/P11-1015.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL
https://proceedings.neurips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf.

Jiaqi Mu and Pramod Viswanath. All-but-the-top: Simple and effective postprocessing for word
representations. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=HkuGJ3kCb.

Nikita Nangia and Samuel Bowman. ListOps: A diagnostic dataset for latent tree learning. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Student Research Workshop, pp. 92–99, New Orleans, Louisiana,
USA, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-4013. URL
https://www.aclweb.org/anthology/N18-4013.

Tan Nguyen, Nhat Ho, Ankit Patel, Anima Anandkumar, Michael I Jordan, and Richard G Baraniuk.
A Bayesian perspective of convolutional neural networks through a deconvolutional generative
model. arXiv preprint arXiv:1811.02657, 2018.

12

http://arxiv.org/abs/1703.03130
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://proceedings.neurips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://www.aclweb.org/anthology/N18-4013

Under review as a conference paper at ICLR 2022

Tan M. Nguyen, Vai Suliafu, Stanley J. Osher, Long Chen, and Bao Wang. Fmmformer: Effi-
cient and flexible transformer via decomposed near-field and far-field attention. arXiv preprint
arXiv:2108.02347, 2021.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2249–2255, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1244. URL https://www.aclweb.org/anthology/
D16-1244.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4055–4064. PMLR, 10–15 Jul 2018. URL http://proceedings.mlr.press/
v80/parmar18a.html.

Ankit B Patel, Minh T Nguyen, and Richard Baraniuk. A probabilistic framework for deep learning.
Advances in neural information processing systems, 29:2558–2566, 2016.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah Smith, and Lingpeng Kong.
Random feature attention. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=QtTKTdVrFBB.

Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise
self-attention for long document understanding. arXiv preprint arXiv:1911.02972, 2019.

Dragomir R Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and Amjad Abu-Jbara. The acl
anthology network corpus. Language Resources and Evaluation, 47(4):919–944, 2013.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. OpenAI report, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383–2392, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://www.aclweb.org/anthology/
D16-1264.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53–68, 2021. doi: 10.1162/tacl a 00353. URL https://www.aclweb.org/anthology/2021.tacl-1.4.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. Poor man’s bert: Smaller and faster
transformer models. arXiv e-prints, pp. arXiv–2004, 2020.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 3531–3539, 2021.

13

https://www.aclweb.org/anthology/D16-1244
https://www.aclweb.org/anthology/D16-1244
http://proceedings.mlr.press/v80/parmar18a.html
http://proceedings.mlr.press/v80/parmar18a.html
https://openreview.net/forum?id=QtTKTdVrFBB
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/2021.tacl-1.4

Under review as a conference paper at ICLR 2022

David R So, Chen Liang, and Quoc V Le. The evolved transformer. arXiv preprint arXiv:1901.11117,
2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample, Herve Jegou, and Armand Joulin. Aug-
menting self-attention with persistent memory. arXiv preprint arXiv:1907.01470, 2019.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355, 2019.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse Sinkhorn attention.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 9438–9447.
PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/tay20a.html.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=qVyeW-grC2k.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4593–4601, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1452. URL https://www.aclweb.org/anthology/P19-1452.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877, 2020.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: An unified understanding for transformer’s attention via the lens of
kernel. arXiv preprint arXiv:1908.11775, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pp. 63–76, Florence, Italy, August 2019. Association for Computational
Linguistics. doi: 10.18653/v1/W19-4808. URL https://www.aclweb.org/anthology/W19-4808.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 5797–5808, Florence,
Italy, July 2019a. Association for Computational Linguistics. doi: 10.18653/v1/P19-1580. URL
https://www.aclweb.org/anthology/P19-1580.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019b.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pp. 1112–1122, June 2018. doi: 10.18653/v1/N18-1101. URL
https://www.aclweb.org/anthology/N18-1101.

14

http://proceedings.mlr.press/v119/tay20a.html
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://www.aclweb.org/anthology/P19-1452
https://www.aclweb.org/anthology/W19-4808
https://www.aclweb.org/anthology/P19-1580
https://www.aclweb.org/anthology/N18-1101

Under review as a conference paper at ICLR 2022

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A Nyström-based Algorithm for Approximating Self-Attention.
2021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

15

Under review as a conference paper at ICLR 2022

Supplement to “Transformer with a Mixture of Gaussian Keys”
In this supplementary material, we provide experimental details and additional experiments of
Transformer-MGK and Transformer-MLK.

A ADDITIONAL EXPERIMENTS

A.1 EXPERIMENT DETAILS

In this section, we provide model and training details for experiments in Section 3. All our experiments
are conducted on a server with 4 NVIDIA A100 GPUs.

A.1.1 LONG RANGE ARENA BENCHMARK

Datasets and metrics We consider the following tasks in the LRA benchmark: Listops (Nangia
& Bowman, 2018), byte-level IMDb reviews text classification (Maas et al., 2011), and byte-level
document retrieval (Radev et al., 2013). These tasks involve long sequences of length 2K, 4K, and
4K, respectively. We follow the setup/evaluation protocol in (Tay et al., 2021) and report the test
accuracy for individual task and the average result across all tasks.

Models and baselines We use the softmax transformer (Vaswani et al., 2017) and linear trans-
former (Katharopoulos et al., 2020) as our baselines. All models have 2 layers, 64 embedding
dimension, and 128 hidden dimension. The number of heads in each layer are set to 1, 2, 4, and 8.
For Transformer-MGK/MLKs and their shifted versions, we share πjr for all position j and learn it
for each head. The initial value for each πjr is set to 0.5. For Transformer-sMGK, we learn br and
initialize its elements from a standard normal distribution. Each σjr is a constant with value

√
D

where D is the dimension of each head, which is the same as in the baselines models

Details about the Long Range Arena (LRA) benchmarks can be found in the original pa-
per (Tay et al., 2021). Our implementation is based on the public code by (Xiong et al.,
2021), and we follow their training procedures. The training setting and additional baseline
model details are provided in the configuration file used in (Xiong et al., 2021) and available
at https://github.com/mlpen/Nystromformer/blob/main/LRA/code.

A.1.2 LANGUAGE MODELING ON WIKITEXT-103

Datasets and metrics WikiText-103 consists of articles from Wikipedia and is a dataset with long
contextual dependencies. The training set is made up of about 28K articles containing 103M running
words; this corresponds to text blocks of about 3600 words. The validation and test sets are composed
of 218K and 246K running words, respectively. Each of them contains 60 articles and about 268K
words. Our experiment follows the standard setting (Merity et al., 2017; Schlag et al., 2021) and
splits the training data into L-word independent long segments. For evaluation, we use a batch size
of 1, and go through the text sequence with a sliding window of size L. We consider only the last
position for computing perplexity (PPL) except in the first segment, where all positions are evaluated
as in (Al-Rfou et al., 2019; Schlag et al., 2021).

Models and baselines Our language modeling implementation is based on the public code
https://github.com/IDSIA/lmtool-fwp by (Schlag et al., 2021). We use their small and medium
model configurations for models in our experiments. In particular, for small models, we set the
key, value, and query dimension to 128, and the training and evaluation context length to 256. For
medium models, we set the key, value, and query dimension to 256, and the training and evaluation
context length to 384. In both configurations, we set the number of heads to 8, the feed-forward layer
dimension to 2048, and the number of layers to 16. For Transformer-MGK/MLK, we use our 4 and
8-head versions to compare with the 8-head baselines. πir, br and σjr for this task follow our setings
for LRA experiments. Other than those, our language modeling share the same configurations as the
baselines.

We train our models for language modeling on 2 A100, 40GB each with a batch size of 96, and each
model is trained for 120 epochs. We apply 10% dropout (Hanson, 1990; Srivastava et al., 2014) and
use the Adam optimizer (Kingma & Ba, 2014) with an initial learning rate of 0.00025 and 2000 steps
for learning rate warm-up.

A.1.3 NEURAL MACHINE TRANSLATION ON IWSLT’14 GERMAN TO ENGLISH

Datasets and metrics The IWSLT14 German-English dataset (Cettolo et al., 2014) contains 153K
training, 7K validation, and 7K test TED-talks scripts German-English translated sentences. We

16

https://github.com/mlpen/Nystromformer/blob/main/LRA/code/lra_config.py
https://github.com/IDSIA/lmtool-fwp

Under review as a conference paper at ICLR 2022

follow the same preprocessing steps as in (Ott et al., 2019). We use the BiLingual Evaluation
Understudy (BLEU) score as our evaluation metric for this task. All trained models are evaluated
using the evaluation protocol in (Ott et al., 2019).

Models and baselines The baseline model we use in this machine translation task is an encoder-
decoder transformer with six encoder/decoder layers, four attention heads per layer. The embedding
dimension and the hidden size are 512 and 1024, respectively, for both encoder and decoder. These
architecture configurations are the same for Transformer-MGK/sMGK except for the number of
attention heads per layer, which is reduced by half. We share πjr across all position j and learn it
for each head. The initial value for each πjr is set to 0.5. For Transformer-sMGK, we learn br and
initialize its elements from a standard normal distribution. Each σjr is a constant with the value√
D where D is the dimension of each head, which is the same as in the baselines models. Our

experiments follow the settings from (Ott et al., 2019), and our implementation is based on the public
code https://github.com/pytorch/fairseq/tree/main/examples/translation.
A.2 MORE EMPIRICAL ANALYSIS OF TRANSFORMER-MGKS/MLKS TRAINED FOR

LANGUAGE MODELING

In Table 3 in the main text, we show the improvements in valid and test perplexity of our Transformer-
MGKs/MLKs compared with the baseline softmax and linear transformers. In particular, Transformer-
MGK/MLKs with the same number of heads as the baselines, e.g. 8 heads, significantly improve
the baselines during training while Transformer-MGK/MLKs with 4 head achieve comparable or
better performance than the 8-head baselines. In this section, we provide more empirical analysis to
shed light on those results. Figure 4 shows the validation perplexity curve of our models versus the
softmax and linear transformers.

Figure 5 visualizes the attention matrices from a randomly selected sample for the trained softmax
transformer with 8 heads and Transformer-MGKs with 8 heads and 4 heads. These visualizations
show that Transformer-MGKs attend to more diverse positions in all heads and layers than the softmax
attention baseline. We also compare the rank distributions of these attention matrices computed from
1000 samples at each layer in the model. Figure 6 presents the rank histograms of the 8-head softmax
attention and 4-head and 8-head MGK attentions for the 1st and 5th layer. It is clear that attention
matrices from the Transformer-MGKs have higher ranks than those in the softmax transformer, which
implies that Transformer-MGK can attend to more diverse regions than the softmax transformer
without the need of using more attention heads.

Figure 4: Validation perplexity of Transformer-MGK vs. the softmax transformer (Left) and Transformer-MLK
vs. the linear transformer (Right) for language modeling on WikiText-103.

.

A.3 ADDITIONAL TRAINING RESULTS FOR LRA
In this section, we provide additional experimental results on the LRA benchmark. Figure 7 compares
the computational cost measured by FLOPs and model complexity in term of the number of parameters
of different inference and learning methods for Transformer-MGK. The computational costs of
Transformer-MGK/sMGK and Transformer-MGK Hard-E/Soft-E are on par with each other, while
Transformer-sMGK uses fewer parameters than the other without trade-off in performance 4 for all
tasks. The naming is as explained in Section 3.4 in the main text. In addition, Figure 8 visualizes the
attention matrices in the 4-head linear transformer baseline, 4-head Transformer-MLK, and 2-head
Transformer-MLK trained on the document retrieval task.

17

https://github.com/pytorch/fairseq/tree/main/examples/translation

Under review as a conference paper at ICLR 2022

Softmax 8 Heads MGK 8 Heads MGK 4 Heads
Layer 1 Layer 2 Layer 3Layer 1 Layer 2 Layer 3Layer 1 Layer 2 Layer 3

H
ea

d
1

H
ea

d
2

H
ea

d
3

H
ea

d
4

H
ea

d
5

H
ea

d
6

H
ea

d
7

H
ea

d
8

Figure 5: Visualization of attention matrices from 8-head softmax transformer (Left), 8-head Transformer-MGK
(Middle), and 4-head Transformer-MGK (Right) trained on WikiText-103 language modeling. Here, we plot the
attention matrices for all heads and layers in the models. The sequence length is 256 and the size of each matrix
is 256×256.

.

C
ou

nt
Layer 1

Layer 5

Rank

Softmax 8 Heads MGK 8 Heads MGK 4 Heads

Figure 6: Rank distributions of attention matrices from 8-head softmax transformer (Left), 8-head Transformer-
MGK (Middle), and 4-head Transformer-MGK (Right) trained on WikiText-103 language modeling. The rank
histograms are computed from 1000 attention matrices at each layer. The attention matrices from Transformer-
MGKs have higher ranks than those from softmax transformers. This implies that Transformer-MGKs have
more diverse attention patterns, which allows us to reduce the number of heads in Transformer-MGKs.

A.4 ABLATION STUDY ON THE IMPACT OF THE MIXTURE OF KEYS, THE GAUSSIAN
DISTANCE, AND THE KEY SHIFTING

In this section, we conduct an ablation study of the Transformer-MGK on the LRA retrieval task to
investigate where the performance improvement is from. In particular, we would like to understand
the impact of the following factors on the performance of Transformer-MGK: 1) the mixture of keys,
2) the Gaussian distance, and 3) the key shifting. We summarize our empirical results in Table 5 and
discuss the impact of 1, 2 and 3 below.

Impact of the Mixture of Keys We apply our mixture of keys (MGK) approach to the softmax
transformer using the dot product between queries and keys instead of the Gaussian distance as in our
paper. We name this model Softmax MGK. We compare the Softmax MGK that has 1 head (Sofmax
MGK 1 head in Table 5) with the baseline softmax transformers that use 1 and 2 heads (Softmax
1 head and Softmax 2 heads in Table 5). Results in Table 5 show that the Softmax MGK 1 head
outperforms both the baseline softmax transformers of 1 and 2 heads. Note that our Softmax MGK

18

Under review as a conference paper at ICLR 2022

 Number of Heads

FL
O

P
s

P
ar

am
et

er
s

(1
e5

)

Retrieval Listops Text

Transformer-sMGK Transformer-MGK Hard-ETransformer-MGK Transformer-MGK Soft-E

Figure 7: Model complexity (Top) and computational cost (Bottom) of different inference and learning methods
for Transformer-MGK trained on the document retrieval task. While computational costs are almost the same,
Transformer-sMGK has more advantage in model size, comparing to Transformer-MGK, Transformer-MGK
Hard-E, and Soft-E. The naming is as explained in Section 3.4 in the main text.

1K 2.5Kk 4K

1K

2.5

4K

layer 1

1K 2.5Kk 4K

1K

2.5

4K

layer 2

1K 2.5Kk 4K

1K

2.5

4K 1K 2.5Kk 4K

1K

2.5

4K

1K 2.5K 4K

1K

2.5k

4K

layer 1

1K 2.5K 4K

1K

2.5k

4K

layer 2

1K 2.5K 4K

1K

2.5k

4K 1K 2.5K 4K

1K

2.5k

4K

1K 2.5K 4K

1K

2.5k

4K 1K 2.5K 4K

1K

2.5k

4K

1K 2.5K 4K

1K

2.5k

4K 1K 2.5K 4K

1K

2.5k

4K

1K 2.5K 4K

1K

2.5k

4K

he
ad

 1

layer 1

1K 2.5K 4K

1K

2.5k

4K

layer 2

1K 2.5K 4K

1K

2.5k

4K

he
ad

 2

1K 2.5K 4K

1K

2.5k

4K

1K 2.5K 4K

1K

2.5k

4K

he
ad

 3

1K 2.5K 4K

1K

2.5k

4K

1K 2.5K 4K

1K

2.5k

4K

he
ad

 4

1K 2.5K 4K

1K

2.5k

4K

0.6

0.7

0.8

0.9

1.0

Linear 4 Heads MLK 4 Heads MLK 2 Heads

Figure 8: Visualization of attention matrices in the 4-head linear transformer baseline (Left), 4-head Transformer-
MLK (Middle), and 2-head Transformer-MLK (Right) trained on the document retrieval task. Here, the sequence
length is 4000, and the size of each matrix is 4000×4000.

1 head is more efficient than the baseline of 2 heads in terms of the number of parameters and the
number of FLOPs. These results confirm the benefit of using MGK.

Impact of using the Gaussian distance Next, we compare the softmax MGK with the Gaussian
MGK. Here the Gaussian MGK is the Transformer-MGK proposed and discussed in our paper, which
computes the attention scores using the MGK approach and the Gaussian distance between the queries
and keys. Results in Table 5 suggest that the Gaussian MGK 1 head improves over the Softmax MGK
1 head (80.63% vs. 79.23%). This result justifies the advantage of using Gaussian distance over dot
product to compute the attention scores.

Impact of key shifting Finally, we apply key shifting to both Softmax MGK and Gaussian MGK
(Softmax sMGK and Gaussian sMGK in Table 5). From Table 5, we observe that the Softmax sMGK
1 head and Gaussian sMGK 1 head outperform the Softmax MGK 1 head and Gaussian MGK 1 head,
respectively. These results, again, corroborate the benefit of using key shifting.

We also include the result for the Gaussian 1 head model in Table 5. This Gaussian 1 head model is
similar to the Softmax 1 head model but uses the Gaussian distance to compute the attention scores.
Comparing the results of the Gaussian 1 head model, the Softmax 1 head model, and the Gaussian

19

Under review as a conference paper at ICLR 2022

Table 5: Ablation study on the impact of the mixture of keys, the Gaussian distance, and the key shifting on the
LRA retrieval task. We denote the softmax Transformer by Softmax. All Softmax models (i.e., Softmax 2 heads,
Softmax 1 head, Softmax MGK 1 head, and Softmax sMGK 1 head) use dot product to compute the attention
scores. All Gaussian models (i.e., Gaussian MGK 1 head, Gaussian sMGK 1 head, and Gaussian 1 head) use
Gaussian distance to compute the attention scores. We denote MGK with key shifting by sMGK. Here MGK is
used to denote our approach of using a mixture of keys at each timestep.

Method Accuracy (%)
Softmax 2 heads 79.10
Softmax sMGK 1 head 79.81
Softmax MGK 1 head 79.23
Softmax 1 head 77.90
Gaussian sMGK 1 head 81.23
Gaussian MGK 1 head 80.63
Gaussian 1 head 80.38

Table 6: Comparing the GPU memory footprint and computational time overhead (seconds/iteration) between
our 4-head Transformer-MGKs/MLKs and the 8-head softmax/linear transformer baselines trained on the LRA
retrieval task at test time. Our Transformer-MGKs/MLKs save much more memory and have significantly
smaller wall-clock time compared to the baselines. Here we use a batch size of 32 for each iteration.

Method Memory (Gb) Time overhead (seconds/iteration)
Softmax 8 heads 58.00 0.357
Transformer-MGK 4 heads 53.58 0.278
Transformer-sMGK 4 heads 45.50 0.227
Linear 8 heads 3.38 0.055
Transformer-MLK 4 heads 2.90 0.043
Transformer-sMLK 4 heads 2.83 0.042

Figure 9: Training and test loss/accuracy of Transformer-MGK vs. softmax transformer (Left) and Transformer-
MLK vs. linear Transformer (Right) on the retrieval task, which has the longest average sequence-length and
attention span among the LRA tasks (Tay et al., 2021). In training, we apply early stopping to avoid overfitting.
That explains why the training loss and accuracy curves stop early. The test loss/accuracy curves already
converge. The impressive performance of Transformer-MGK/MLK on this challenging task validates the
capability of our models to capture long-range dependencies via learning a diversity of attention patterns.

MGK 1 head model reported in Table 5 further confirms the advantage of using MGK and Gaussian
distance.
A.5 TIME OVERHEAD AND MEMORY FOOTPRINT ANALYSIS

Table 6 compares the GPU memory footprint and computational time overhead (seconds/iteration) of
our 4-head Transformer-MGKs/MLKs with those of the 8-head softmax/linear transformer baselines
at test time. All models are trained on the LRA retrieval task, and we use a batch size of 32 for each
iteration. Our MGK/MLK models save memory and reduce wall-clock time significantly compared
to the baselines. Using key shifting in our models, i.e. Transformer-sMGKs/sMLKs, helps improve
the efficiency further.
A.6 LEARNING CURVES SHOWING CONVERGENCE

In this section, we replot Figure 1 and 4 to show the convergence of our trainings. In Figure 1, the
results do not seem to converge since we plot the loss and the accuracy in log-scale. In Figure 4, the

20

Under review as a conference paper at ICLR 2022

Figure 10: Validation perplexity of the Transformer-MGK vs. the softmax transformer (Left) and the
Transformer-MLK vs. the linear transformer (Right) for language modeling on WikiText-103. Training converges
on this task after 500000 iterations, equivalent to 115 epochs .

.

Layer 1 Layer 2 Layer 1
Softmax 2 Heads

H
ea

d
2

H
ea

d
1

MGK 1 Head sMGK 1 Head

W
ei

gh
t K

ey
 1

W
ei

gh
t K

ey
 2

W
ei

gh
t K

ey
1

Layer 2 Layer 1 Layer 2

Figure 11: Weight matrices WK for computing the keys, for all heads and layers, in the 2-head softmax
transformer baseline (Left), the 1-head Transformer-MGK with 2 keys (Middle), and the 1-head Transformer-
sMGK with 2 keys (Right) trained on the LRA retrieval task. Here, the dimension of each head D = 32 and that
of input xi is Dx = 64. Hence, each weight matrix has the shape of (64, 32).

Table 7: The learned mixing coefficient πjr of all heads and layers in the 1-head Transformer-MGKs trained on
the LRA retrieval task. Here we use the same πj1, πj2 for all time step j = 1, . . . , N .

Method Layer 1 Layer 2
πj1 πj2 πj1 πj2

Transformer-sMGK 1 heads 0.488 0.512 0.500 0.500
Transformer-MGK 1 heads 0.502 0.498 0.497 0.503

results do not seem to converge since we zoom into the specific range on the y and x-axes. Figure 9
and 10 are the replotted versions of Figure 1 and 4, respectively. In Figure 9, the training loss/accuracy
curves stop early because we use early stopping to avoid overfitting. The test loss/accuracy curves in
this figure already converge.

A.7 WEIGHT MATRICES OF THE KEYS, KEYS AND MIXING COEFFICIENT

In this section, we analyze the learned πjr, kjr, and WKr , j = 1, . . . , N and r = 1, . . . ,M in
the Transformer-MGK trained on the LRA retrieval task. In all of our experiments, we set M = 2.
In Figure 11 and 12, we visualize the weight matrices WK that computes the keys and the keys
K, respectively, for all heads and layers in the 2-head softmax transformer baseline, the 1-head
Transformer-MGK with 2 keys, and the 1-head Transformer-sMGK with 2 keys trained on the LRA
retrieval task. Note that for the keys, we only plot the first 100 tokens. Also, Table 7 summarizes the

21

Under review as a conference paper at ICLR 2022

Layer 1 Layer 2 Layer 1
Softmax 2 heads

H
ea

d
2

H
ea

d
1

MGK 1 Head sMGK 1 Head

K
ey

 1
K

ey
 2

K
ey

 1

Layer 2 Layer 1 Layer 2

K
ey

 2

Figure 12: Key embeddings K for all heads and layers of the 2-head softmax transformer baseline (Left), the
1-head Transformer-MGK with 2 keys (Middle), and the 1-head Transformer-sMGK with 2 keys (Right) trained
on the LRA retrieval task. Here the dimension D of each head is 32, and we plot the key embeddings of the first
100 tokens in a randomly chosen sequence. Hence, each key matrix has the shape of (100, 32).

Figure 13: Computational cost (FLOPs) for each training iteration of Transformer-MGK vs. the baseline
softmax transformer (Left) and Transformer-MLK vs. the baseline linear transformer (Right) on the LRA
retrieval task. The efficiency advantage of Transformer-MGK/MLK over the baselines grows with the number of
heads. Here, the batch size of each training iteration is 32.

learned mixing coefficient πjr of all heads and layers in the 1-head Transformer-MGK trained on the
same retrieval task. Here we use the same πj1, πj2 for all time step j = 1, . . . , N .

A.8 ADDITIONAL COMPUTATIONAL COMPLEXITY (FLOPS) ANALYSIS AT TRAINING TIME

Figure 13 demonstrates the computational cost (FLOPs) for each training iteration of the Transformer-
MGK vs. the baseline softmax transformer (Left) and the Transformer-MLK vs. the baseline linear
transformer (Right) on the LRA retrieval task. The efficiency advantage of Transformer-MGK/MLK
over the baselines grows with the number of heads.

Figure 14 shows the computational cost per training iteration (measured in FLOPs) of different infer-
ence and learning methods for Transformer-MGK trained on the document retrieval task. Transformer-
sMGK, Transformer-MGK, Transformer-MGK Hard-E, and Soft-E have similar computational costs.

A.9 SCALING TO 12-HEAD BASELINE MODELS FOR THE RETRIEVAL TASK.

To further study the scalability of our model, in this section, we investigate the performance of
our 6-head Transformer-MGKs/MLKs in comparison with the 12-head baseline softmax/linear
transformers on the retrieval task. Table 8 indicates that our 6-head Transform-MGKs/MLKs
significantly outperform 12-head softmax/linear transformers, respectively. Moreover, comparing
these results to those in Table 1 and Table 2, although the 12-head softmax/linear transformers
improve over the 8-head ones, their accuracies are still worse than or only equivalent to those of our
4-head and even 2-head Transformer-MGK/MLK models.

A.10 NEURAL MACHINE TRANSLATION ON IWSLT’14 GERMAN TO ENGLISH

Table 9 shows that the 2-head Transformer-MGK/sMGK models have comparable or better BLEU
scores than the 4-head softmax transformer baseline.

22

Under review as a conference paper at ICLR 2022

 Number of Heads

FL
O

P
s

Retrieval Listops Text

Transformer-sMGK Transformer-MGK Hard-ETransformer-MGK Transformer-MGK Soft-E

Figure 14: Computational cost (measured in FLOPs) per training iteration of different inference and learning
methods for Transformer-MGK trained on the LRA retrieval task. Computational costs are almost the same for
Transformer-sMGK, Transformer-MGK, Transformer-MGK Hard-E, and Soft-E. The naming is as explained in
Section 3.4 in the main text.

Table 8: Test Accuracy (%) of 6-head Transformer-MGKs/MLKs compared with the baseline 12-head softmax
and linear transformers on the retrieval task. Our 6-head Transformer-MGKs/MLKs significantly outperform
softmax and linear transformers, respectively, while being more efficient in terms of computational cost, model
size, and memory usage.

Method Accuracy (%)
Softmax 12 heads 82.18
Transformer sMGK 6 head 83.31
Transformer MGK 6 head 83.05
Linear sMGK 12 head 81.97
Transformer sMLK 6 head 82.80
Transformer MLK 6 head 82.11

Table 9: Machine translation BLEU scores of 2-head Transformer-MGKs on the IWSLT14 De-En dataset is
better than or equivalent to that of the 4-head baseline.

Method BLEU score
Softmax 4 heads 34.42
Transformer sMGK 2 head 34.69
Transformer MGK 2 head 34.34

A.11 COMPARISON TO MULTI-QUERY ATTENTION

In this section, we compare our MGK approach to the multi-query attention (Shazeer, 2019). The
multi-query attention shares the same set of keys and values at different heads to reduce the memory-
bandwidth cost during incremental inference, which allows faster inference since the size of the
reloaded ”keys” and ”values” tensors are significantly reduced. On another hand, our Transformer-
MGK models the key at each head as a Gaussian mixture model, which leads to the use of multiple
keys at each head and allows us to decrease the number of attention heads. This helps reduce the
computations and parameters needed to calculate additional queries and values. If using key shifting
(see option (B) in paragraph Design Options for Keys in Section 2.3), the MGK approach also helps
reduce the computations and parameters needed to calculate additional keys. The advantages of
Transformer-MGK hold in both training and inference, including incremental inference. We have
provided a detailed analysis on the computational complexity and the number of parameters of
the Transformer-MGK in comparison with the corresponding softmax transformer in Appendix B.
Combining the multi-query attention and our MGK approach is interesting since each method has its
own advantage and they are complementary to each other. In particular, we can let the transformer
model share the same set of values and mixtures of keys at different heads. This approach can
potentially have the advantages of both multi-query attention and MGK.

23

Under review as a conference paper at ICLR 2022

B AN ANALYSIS ON THE COMPUTATIONAL COMPLEXITY AND THE NUMBER
OF PARAMETERS IN TRANSFORMER-MGK AND THE SOFTMAX
TRANSFORMER

In this section, we compare the computational complexity and the number of parameters in
transformer-MGK with M keys at each timestep and H/M heads to the baseline softmax transformer
that has 1 key at each timestep and H heads. Here we choose M such that H is a multiple of
M and use keys design option (A) that make the key kjr a linear projection of the input xj , i.e.
kjr = xjW

>
Kr

, where xj ∈ R1×Dx , WKr ∈ RD×Dx and r = 1, 2, . . . ,M (see Design Options for
Keys in Section 2.3 for more details). To simplify notation and without loss of generalization, we
let M = 2 as in our experiments and assume that Dv = D, i.e., the values have the same feature
dimension as the queries and the keys. To simplify the computation, we also do not take the softmax
operator into account since this operator yields similar costs when applied in Transformer-MGK and
softmax transformer.

B.1 COMPUTATIONAL COMPLEXITY

(i) Softmax H-head attention: The number of computations in a softmax H-head attention is
N2H(4D − 1) +NHD(6Dx + 2HD − 5).

Explanation: To calculate the query matrix Q, the key matrix K, and the value matrix V in Step 1 in
Section 1.1 at each head, we need 3NDDx multiplications and 3ND(Dx−1) additions. In total, these
need 3ND(2Dx − 1) computations. Next, to compute the product QK> in Eqn. (1), we need N2D
multiplications and N2(D − 1) additions. Similarly, the product AV requires N2D multiplications
and N(N − 1)D additions. In total, computing the output sequence H in Eqn. (1) at each head
requires 3ND(2Dx−1)+N2D+N2(D−1)+N2D+N(N−1)D = N2(4D−1)+ND(6Dx−4)
computations. The total computation for all H heads is then

H(N2(4D − 1) +ND(6Dx − 4)) +NHD(2HD − 1)

= N2H(4D − 1) +NHD(6Dx + 2HD − 5),

where the extra NHD(2HD − 1) is from the linear projection by WO.

(ii) Mixture of 2 Gaussian keys attention with H/2-head: The number of computations in a
mixture of 2 Gaussian keys attention with H/2-head is N2H(3D− 0.5) +NHD(4Dx +HD− 4).

Explanation: Similar to the above derivation, in a Mixture of M Gaussian keys attention, to compute
the output sequence H we need N2((2M +2)D− 1)+ND((M +2)(2Dx− 1)− 1) computations.
Note that, to compute the Gaussian distances between the queries qi and the keys kj as in the mixture
of M Gaussian keys attention and to compute their dot product as in the softmax attention, we need
the similar number of computations. Therefore, the total computation for all H/M heads is then

(H/M)(N2((2M + 2)D − 1) +ND((M + 2)(2Dx − 1)− 1)) +NHD(2(H/M)D − 1)

= N2H

(
2(M + 1)D − 1

M

)
+NHD

(
2(M + 2)

M
Dx +

2

M
HD − 3M + 2

M

)
.

Let M = 2, then the total computation of the mixture of 2 Gaussian keys attention is given by
N2H(3D − 0.5) +NHD(4Dx +HD − 4).

Soft-max H-head attention versus mixture of 2 Gaussian keys attention with H/2-head: Given
the results in (i) and (ii), when compared to the baseline softmax H-head attention, our mixture of 2
Gaussian keys attention with H/2-head saves

N2H(D − 0.5) +NHD(2Dx +HD − 1)

computations. WhenN is large, this difference is significant. In conclusion, the mixture of 2 Gaussian
keys attention with H/2-heads has cheaper computational complexity than that of soft-max H-head
attention.

B.2 THE NUMBER OF PARAMETERS

(iii) Softmax H-head attention: The number of parameters in a softmax H-head attention is
3HDDx + (HD)2.

24

Under review as a conference paper at ICLR 2022

Explanation: 3HDDx is from the linear projects to calculate the query matrix Q, the key matrix K,
and the value matrix V in Step 1 in Section 1.1. (HD)2 is from the linear project to compute the
final output as in Eqn. (3).

(iv) Mixture of 2 Gaussian Keys attention withH/2-head: The number of parameters in a Mixture
of 2 Gaussian Keys attention with H/2-head is 2HDDx + 0.5(HD)2 +H .

Explanation: The linear projections to calculate Q and V contribute HDDx/2 parameters each. The
linear projection to calculate K contributes HDDx. The linear project to compute the final output
has dimension (H/2)D ×HD, so it contributes 0.5(HD)2 parameters. H more parameters is from
the prior πjr. These priors contribute 2 parameters at each head since we make {πj1, πj2} for all
j = 1, . . . , N the same.

Soft-max H-head attention versus mixture of 2 Gaussian keys attention with H/2-head: Given
the results in (iii) and (iv), when compared to the baseline softmax H-head attention, our mixture of
2 Gaussian keys attention with H/2-head saves HDDx + 0.5(HD)2 −H parameters. When H and
D are large, this saving is significant.

C PROOFS OF MAIN RESULTS

In this appendix, we provide proofs for the main results in the paper.

C.1 PROOF OF THEOREM 1

To ease the presentation of the proof, for any probability distribution G, we denote

pG(x) :=

∫
f(x− θ)dG(θ) =

∫
φ(x|θ, σ2I)dG(θ),

for all x ∈ Rd where f(x) = 1
(
√
2πσ)d

exp
(
−‖x‖

2

2σ2

)
for given σ > 0. It means that pG is the

convolution of f and the probability distribution G. Since the space of Gaussian mixtures is dense
in the space of continuous probability measures (Bacharoglou, 2010), it indicates that there exists
probability distribution G1 such that

sup
x∈Rd

|p(x)− pG1(x)| ≤
ε

2
. (14)

Our next step is to prove that there exists a probability measure G2 with at most K supports where
K ≤ (C log(1/ε))d for some universal constant C such that

sup
x∈Rd

|pG1
(x)− pG2

(x)| ≤ ε

2
. (15)

Indeed, from Lemma A.1 in (Ghosal & van der Vaart, 2001), for any k ≥ 1 there exists a probability
distribution G2 with at most (2k − 2)d supports such that∫

θαd(G1 −G2)(θ) = 0, (16)

for any α = (α1, α2, . . . , αd) ∈ Nd such that 0 ≤ |α| =
∑d
j=1 αj ≤ 2k − 2, Here, θα =

∏d
j=1 θ

αj
j .

Now, for any M ≥ 2a
√
d, we have ‖x− θ‖ ≥ ‖x‖−‖θ‖ > M − a

√
d > M/2 as long as ‖x‖ > M

and θ ∈ [−a, a]d. It indicates that

sup
‖x‖>M

|pG1
(x)− pG2

(x)| = sup
‖x‖>M

∣∣∣∣∫ f(x− θ)d(G1 −G2)(θ)

∣∣∣∣
≤ sup
‖x‖>M

∫
1

(
√
2πσ)d

exp

(
−‖x− θ‖

2

2σ2

)
d(G1 +G2)(θ)

≤ 2

(
√
2πσ)d

exp

(
−M

2

8σ2

)
. (17)

25

Under review as a conference paper at ICLR 2022

On the other hand, for any k ≥ 1 we also have that

sup
‖x‖≤M

|pG1
(x)− pG2

(x)| = sup
‖x‖≤M

∣∣∣∣∫ f(x− θ)d(G1 −G2)(θ)

∣∣∣∣
≤ sup
‖x‖≤M

∣∣∣∣∣∣
∫ f(x− θ)− k−1∑

j=0

(−1)j‖x− θ‖2j

(
√
2π)dσd+2jj!

 d(G1 −G2)(θ)

∣∣∣∣∣∣
+ sup
‖x‖≤M

∣∣∣∣∣∣
∫ k−1∑

j=0

(−1)j‖x− θ‖2j

(
√
2π)dσd+2jj!

d(G1 −G2)(θ)

∣∣∣∣∣∣
= sup
‖x‖≤M

∣∣∣∣∣∣
∫ f(x− θ)− k−1∑

j=0

(−1)j‖x− θ‖2j

(
√
2π)dσd+2jj!

 d(G1 −G2)(θ)

∣∣∣∣∣∣ ,
(18)

where the final equality is stems from∫ k−1∑
j=0

(−1)j‖x− θ‖2j

(
√
2π)dσd+2jj!

d(G1 −G2)(θ) = 0,

which is due to Eqn. (16).

To further bound the right-hand-side (RHS) of Eqn. (18), we use the following inequality:∣∣∣∣∣∣exp(y)−
k−1∑
j=0

(y)j/j!

∣∣∣∣∣∣ ≤ |y|k/k!
for any y ∈ R. Since k! ≥ (k/e)k for any k ≥ 1, the above bound can be rewritten as∣∣∣∣∣∣exp(y)−

k−1∑
j=0

(y)j/j!

∣∣∣∣∣∣ ≤ |ye|
k

kk
. (19)

Further simplification of Eqn. (18) leads to

sup
‖x‖≤M

|pG1
(x)− pG2

(x)| ≤ sup
‖x‖≤M

∫ ∣∣∣∣∣∣f(x− θ)−
k−1∑
j=0

(−1)j‖x− θ‖2j

(
√
2π)dσd+2jj!

∣∣∣∣∣∣ d(G1 +G2)(θ)

≤ 2 sup
‖x‖≤M,θ∈[−a,a]d

∣∣∣∣∣∣f(x− θ)−
k−1∑
j=0

(−1)j‖x− θ‖2j

(
√
2π)dσd+2jj!

∣∣∣∣∣∣
= sup
‖x‖≤M,θ∈[−a,a]d

2

(
√
2πσ)d

∣∣∣∣∣∣exp
(
−‖x− θ‖

2

2σ2

)
−
k−1∑
j=0

(−1)j‖x− θ‖2j

σ2jj!

∣∣∣∣∣∣
≤ sup
‖x‖≤M,θ∈[−a,a]d

ek‖x− θ‖2k

σ2k(2k)k
,

where the final inequality is based on an application of inequality (19) with y = −‖x− θ‖2/(2σ2).
For ‖x‖ ≤M and θ ∈ [−a, a]d, we have ‖x− θ‖ ≤ ‖x‖+ ‖θ‖ ≤M + a

√
d. Therefore, we further

have

sup
‖x‖≤M

|pG1
(x)− pG2

(x)| ≤ sup
‖x‖≤M,θ∈[−a,a]d

ek‖x− θ‖2k

σ2k(2k)k
≤ ek(M + a

√
d)2k

σ2k(2k)k
.

When M ≥ 2a
√
d, we have M + a

√
d ≤ 3M

2 and the above bound leads to

sup
‖x‖≤M

|pG1
(x)− pG2

(x)| ≤ (9e)kM2k

(8σ2k)k
. (20)

26

Under review as a conference paper at ICLR 2022

By choosing M2 = 8σ2 log(1/ε′) for some ε′ > 0, the bounds in Eqns. (17) and (20) become

sup
‖x‖≤M

|pG1
(x)− pG2

(x)| ≤ 2

(
√
2πσ)d

ε′,

sup
‖x‖>M

|pG1
(x)− pG2

(x)| ≤ (9e)k(log(1/ε′))k

kk
. (21)

As long as we choose k = 9e2 log(1/ε′) and ε′ ≤ 1, we have

sup
‖x‖>M

|pG1(x)− pG2(x)| ≤ e−k = e−9e
2 log(1/ε′) = (ε′)9e

2

≤ ε′. (22)

By choosing ε′ = ε
2max{ 2

(
√

2πσ)d
,1} , the results from Eqns. (21) and (22) indicate that

sup
‖x‖≤M

|pG1
(x)− pG2

(x)| ≤ ε

2
, and sup

‖x‖>M
|pG1

(x)− pG2
(x)| ≤ ε

2
.

Therefore, if we choose M = 8σ2 log

(
2max{ 2

(
√

2πσ)d
,1}

ε

)
and k = 9e2 log

(
2max{ 2

(
√

2πσ)d
,1}

ε

)
, we

have

sup
x∈Rd

|pG1(x)− pG2(x)| ≤
ε

2
.

It indicates that we obtain the conclusion of claim (15) by choosing K = (2k − 2)d ≤(
18e2 log

(
2max{ 2

(
√

2πσ)d
,1}

ε

))d
. Combining the results from Eqns. (14) and (15), we have

sup
x∈Rd

|p(x)− pG2
(x)| ≤ sup

x∈Rd
|p(x)− pG1

(x)|+ sup
x∈Rd

|pG1
(x)− pG2

(x)| ≤ ε.

As a consequence, we obtain the conclusion of the theorem.

27

	Introduction
	Self-Attention
	Contribution

	Transformer with a Mixture of Gaussian Keys
	Attention Score as a Posterior Distribution
	Transformer with a Mixture of Gaussian Keys: Each Key is Again a Gaussian Mixture Model
	Inference and Learning via the Expectation Maximization Algorithm
	Transformer with a Mixture of Linear Keys

	Experimental Results
	Long Range Arena (LRA) Benchmark
	Language Modeling on WikiText-103
	Neural Machine Translation on IWSLT'14 German to English
	Empirical Analysis

	Related Work
	Concluding Remarks
	Additional Experiments
	Experiment details
	Long Range Arena Benchmark
	Language Modeling on WikiText-103
	Neural Machine Translation on IWSLT'14 German to English

	More Empirical Analysis of Transformer-MGKs/MLKs trained for Language Modeling
	Additional training results for LRA
	Ablation Study on the Impact of the Mixture of Keys, the Gaussian Distance, and the Key Shifting
	Time Overhead and Memory Footprint Analysis
	Learning Curves Showing Convergence
	Weight Matrices of the Keys, Keys and Mixing Coefficient
	Additional Computational Complexity (FLOPs) Analysis at Training Time
	Scaling to 12-Head Baseline Models for the Retrieval task.
	Neural Machine Translation on IWSLT'14 German to English
	Comparison to Multi-query Attention

	An Analysis on the Computational Complexity and the Number of Parameters in Transformer-MGK and the Softmax Transformer
	Computational Complexity
	The Number of Parameters

	Proofs of main results
	Proof of Theorem 1

