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(a) Single-modality images and point clouds synthesized
by separate models (Gao et al., 2023; Hu et al., 2024a)
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(b) Multi-modality images and point clouds jointly
generated by our proposed X-DRIVE.

Figure 1: X-DRIVE simultaneously generates high-quality multi-view images and point clouds with
cross-modality consistency, which is impossible for previous single-modality generative models.

ABSTRACT

Recent advancements have exploited diffusion models for the synthesis of either
LiDAR point clouds or camera image data in driving scenarios. Despite their
success in modeling single-modality data marginal distribution, there is an under-
exploration in the mutual reliance between different modalities to describe com-
plex driving scenes. To fill in this gap, we propose a novel framework, X-DRIVE,
to model the joint distribution of point clouds and multi-view images via a dual-
branch latent diffusion model architecture. Considering the distinct geometrical
spaces of the two modalities, X-DRIVE conditions the synthesis of each modality
on the corresponding local regions from the other modality, ensuring better align-
ment and realism. To further handle the spatial ambiguity during denoising, we
design the cross-modality condition module based on epipolar lines to adaptively
learn the cross-modality local correspondence. Besides, X-DRIVE allows for con-
trollable generation through multi-level input conditions, including text, bounding
box, image, and point clouds. Extensive results demonstrate the high-fidelity syn-
thetic results of X-DRIVE for both point clouds and multi-view images, adhering
to input conditions while ensuring reliable cross-modality consistency. Our code
will be made publicly available at https://github.com/yichen928/X-Drive.

1 INTRODUCTION

Autonomous driving vehicles perceive the world with multiple sensors of different kinds, where
LiDAR and cameras play crucial roles by capturing point clouds and multi-view images. They
provide complementary geometric measurements and semantic information about the surrounding
environment, significantly benefiting tasks such as object detection (Liu et al., 2023b; Xie et al.,
2023), motion planning (Sobh et al., 2018), scene reconstruction (Huang et al., 2024; Zhou et al.,
2024), and self-supervised representation learning (Yang et al., 2024a; Xie et al., 2024). However,
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these advancements hinge on access to large amounts of aligned multi-modality data, specifically
well-calibrated LiDAR and multi-view camera inputs that describe the same scene.

Scaling up the collection of such high-quality multi-modality data is costly and a non-trivial effort.
The high-quality sensors are expensive, and the calibration process demands intensive human ef-
forts. Additionally, real-world driving data suffers from the severe long-tailed distribution problem,
making it an obstacle for corner case collection such as in extreme weather conditions. This raises a
natural question: Can we use a controllable way to synthesize aligned multi-modality data?

Given the success in other fields (Rombach et al., 2022; Blattmann et al., 2023; Liu et al., 2023a),
generative models offer a promising solution. Current research focuses either on synthesizing point
clouds (Zyrianov et al., 2022; Hu et al., 2024a; Ran et al., 2024) or multi-view images (Gao et al.,
2023; Wang et al., 2023; Wen et al., 2024), with limited attention paid to generating multi-modality
data. A simple combination of these single-modality algorithms results in serious cross-modality
mismatches in the synthetic scenes (Fig. 1a). Such inconsistencies create ambiguities and even
contradictory inputs or supervision signals, thus hindering the performance of downstream tasks.

Cross-modality consistency serves as the key desiderata of multi-modality data generation. However,
there are several challenges in the generation of consistent LiDAR and camera data. Firstly, synthetic
point clouds and multi-view images must be spatially aligned in all the local regions since they
describe the same driving scene, i.e. the shapes and layouts of both foregrounds and backgrounds
must be matched. Secondly, unlike those 2D pixel-level tasks (Zhang et al., 2023), point clouds
and multi-view images have distinct geometrical spaces and data formats. Multi-view images are
represented by RGB values in camera perspective views, while point clouds are XYZ coordinates
in the 3D space. Thirdly, the 3D spatial information is ambiguous during generation for both point
clouds and multi-view images without reliable point location or pixel depth in the denoising process.

In this paper, we fill in this gap by proposing X-DRIVE, a novel framework for the joint generation of
LiDAR and camera data, as demonstrated in Fig. 1b. We design a dual-branch architecture with two
latent diffusion models separately dedicated to the synthesis of point clouds and multi-view images,
while a key cross-modality condition module enhances cross-modality consistency between them.
To model the joint distribution and ensure local spatial alignment, we perform the cross-modality
conditions locally with only corresponding regions from the other modality considered. An explicit
transform bridges the two different geometrical spaces, converting the cross-modality condition to
match each other’s noisy latent space. To handle the positional ambiguity, we resort to a 3D-aware
design based on epipolar lines on range images and multi-view images, allowing the cross-attention
module to adaptively determine the cross-modality correspondence without explicit 3D positions. In
consequence, X-DRIVE is able to exploit existing single-modality data as conditions to seamlessly
generate data in the other modality. Additionally, X-DRIVE enhances controllability by introducing
3D bounding boxes for geometrical layout control and text prompts for attribute control (e.g. weather
and lighting), enabling more flexible, fine-grained, and precise control over both modalities.

Extensive experiments demonstrate the great ability of X-DRIVE in generating realistic multi-
modality sensor data. It notably outperforms previous specialized single-modality algorithms in
the quality of both synthetic point clouds and multi-view images. More importantly, for the first
time, it demonstrates reliable cross-modality consistency in synthetic scenes with comprehensive
and flexible conditions. Our contributions are summarized as follows.

• We introduce X-DRIVE, a dual-branch multi-modality latent diffusion framework that, for the first
time, enables controllable and reliable synthesis of aligned LiDAR and multi-view camera data.

• Our cross-modality epipolar condition module bridges the geometrical gap under spatial ambigu-
ity between point clouds and multi-view images, significantly enhancing modality consistency.

• Extensive experimental results demonstrate the effectiveness of X-DRIVE, with notable MMD
(for point cloud generation) and FID (for multi-view generation) improvements, establishing a
new state-of-the-art for remarkable cross-modality consistency.

2 RELATED WORKS

Conditional generation with diffusion models. Diffusion models (Ho et al., 2020; Dhariwal &
Nichol, 2021; Podell et al., 2023; Peebles & Xie, 2023) exhibit remarkable ability in generating
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diverse images by learning a progressive denoising process. They yield state-of-the-art results in
various tasks such as text-to-image generation (Rombach et al., 2022; Nichol et al., 2021), text-to-
video generation (Singer et al., 2022; Yu et al., 2022), and instructional image editing (Brooks et al.,
2023; Meng et al., 2022). Beyond text condition, several works emerges with the competence in
managing additional forms of control signals. Zhang et al. (2023) integrates spatial conditions to a
pretrained text-to-image diffusion model via efficient finetuning. Li et al. (2023); Zheng et al. (2023)
condition the image synthesis on the fine-grained geometrical annotations to facilitate downstream
tasks like 2D object detection. Liu et al. (2023a); Sargent et al. (2024) introduce 3D-aware diffu-
sion models for novel view synthesis based on single-view image inputs. Unlike these prior work
for image domain, our framework simultaneously generates point clouds and multi-view images
conditioned on text prompts and 3D bounding boxes.

Cross-modality data generation. Beyond image domain, generative models are extended to the
synthesis of multi-modality data. Hu et al. (2024b); Shao et al. (2024) leverage video diffusion
model to estimate sequential depths. Bai et al. (2024) formulates various vision tasks as next to-
ken prediction by extracting diverse visual information as unified visual tokens. The cross-modality
synthesis between videos and audios also draws great attention. Efforts are devoted to the video-to-
audio (Zhu et al., 2022), audio-to-video (Chatterjee & Cherian, 2020), bi-directional (Chen et al.,
2017; Hao et al., 2018), and joint multi-modality (Ruan et al., 2023) generation. However, in all the
above cases, there exists clear cross-modality alignments, such as the pixel-to-pixel spatial corre-
spondence for depth estimation and frame-to-frame temporal alignment between audios and videos.
In contrast, point clouds and multi-view images are in different geometrical spaces without clear
one-to-one local correlation between noisy multi-modality samples.

Generation of vehicle sensor data. Panoramic driving environment is usually perceived by the
multi-view cameras and LiDARs on the ego-vehicle. Alternative to the laborious collection and
annotation process, many works resort to the fast-growing generative models for the synthesis of
either camera (Swerdlow et al., 2024; Yang et al., 2023; Gao et al., 2023) or LiDAR (Zyrianov et al.,
2022; Hu et al., 2024a; Zyrianov et al., 2024) sensor data. For multi-view images (Yang et al., 2023;
Wang et al., 2023; Gao et al., 2023) or videos (Wen et al., 2024; Lu et al., 2023), previous work
leverages pretrained image diffusion models (Rombach et al., 2022) by incorporating extra inter-
view modules to ensure the multi-view consistency. For point clouds, Zyrianov et al. (2022); Ran
et al. (2024); Hu et al. (2024a) adapt latent diffusion models for the generation of range images (Fan
et al., 2021; Li et al., 2016) since this range-view representation shares a similar format with RGB
images. However, all above methods concentrate on the single-modality data, either LiDAR or
camera sensor. Despite various control signals, there exists no guarantee for the cross-modality
consistency between point clouds and multi-view images generated by independent single-modality
models. To this end, we propose to synthesize consistent multi-modality data in a joint manner.

3 PRELIMINARY

Latent Diffusion Models. Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) learn to
approximate a data distribution p(x0) by iteratively denoising a random Gaussian noise for T steps.
Typically, diffusion models construct a diffused input xt through a forward process, which gradually
adds Gaussian noise to the data according to a variance schedule β1, . . . , βT .

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (1)

Then, the reverse process learns to recover the original inputs by fitting pθ(xt−1|xt).

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (2)

Latent diffusion models (Rombach et al., 2022) perform the diffusion process on the latent space
instead of the input space to handle the high dimensional data. Specifically, it maps input x with an
encoder E into the latent space as z = E(x). The latent code z can be reconstructed to the input as
x̂ = D(z) through a decoder D. The forward and reverse processes of latent diffusion models are
similar with the original diffusion models by substituting x with latent z in Eq. 1 and Eq. 2.
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Figure 2: Overview of our proposed X-DRIVE framework. We design a dual-branch diffusion model
architecture to generate multi-modality data. Cross-modality epipolar condition modules (Fig. 3) are
inserted between branches to enhance the cross-modality consistency.

Range Image Representation. Compatible with the sampling process of LiDAR sensor, range
image R ∈ RHr×Wr×2 is a dense rectangular representation for LiDAR point clouds, where Hr

and Wr are the numbers of rows and columns with one channel representing the range and the other
representing intensity. The rows reflect the laser beams while the columns indicate the yaw angles.
For each point with Cartesian coordinate (x, y, z), it can be transformed to the spherical coordinates
(r, θ, ϕ) through the following projection.

r =
√

x2 + y2 + z2, θ = arctan(y, x), ϕ = arctan(z,
√

x2 + y2) (3)

where r is the range, θ is the inclination, and ϕ is the azimuth. The range image is produced by
quantizing the θ and ϕ with factors sθ and sϕ. For each point with spherical coordinate (ri, θi, ϕi),
we have R(⌊θi/sθ⌋, ⌊ϕi/sϕ⌋) = (ri, ii). The range ri and intensity ii are normalized to (0, 1).

4 METHODOLOGY

In this section, we present our novel framework, X-DRIVE, for joint generation of point clouds and
multi-view images. The overall architecture is depicted in Fig. 2. We extend the vanilla diffusion
models to modeling the joint distribution of multi-modality data in Sec. 4.1. Practically, it is achieved
by our proposed framework with dual-branch diffusion models in Sec. 4.2. For the cross-modality
consistency, we propose a cross-modality epipolar condition module in Sec. 4.3 . Our method can
also be tailored for cross-modality conditional generation in a zero-shot manner as in Sec. 4.4.

4.1 JOINT MULTI-MODALITY GENERATION

Beyond single-modality diffusion models in Sec. 3, we give a formulation to our proposed X-DRIVE
for multi-modality data generation. It aims to approximate a joint distribution for paired data (r0, C0)
that describes a specific driving scene, where r0 is the range image representation of point clouds
and C0 = {xv

0}Vv=1 denotes multi-view images from V cameras at different perspective views.

Given their similar rectangular latent formats, we set a shared noise schedule β1, . . . , βT for range
images and multi-view images. The forward processes of either range image or multi-view images
only depend on its own modality, equivalent with independent forward processes for each modality.

q(rt|rt−1) = N
(
rt;

√
1− βtrt−1, βtI

)
, q(Ct|Ct−1) = N

(
{xv

t }v; {
√
1− βtx

v
t−1}v, {βtI}v

)
. (4)

In contrast, the reverse process exploits models ϵθr , ϵθc to predict the noise ϵr and ϵc added to the
range image and multi-view images separately. Given the requirements for cross-modality consis-
tency, the noise prediction for each modality should take each other into consideration, so the reverse
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process for either range image or multi-view images would depend on both modalities.
pθr (rt−1|rt, Ct) = N (rt−1;µθr (rt, Ct, t),Σθr (rt, Ct, t)),

pθc(Ct−1|Ct, rt) = N (Ct−1;µθc(Ct, rt, t),Σθc(Ct, rt, t)).
(5)

Intuitively, we can implement two diffusion models as ϵθr and ϵθc separately for range images and
multi-view images, equipped with encoders cCR and cRC for the other modality as extra conditions.

ϵ̂r = ϵθr (rt, cCR(Ct, t), t), ϵ̂c = ϵθc(Ct, cRC(rt, t), t). (6)

Instead of training separate condition encoders, we can directly treat diffusion models themselves
as strong encoders for each modality. Thus, ϵθc and ϵθr are adapted as the condition encoder
ϵ′θc(Ct, t) and ϵ′θr (rt, t) in each block. Compared to text-to-image condition, a notable character-
istic of LiDAR-camera mutual condition lies in the local spatial correspondence. For example, a car
captured by LiDAR should share the consistent shape and location with the same car captured by
cameras but has little direct relationship with other parts in the images. Due to their different geo-
metrical spaces, we should rely on a spatial transformation T (·) to explicitly align the geometrical
space for cross-modality correspondence. Concretely, TCR transforms the multi-view image condi-
tions to the range image space, while TRC transforms the range image conditions to the multi-view
image space. As a result, the condition encoders cCR, cRC can be formulated as follows.

cCR(Ct, t) = TCR(ϵ
′
θc(Ct, t)), cRC(rt, t) = TRC(ϵ

′
θr (rt, t)). (7)

In this case, we rewrite the denoising models in Eq. 6 as follows.
ϵ̂r = ϵθr (rt, TCR(ϵ

′
θc(Ct, t)), t), ϵ̂c = ϵθc(Ct, TRC(ϵ

′
θr (rt, t)), t). (8)

They can be trained with a joint multi-modality objective function LDM−M .
LDM−M = LDM−R + LDM−C , LDM−R = Er,t,ϵr ||ϵr − ϵ̂r||22, LDM−C = EC,t,ϵc ||ϵc − ϵ̂c||22. (9)

4.2 DUAL-BRANCH JOINT GENERATION FRAMEWORK

Our framework is developed following Eq. 8, which consists of two denoising models, i.e., ϵθr (·)
and ϵθc(·) respectively tailored for range images (Sec. 4.2.1) and multi-view images (Sec. 4.2.2).

4.2.1 DIFFUSION MODEL FOR RANGE IMAGES

Architecture. We adapt existing latent diffusion model (LDM) (Rombach et al., 2022) to learning
the distribution of range image r0 ∈ RHr×Wr×2 given its similar representation format with RGB
images. In the first stage, the range image is compressed into latent feature zr0 ∈ Rhr×wr×cr by
a downsampling factor fr = Hr/hr = Wr/wr. In the second stage, we train an LDM for range
images from scratch to learn the latent distribution of zr0. Range image reflects the panoramic view
of the ego-vehicle, so its left-most and right-most sides are connected. Considering this constraint,
we follow LiDARGen (Zyrianov et al., 2022) and RangeLDM (Hu et al., 2024a) to replace all the
convolutions in both VAE and LDM with horizontally circular convolutions (Schubert et al., 2019)
where the left and right sides of the range image are treated as neighbors.

In the first stage, we follow the standard protocol to train the VAE including both encoder Er and
decoder Dr by maximizing the ELBO (Rezende et al., 2014). In addition, we attach an adversarial
discriminator (Isola et al., 2017; Rombach et al., 2022) to mitigate the blurriness brought by the
reconstruction loss. In the second stage, the LDM conditions the synthesis of range images on the
cross-modality information from the multi-view image branch (elaborated in Sec. 4.3) as well as the
text prompt and 3D boxes. The model is trained with loss function in Eq. 9.

Range-view bounding box condition. Given a 3D bounding box (bi, ci), bi = {(xj , yj , zj)}8j=1 ∈
R8×3 represents the 3D coordinates of box corners and ci denotes its semantic category. We project
each box corner to the range view using Eq. 3 as br

i = {(rj , θj , ϕj)}8j=1. These range-view corner
coordinates are passed through a Fourier embedder. Then, the concatenated position embeddings of
eight corners are encoded by MLPr

p as hr
p,i. For category label ci, we follow (Isola et al., 2017; Gao

et al., 2023) to pool the CLIP embedding (Radford et al., 2021) of the category name as hr
l,i. The

box and label embeddings are combined and encoded by another MLPr
b as a hidden vector hr

b,i.

hr
b,i = MLPr

b([h
r
l,i,h

r
p,i]), hr

l,i = Avg(CLIP(ci)), hr
p,i = MLPr

p(Concat(Foruier(br
i ))) (10)

We concatenate box hidden vectors {hr
b,i}i from this range-view box encoder with text prompt

hidden vectors, which guide the synthesis the latent diffusion model via a cross-attention module.
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Figure 3: Cross-modality epipolar condition module. We perform mutual conditions locally between
LiDAR and camera modalities based on epipolar lines on multi-view image and range image latents.

4.2.2 DIFFUSION MODEL FOR MULTI-VIEW IMAGES

Architecture. To model the distribution of multi-view images C0 = {xv
0}Vv=1,x

v
0 ∈ RHc×Wc×3,

we tailor the latent diffusion model by introducing extra bounding box and inter-view conditions
apart from the cross-modality signals from range images (details in Sec. 4.3). Following standard
LDM (Rombach et al., 2022), each image xv

0 is first compressed by a pretrained VAE to the latent
space as zc,v0 . In the training process, we sample the Gaussian noise for each view independently
and the denoising model is trained with the objective function in Eq. 9.

Multi-view bounding box condition. The 3D box condition module is similar with Sec. 4.2.1, but
the box positions are transformed to the perspective view of each camera. For each 3D bounding
box (bi, ci), we project its 3D corner coordinates bi = {(xj , yj , zj)}8j=1 to corresponding cam-
era perspective view as bc

i = {(uj , vj , dj)}8j=1, where uj , vj are the corner location in the pixel
coordinate and dj is the depth. For each camera view v, its synthesis is only conditioned on the
3D bounding boxes with at least one corner projected into the range of its perspective view image.
Then, we formulate this perspective-view box encoder similar with Eq. 10.

hc
b,i = MLPc

b([h
c
l,i,h

c
p,i]), hc

l,i = Avg(CLIP(ci)), hc
p,i = MLPc

p(Concat(Fourier(bc
i ))) (11)

For each camera view, the box embeddings {hc
b,i}i are concatenated with the text prompt hidden

vectors, which together guide the image generation through a cross-attention module.

Inter-view condition. It is critical to enhance the consistency across different views in the gen-
eration of multi-view images C0 = {xv

0}Vv=1, so we inject inter-view cross-attention module to
condition the generation of each camera view v on its left and right adjacent views vl and vr. Given
the small overlapping between field-of-views of adjacent cameras, we split each image latent zc,vin

into two halves horizontally. For each view v, its left half zc,vin,l attends to the right half zc,vlin,r of its
left neighbor view vl, while its right half zc,vin,r depends on the left half zc,vrin,l of its right neighbor vr.

zc,vout = zc,vin + tanh (αv) · Concatwidth

([
CrossAttn(zc,vin,l, z

c,vl
in,r);CrossAttn(zc,vin,r, z

c,vr
in,l )

])
(12)

where αv is a zero-initialization gate (Zhang et al., 2023) for stable optimization. Compared to full
cross-attention in MagicDrive (Gao et al., 2023), our split strategy significantly reduces the per-scene
GPU memory cost of inter-view condition from 11GB to 3GB with better multi-view consistency.

4.3 CROSS-MODALITY EPIPOLAR CONDITION MODULE

The key to multi-modality data synthesis is to boost the cross-modality consistency, which poten-
tially relies on cross-modality conditions. Ideally, there is an explicit point-to-pixel correspondence
between point clouds and multi-view images through camera projection. However, in the denoising
process, we are not aware of either the range values of range images or the depths of the multi-view
images. Instead, we propose to warp the local features from range images and multi-view images
based on epipolar lines through spatial transforms TRC and TCR (Eq. 7) to provide control signals
for the synthesis of the other modality, illustrated in Fig. 3.

Camera-to-LiDAR condition. For each position (ϕ, θ) on the range image latent zrin, we sample R
points along the range axis following the linear-increasing discretization (LID) (Reading et al., 2021;
Liu et al., 2022) with range value rk, k = 1, 2, . . . , R. We transform these points {(ϕ, θ, rk)}Rk=1 to
their 3D coordinates {(xk, yk, zk)}Rk=1.

xk = rk · cos(ϕ) · sin(θ), yk = rk · cos(ϕ) · cos(θ), zk = rk · sin(ϕ). (13)
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They can be projected to the camera perspective view v with the camera parameters (Rv, tv,Kv) as

dk
[
uk vk 1

]T
= Kv

(
Rv

[
xk yk zk

]T
+ tv

)
, k = 1, 2, . . . , R (14)

where (uk, vk), k = 1, 2, . . . , R are the pixel coordinates for the R points along the LiDAR ray.
They form the epipolar line on the camera image xv corresponding to position (ϕ, θ) of the LiDAR
range image. We bilinearly sample the corresponding local features from the image latent zc,vin of
view v at location (uk, vk). If a 3D point (xk, yk, zk) is projected into more than one camera view,
we would simply adopt the average local features. Extra Fourier embedding of rk is added to each
sampled feature as an indicator for the range value along the ray. As a result, the entire spatial
transform TCR makes the camera image features spatially aligned to the range image features.

TCR(z
c,v
in )(ϕ,θ) = {Bilinear-Sample(zc,vin ; (uk, vk)) + MLPr (Fourier(rk))}Rk=1 . (15)

We apply a cross-attention module to condition the range image feature zrin,(ϕ,θ) at coordinate (ϕ, θ)
on the corresponding transformed local image features TCR(z

c
in)(ϕ,θ) on the epipolar line.

zrout,(ϕ,θ) = zrin,(ϕ,θ) + tanh(αcr) · CrossAttn
(
zrin,(ϕ,θ), TCR(z

c,v
in )(ϕ,θ)

)
(16)

where αcr is a zero-initialization gate for the camera-to-LiDAR condition. The model learns the
adaptive local correspondence between range image and multi-view images under range ambiguity.

LiDAR-to-camera condition. Inversely, we condition the synthesis of multi-view images on the Li-
DAR range images using a similar module. For each position (u, v) on the camera image latent zc,vin
from view v, D points are sampled at different depths following the linear-increasing discretization
with depth value dk, k = 1, 2, . . . , D. Each point (u, v, dk) in the pixel coordinate is transformed to
3D coordinate (xk, yk, zk) via the corresponding camera parameters (Rv, tv,Kv).[

xk yk zk
]T

= RT
v

(
K−1

v

[
uk · dk vk · dk dk

]T − tv
)
, k = 1, 2, . . . , D (17)

The 3D point coordinate is then projected to the LiDAR range view using Eq. 3 as (ϕk, θk, rk). The
D points (ϕk, θk), k = 1, 2, . . . , D form the epipolar line on the LiDAR range image corresponding
to the pixel coordinate (u, v) of camera view v. The local range image features are extracted at each
coordinate (ϕk, θk) from range image latent zrin through bilinear sampling with additional Fourier
embedding for the depth value dk, k = 1, 2, . . . , D attached. We can write the spatial transform
TRC aligning the range view features to multi-view image features as follows.

TRC(z
r
in)(u,v) = {Bilinear-Sample(zrin; (θk, ϕk)) + MLPd (Fourier(dk))}Dk=1 . (18)

Similar with camera-to-LiDAR condition, a cross-attention module conditions the local camera im-
age feature zc,vout,(u,v) at coordinate (u, v) on spatially aligned range image features TRC(z

c,v
in )(u,v).

zc,vout,(u,v) = zc,vin,(u,v) + tanh(αrc) · CrossAttn
(
zc,vin,(u,v), TRC(z

r
in)(u,v)

)
(19)

where αrc is a zero-initialization gate. The cross-attention module adaptively learns the local re-
liance of camera multi-view images on LiDAR range images without explicit depth cues.

4.4 CROSS-MODALITY CONDITIONAL GENERATION

Besides multi-modality joint generation, X-DRIVE can work as a camera-to-LiDAR or LiDAR-to-
camera conditional generation model in a zero-shot manner without targeted training. Given either
one of ground-truth LiDAR range image r0 or multi-view images C0, we change Eq. 8 separately
for camera-to-LiDAR or LiDAR-to-camera generation to synthesize the other modality data.

ϵ̂r = ϵθr (rt, TCR(ϵ
′
θc(C0, 0)), t), ϵ̂c = ϵθc(Ct, TRC(ϵ

′
θr (r0, 0)), t). (20)

In this case, the trained diffusion model for the input modality serves as a strong encoder for the
condition to enhance the adherence of generation to the input LiDAR or camera conditions.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Dataset. We evaluate our method using nuScenes dataset (Caesar et al., 2020). It provides point
clouds from a 32-beam LiDAR and multi-view images from 6 cameras. We follow the official setting
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Table 1: Quantitative comparison with driving data generation algorithms. For each column, the
best value is highlighted by bold, and the second best one is denoted by underline.

Modality Method Image quality Point clouds quality Cross-modality

FID ↓ VSC ↑ MMD ↓ JSD ↓ DAS ↓

C
BEVControl 25.54 - - - -

BEVGen 24.85 0.439 - - -
MagicDrive 16.20 0.633 - - -

L→C X-DRIVE (ours) 16.01 0.721 - - -

L
LiDAR VAE - - 1.1× 10−3 - -
LiDARGen - - 1.9× 10−3 0.160 -
RangeLDM - - 1.9× 10−4 0.054 -

C→L X-DRIVE (ours) - - 1.0× 10−4 0.052 -

C+L MagicDrive + RangeLDM - - - - 2.32
X-DRIVE (ours) 17.37 0.675 1.2× 10−4 0.052 1.69

to employ 700 driving scenes for training and 150 scenes for validation. The generation of X-DRIVE
is conditioned on bounding boxes from 10 semantic classes as well as scene descriptions.

Evaluation Metrics. For joint multi-modality data synthesis, we evaluate both single-modality data
realism and cross-modality consistency. For image modality, we report Fréchet Inception Distance
(FID) for image synthesis realism. We also utilize View Consistency Score (VSC) (Swerdlow et al.,
2024) to evaluate multi-view consistency, which reflects the keypoints correspondence on overlap-
ping regions between adjacent camera views (Fig. 5), and we normalize the VSC of real images to
1.0 for clarity. For point clouds modality, we measure the distribution gap between synthetic and
real point clouds with Maximum Mean Discrepancy (MMD) and Jensen-Shannon divergence (JSD)
following RangeLDM (Hu et al., 2024a). For cross-modality consistency, we propose a novel metric
called Depth Alignment Score (DAS). We project the synthetic point clouds to multi-view images as
sparse depth values and also estimate the image depth using DepthAnythingV2 (Yang et al., 2024c).
The mean absolute error between the projected and estimated disparities is used as DAS metric.

Baselines. To our best knowledge, we are the first to work on the joint generation of point clouds and
multi-view images. For single-modality generation, we compare with state-of-the-art generation al-
gorithms for point clouds, i.e. LiDAR VAE (Caccia et al., 2019), LiDARGen (Zyrianov et al., 2022),
RangeLDM (Hu et al., 2024a), and multi-view images, i.e. BEVGen (Swerdlow et al., 2024), BEV-
Control (Yang et al., 2023), MagicDrive (Gao et al., 2023), with released code or quantitative results
on nuScenes dataset. Furthermore, we combine MagicDrive (Gao et al., 2023) and RangeLDM (Hu
et al., 2024a) respectively for images and point clouds as a multi-modality baseline.

Training Setup. Our X-DRIVE has a dual-branch architecture. We utilize the Stable-Diffusion
V1.5 pretrained weight to initialize the multi-view image branch with other newly added parameters
randomly initialized. We follow a three-stage pipeline for the training. In the first stage, the VAE
is trained from scratch for range images. In the second stage, we train the latent diffusion model
in point clouds branch without cross-modality conditions using the frozen VAE. Finally, in the last
stage, the entire multi-modality model is trained in an end-to-end manner with only the Stable-
Diffusion V1.5 parts frozen. We follow MagicDrive (Gao et al., 2023) and RangeLDM (Hu et al.,
2024a) to synthesize 224×400 multi-view camera images and 32×1024 point cloud range images.

5.2 QUANTITATIVE RESULTS

We report the quantitative results for both joint generation of aligned point clouds and multi-view
images as well as conditional LiDAR-to-camera or camera-to-LiDAR cross-modality generation.

Joint multi-modality generation. As shown in Tab. 1, in comparison to specialized single-modality
generation methods, X-DRIVE, as a multi-modality algorithm, achieves comparable or even better
quality in both synthetic point clouds and multi-view images. Our FID metric is outoerformed by
MagicDrive (Gao et al., 2023), since we do not have map condition which offers strong control
signals. Unlike simple combination of single-modality methods, we can generate point clouds and
images with cross-modality alignment, reflected by our superior DAS metric, thanks to our proposed
cross-modality epipolar condition module. Extra qualitative visualizations are shown in Appendix C.
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Figure 4: Cross-modality consistency qualitative results for multi-modality generation and condi-
tional cross-modality generation. Colors of point clouds refer to different depths. Well-matched
regions between point clouds and multi-view images are highlighted with red circles.

Figure 5: Key points correspondence between adjacent synthetic camera images. Our proposed
method (bottom) can bring higher multi-view consistency than the baseline (top).

Conditional cross-modality generation. As mentioned in Sec. 4.4, X-DRIVE can also work as a
LiDAR-to-camera or camera-to-LiDAR conditional generation model. In Tab. 1, for single-modality
data generation, X-DRIVE can outperform previous baselines for both point clouds and multi-view
images, demonstrating the flexibility of our proposed algorithm for cross-modality data synthesis.

Table 2: Object-level control.
Methods mAP NDS

Oracle 70.5 72.8
MagicDrive 65.2 69.2

X-DRIVE (ours) 65.4 69.6

Object-level controllable generation. X-DRIVE can ad-
here to the 3D bounding box conditions in the generative
process. Since previous LiDAR generation methods do
not show this ability (Hu et al., 2024a; Ran et al., 2024),
we only compare our methods with multi-view image
generation algorithm Gao et al. (2023). For fair compar-
ison with single-modality method, we employ synthetic
multi-view images and real point clouds from nuScenes
validation set to run a pretrained SparseFusion (Xie et al., 2023) model, which is an advanced multi-
sensor object detection algorithm. Tab. 2 shows X-DRIVE outperforms MagicDrive Gao et al. (2023)
w.r.t. the object-level fidelity.

5.3 QUALITATIVE ANALYSIS

Cross-modality consistency. We show some multi-modality generation examples to exhibit the
cross-modality consistency qualitatively. As in Fig. 4, the projected point clouds overlap with multi-
view image contents properly for both foregrounds and backgrounds. We also show the results of
conditional camera-to-LiDAR and LiDAR-to-camera generation in Fig. 4, where the synthetic data
adheres to the cross-modality LiDAR or camera conditions well.

Multi-view consistency. In our multi-modality generation, point clouds provide a natural 3D-aware
geometrical guidance for the multi-view images, benefiting the multi-view consistency. In Fig. 5,
we visualize the keypoints matching results (Sun et al., 2021) between adjacent synthetic camera
images, where better correspondence is witnessed for X-DRIVE than MagicDrive (Gao et al., 2023).
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Figure 6: Scene-level and object-level controllable generation by changing the input conditions.
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Figure 7: Effect of CFG scales.

Table 3: Ablation studies of X-DRIVE modules.

Methods FID↓ JSD↓ DAS↓
w/o 3D box condition 29.60 0.091 1.76

w/o text prompt condition 25.76 0.070 1.73
w/o cross-modality 24.41 0.081 1.95

average epipolar condition 20.70 0.098 2.23

full model 20.17 0.070 1.67

Scene-level and object-level control. Given the text and bounding box conditions, X-DRIVE gen-
erate diverse results using different control signals, as illustrated in Fig. 6. For scene-level control,
we can target for various lighting and weathers through the text prompts, while synthetic images still
remain realistic and adhere to the object layouts. For object-level control, we can edit the scene by
deleting objects or inserting objects at desired locations with specific sizes and semantic categories.

5.4 ABLATION STUDIES

Due to limited computational resources, we employ shorter training schedule for ablation studies.

Cross-modality condition. The cross-modality condition is critical for cross-modality consistency.
As shown in Tab. 3, removing this module significantly hurts the cross-modality alignment although
the shared bounding boxes and text prompts still provide some constraints. Given the spatial ambi-
guity, we resort to cross-attention along epipolar lines to adaptively learn the local correspondence
in Eq. 16 and Eq. 19. Instead, simple averaging along epipolar lines instead of cross-attention is
quite noisy and poses severe damage to the point clouds quality and cross-modality consistency.

Bounding box and text prompt input conditions. Although X-DRIVE also supports unconditional
generation, these input conditions provide multi-level control signals to generate diverse outputs.
Tab. 3 shows that text and box conditions improve the quality of synthetic point clouds and images.

Classifier-free guidance. We employ classifier-free guidance (CFG) during inference for box and
text conditions. Illustrated in Fig. 7, it improves the realism of synthetic data. However, higher CFG
scale would hurt the image and point cloud quality by increasing the contrast and sharpness.

6 CONCLUSIONS

We present X-DRIVE, a novel framework for the multi-modality generation of aligned LiDAR point
clouds and multi-view camera images. By leveraging a dual-branch diffusion model, X-DRIVE
captures the joint distribution of multi-modality data, ensuring mutual dependence between modal-
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ities. A key feature is the cross-modality condition module, which uses epipolar lines on LiDAR
range images and camera views to address spatial ambiguity during the denoising process. Addi-
tionally, X-DRIVE supports multi-level control, enabling synthesis based on text prompts and object
bounding boxes. Extensive experiments show that X-DRIVE generates high-quality, geometrically
and semantically aligned point clouds and images, maintaining fidelity to the input conditions while
accurately describing the same driving scene together.

Acknowledegement This work was supported in part by Berkeley DeepDrive and NSF Grant.
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In this appendix, we first elaborate our implementation details in Appendix A. Then, we discuss the
limitation of our framework and future works in Appendix B. Finally, more qualitative results of
multi-modality data generation are demonstrated in Appendix C.

A IMPLEMENTATION DETAILS

In this part, we explain details in the implementation of X-DRIVE including network architecture,
training schedule, and evaluation metrics. Our code will be made publicly available upon the accep-
tance of this paper.

Network architecture. Given the small height dimension of LiDAR range images and limited
data amount, we employ smaller sizes for the VAE and latent diffusion model (LDM) for LiDAR
range images. Specifically, the VAE includes three encoder blocks and three decoder blocks with
channels [32, 64, 128] separately. There are downsampling modules in the first two encoder blocks.
The latent zr for range image has a size of 8 × 256 × 8. The range image LDM is composed of
three downsampling blocks, one middle block, and three upsampling blocks with attention mod-
ules in all the blocks. The channel numbers for three downsampling and upsampling blocks are
[128, 256, 512] respectively. The cross-modality epipolar condition modules are inserted between
each pair of corresponding blocks in point cloud and multi-view image diffusion model branches.
For these seven cross-modality modules, we set the sampling number R and D along range and
depth axes as [24, 24, 12, 6, 12, 24, 24] separately with both maximal depth and range as 60m.

Training schedule. The training of X-DRIVE on nuScenes dataset (Caesar et al., 2020) includes
three stages. Since there are no publicly available pretrained weights for LiDAR diffusion models,
we train the VAE and LDM for LiDAR range image in the first two stages separately. Afterwards,
we train the entire multi-modality generation framework together. Before training, we initialize our
multi-view image diffusion model branch with pretrained Stable-Diffusion V1.5 weights, while all
the other modules except the zero-initialization gates are initialized randomly. In all the stages, our
model is trained using NVIDIA RTX A6000 GPUs.

In the first stage, VAE for LiDAR range image is trained using batch size 96 and learning rate 4e-4
for 200 epochs. The discriminator takes effect after 1000 iterations. In the second stage, we train the
LiDAR LDM from scratch using batch size 96 and learning rate 1e-4 for 2000 epochs. The model
includes the text prompt and 3D range-view bounding box condition modules with drop-rate 0.25
for either condition during training. In the last stage, we train the entire framework in an end-to-
end manner with module trainable states illustrated in Fig. 2 using condition drop-rate 0.25 as well.
The entire model is trained for 250 epochs with learning rate 8e-5 and batch size 24 in our main
experiments. For ablation studies, we reduce the epoch number to 80 for efficiency.

Evaluation metrics. In our quantitative evaluation, we apply the FID metric from Magic-
Drive (Gao et al., 2023), VSC metric from BEVGen (Swerdlow et al., 2024), MMD and JSD met-
rics from LiDARGen (Zyrianov et al., 2022). For our proposed DAS metric, we run pretrained
DepthAnythingV2 model (Yang et al., 2024c) with ViT-B backbone (Dosovitskiy, 2020) on the syn-
thetic images to estimate the disparity (Yang et al., 2024b). Then, we project the synthetic point
clouds to multi-view images to get sparse disparity. We normalize the projected sparse disparity to
the same scale as the estimated disparity. The mean absolute error is fetched as our DAS metric.

B LIMITATION AND FUTURE WORKS

This paper concentrates on the joint generation of consistent multi-modality data. In this case, due
to the limitation of accessible computational resources, we do not include some natural extensions
of our X-DRIVE framework. Firstly, our method is limited to the generation of single-frame point
clouds and multi-view images. In fact, it is intuitive to combine existing temporal attention modules
like Wen et al. (2024) with our X-DRIVE. Secondly, we can also incorporate some extra conditions
for data synthesis such as HD maps (Gao et al., 2023) into our framework for more controllable
generation. Lastly, due to the distribution of nuScenes training set (Caesar et al., 2020), we cannot
synthesize some specific scenarios such as snowy weathers. We will try to extend our framework to
deal with above limitations in our future work.
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C QUALITATIVE RESULTS

In this section, we demonstrate additional examples of our synthetic multi-modality data in Fig. 8.
X-DRIVE can generate realistic point clouds and multi-view images with cross-modality consistency
based on the input conditions.

A driving scene image at 
boston-seaport. Rain, 
parked cars, turn left, 
peds, bus, truck, ped 
crossing crosswalk, 
suitcase, cones.

Input conditions Synthetic multi-view images Synthetic point clouds

A driving scene image at 
boston-seaport. Parked 
vans, switch lane, 
construction zone in the 
right, bike following in 
rear, passed by active 
motorcycle.

A driving scene image at 
boston-seaport. Parked 
cars, stop at red light, 
jaywalker, peds, bus.

A driving scene image at 
boston-seaport. Rain, 
ped, cones, parked cars, 
construction site, 
construction vehicle, 
parking lot, barriers.

A driving scene image at 
boston-seaport. Change 
lane and stop, slight traffic 
congestion due to traffic 
light, ped on overpass, 
parked cars, cyclist.

A driving scene image at 
boston-seaport. Rain, turn 
right, parked trucks.

Figure 8: Additional multi-modality data synthesis results using our proposed X-DRIVE.
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